JPH03220320A - Carbon fiber for producing electrically conductive composite material and thermoplastic resin composition using same fiber - Google Patents

Carbon fiber for producing electrically conductive composite material and thermoplastic resin composition using same fiber

Info

Publication number
JPH03220320A
JPH03220320A JP1636190A JP1636190A JPH03220320A JP H03220320 A JPH03220320 A JP H03220320A JP 1636190 A JP1636190 A JP 1636190A JP 1636190 A JP1636190 A JP 1636190A JP H03220320 A JPH03220320 A JP H03220320A
Authority
JP
Japan
Prior art keywords
carbon fiber
fiber
thermoplastic resin
resin composition
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1636190A
Other languages
Japanese (ja)
Inventor
Shigeki Tomono
茂樹 友納
Yoshihiro Sakamoto
阪本 吉弘
Yasushi Komata
小俣 靖
Manabu Fujitani
学 藤谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP1636190A priority Critical patent/JPH03220320A/en
Publication of JPH03220320A publication Critical patent/JPH03220320A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Inorganic Fibers (AREA)
  • Chemical Treatment Of Fibers During Manufacturing Processes (AREA)

Abstract

PURPOSE:To obtain the title carbon fiber having a specific outermost surface layer of fiber and specific tensile modulus, capable of providing excellent conductivity while retaining a mechanical physical properties and suitable for prevention of static charge or electromagnetic shielding of office automation equipment, gear, etc. CONSTITUTION:The aimed carbon fiber having outermost surface layer of fiber being 0.02-0.05 in functional group amount of carbon fiber surface detected by X-ray electron spectroscopy (ECSA) and having 10-30 ton/mm<2> tensile modulus. 1-70 pts.wt. of the above-mentioned carbon fiber is added to 100 pts.wt. thermoplastic resin to provide the resin composition.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、繊維強化樹脂組成物およびそれに使用する炭
素繊維に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a fiber-reinforced resin composition and carbon fibers used therein.

(従来の技術) 近年、炭素繊維は、高強度、高剛性、低比重、高電気伝
導性、低熱膨張率、高耐摩耗性等の優れた特長を有する
ことから各種樹脂の強化繊維として使用され工業的に重
要な材料として注目されている。特に最近では、OA機
器や歯車等の帯電防止や!磁遮蔽の為に繊維強化複合材
の機械的物性を保持しつつ導電性を付与する強化繊維が
求められている。
(Prior art) In recent years, carbon fibers have been used as reinforcing fibers for various resins due to their excellent features such as high strength, high rigidity, low specific gravity, high electrical conductivity, low coefficient of thermal expansion, and high abrasion resistance. It is attracting attention as an industrially important material. Especially recently, it is used to prevent static electricity on OA equipment and gears! There is a need for reinforcing fibers that provide electrical conductivity while maintaining the mechanical properties of fiber-reinforced composite materials for magnetic shielding.

最近のエレクトロニクスの発展にともない、電子機器周
辺の電子機器の誤動作いわゆる電磁波障害(EMI;E
lectro  MagneticInterfere
nce)が新たな社会問題としてクローズアップされて
いる。日本でも、一定の電界強度以上の電磁波が電子機
器から漏洩しないように法的規制が行なわれている。(
EMIシールド)この対策の一つとして、使用している
ハウジング材料であるプラスチックスの導電性化が挙げ
られている。−船釣には、プラスチックスは絶縁材料で
あるが、その量産性、デザインの自由度・軽量性等の観
点からプラスチックス、熱可塑性樹脂がハウジング材料
の主流となっている。このプラスチックスの導電化のた
めには、種々の方法が提案されており、現在は導電性塗
料や無電解メツキ等の導電性表面処理が主流である。し
かし、シールド特性の経時変化が少なく、また成形と同
時に導電性が付与でき、従って工程上低コストにできる
導電性熱可塑性樹脂が注目されている。そして、かかる
導電性熱可塑性樹脂としては、一般にポリエステル、ポ
リアミド、ポリオレフィン、アクリル樹脂、エポキシ樹
脂、フェノール樹脂等の各種マトリックスにフィラーを
混合、分散させて繊維強化樹脂材料を得、次いで導電性
を付与するに、導電性カーボンブラック、金属フィラー
や金属繊維を添加する。しかしこれら添加物は、熱可塑
性樹脂に導電性は付与するものの機械的物性を低下し、
導電性の改善は不十分という問題があった。これに対し
、炭素繊維は強化繊維としては導電性を有し上記用途に
適している。
With the recent development of electronics, malfunctions of electronic equipment around electronic equipment, so-called electromagnetic interference (EMI;
electro Magnetic Interfere
nce) is attracting attention as a new social problem. In Japan, legal regulations are in place to prevent electromagnetic waves exceeding a certain electric field strength from leaking from electronic devices. (
(EMI Shielding) One of the countermeasures to this problem is to make the plastic housing material used conductive. -For boat fishing, plastics are used as insulating materials, but plastics and thermoplastic resins have become the mainstream housing materials due to their ease of mass production, freedom of design, and light weight. Various methods have been proposed to make plastics conductive, and currently, conductive surface treatments such as conductive paint and electroless plating are the mainstream. However, conductive thermoplastic resins are attracting attention because their shielding properties change little over time, and conductivity can be imparted at the same time as molding, resulting in lower manufacturing costs. Such conductive thermoplastic resins are generally made by mixing and dispersing fillers in various matrices such as polyester, polyamide, polyolefin, acrylic resin, epoxy resin, and phenolic resin to obtain fiber-reinforced resin materials, which are then imparted with conductivity. Then, conductive carbon black, metal fillers and metal fibers are added. However, although these additives impart electrical conductivity to thermoplastic resins, they reduce mechanical properties.
There was a problem that the improvement in conductivity was insufficient. On the other hand, carbon fibers have electrical conductivity as reinforcing fibers and are suitable for the above-mentioned uses.

(発明が解決しようとする課題) しかし、通常の従来の炭素繊維を使用しても導電性は向
上するもののその変化は少なく、そのため表面を金属で
被覆した炭素繊維が使用されている。しかし、金属被覆
炭素繊維は製造コストが非常に高価でありその性能は優
れているものの使用されていないのが現状である。
(Problems to be Solved by the Invention) However, even if ordinary conventional carbon fibers are used, although the conductivity is improved, the change is small, and therefore carbon fibers whose surfaces are coated with metal are used. However, metal-coated carbon fibers are extremely expensive to manufacture, and although they have excellent performance, they are not currently used.

(課題を解決するための手段) そこで、本発明者等はかかる課題を解決すべく鋭意検討
を行なった結果、特定の表面物性を有する炭素繊維によ
り、かかる課題が解消されることを見いだし本発明に到
達した。すなわち、本発明の目的は、従来の炭素繊維の
保持している表面構造とは異なった構造を有しており、
この繊維表面構造に起因して複合材料に機械的物性を保
持しつつ優れた導電性を付与できる炭素繊維及びそれを
用いた樹脂組成物を提供することにある。
(Means for Solving the Problems) Therefore, the present inventors conducted intensive studies to solve the problems, and as a result, they found that the problems could be solved by carbon fibers having specific surface properties. reached. That is, the object of the present invention is to have a surface structure different from that of conventional carbon fibers,
The object of the present invention is to provide a carbon fiber that can impart excellent electrical conductivity to a composite material while maintaining its mechanical properties due to this fiber surface structure, and a resin composition using the same.

そしてその目的は、X線電子分光法(E CS A)に
よって検出される炭素繊維最表面の官能基量(01S/
CI S)が0.02〜0.05の範囲である繊維最表
面層を有し、かつその引張弾性率が10 ton/mm
” 〜30 ton/mm”の範囲である炭素繊維およ
び熱可塑性樹脂100重量部に対してX線電子分光法(
E CS A)によって検出された炭素繊維表面の官能
基量(01S/CI S)が0.02〜0.05の範囲
である繊維最表面層を有し、かつ引張弾性率が10 t
on/+mm”〜30 ton/a+n+”の範囲であ
る炭素繊維を1〜70重量部配合してなる炭素繊維強化
熱可塑性樹脂組成物によって上記問題点を解決すること
が出来ることを見いだし本発明に到達した。
The purpose is to determine the amount of functional groups (01S/
CI S) has a fiber outermost layer in the range of 0.02 to 0.05, and its tensile modulus is 10 ton/mm
X-ray electron spectroscopy (
The fiber has a fiber outermost layer in which the amount of functional groups on the carbon fiber surface (01S/CIS) detected by ECS A) is in the range of 0.02 to 0.05, and the tensile modulus is 10 t.
It has been discovered that the above problems can be solved by a carbon fiber-reinforced thermoplastic resin composition containing 1 to 70 parts by weight of carbon fibers in the range of 1 to 30 tons/a+n+'', and the present invention has been made based on the findings. Reached.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明の炭素繊維を得るための手段としては、単糸引張
弾性率が10 ton/s++++”以上であって30
ton/mm”以下、好ましくは25 ton/sv+
”以下さらに好ましくは20 ton/mn+”以下で
ある炭素繊維を不活性ガス下かつまた必要に応じて減圧
下にて再焼成する事によって得られる。用いる炭素繊維
はピッチ系炭素繊維であることがより好ましい。再焼成
温度としては、たとえば800〜1500℃、好ましく
は850〜1000℃の温度範囲で0.1〜5分間加熱
処理され、X線電子分光法(EC3A)によって検出さ
れる炭素繊維表面の官能基量(01S/CI S)が0
.021005(71範囲内、好ましくは0.02〜0
.04の範囲にするのがよい。
As a means for obtaining the carbon fiber of the present invention, the single filament tensile modulus is 10 ton/s++++" or more and 30
ton/mm” or less, preferably 25 ton/sv+
It is obtained by re-firing carbon fibers having a weight of "less than or more preferably 20 ton/mn+" under an inert gas and optionally under reduced pressure. It is more preferable that the carbon fiber used is a pitch-based carbon fiber. The re-firing temperature is, for example, 800 to 1500°C, preferably 850 to 1000°C, for 0.1 to 5 minutes, and the functional groups on the carbon fiber surface are detected by X-ray electron spectroscopy (EC3A). Quantity (01S/CIS) is 0
.. 021005 (within the range of 71, preferably 0.02 to 0
.. It is best to set it in the range of 04.

炭素繊維の弾性率が上記範囲より低い場合、炭素繊維自
体の物性が低く繊維強化樹脂組成物としたときの機械的
物性の改善が発現しにくい。また、上記範囲を載支た弾
性率の炭素繊維を用いると、糸そのものの脆さがでて樹
脂マトリックスとの混練の際にスクリューのせん断力に
よって糸が破壊され十分に機械的物性を発現できない。
When the elastic modulus of the carbon fiber is lower than the above range, the physical properties of the carbon fiber itself are low and it is difficult to improve the mechanical properties when a fiber reinforced resin composition is prepared. Furthermore, if carbon fiber with an elastic modulus within the above range is used, the yarn itself becomes brittle, and when kneaded with the resin matrix, the yarn is destroyed by the shearing force of the screw, making it impossible to exhibit sufficient mechanical properties. .

また、炭素繊維の最表面官能基量が上記範囲以下の場合
は、導電性は発現するものの、官能基量が少なすぎ樹脂
マトリックスとの接着力が低下し機械的強度が発現しに
くい。また、上記範囲を越えると樹脂との接着力は増加
するが、導電性が低下する。
Furthermore, when the amount of functional groups on the outermost surface of the carbon fiber is below the above range, although conductivity is exhibited, the amount of functional groups is too small and adhesive strength with the resin matrix decreases, making it difficult to develop mechanical strength. Further, when the amount exceeds the above range, the adhesive force with the resin increases, but the conductivity decreases.

かくして得られる本発明の炭素繊維の最表層部はX線電
子分光法(E CS A)によって検出される炭素繊維
表面の官能基量(01S/CI S)が0.02〜0.
05の範囲の値を示す。
The outermost layer of the carbon fiber of the present invention thus obtained has a functional group content (01S/CIS) of 0.02 to 0.02 on the carbon fiber surface as detected by X-ray electron spectroscopy (ECSA).
Indicates a value in the range of 0.05.

ここで、X線電子分光法(ESCA) 、単繊維弾性率
は次の測定法にしたがって測定された値である。
Here, the single fiber elastic modulus is a value measured according to the following measurement method using X-ray electron spectroscopy (ESCA).

X線電子分光法(ESCA): 具体的な装置として、“KRATO5XSAM−800
”を用いた。
X-ray electron spectroscopy (ESCA): As a specific device, “KRATO5XSAM-800
” was used.

炭素繊維(サンプル)を有機溶剤で洗浄し、サイジング
剤などの表面付着剤を除去した後、該炭素繊維をカット
し、銅製の試料支持台上にひろげて並べた後、X線源と
してAIKcxvAを用い測定し、運動エネルギーが9
55eVのO1sピーク面積および1202eVのC1
sピ一ク面積の比から表面酸素原子/表面炭素原子(0
1S/CIS)の比を求める。
After cleaning the carbon fibers (sample) with an organic solvent to remove surface adhesives such as sizing agents, the carbon fibers were cut and spread out on a copper sample support stand, and then AIKcxvA was used as an X-ray source. The kinetic energy is 9
O1s peak area of 55eV and C1 of 1202eV
Surface oxygen atom/surface carbon atom (0
1S/CIS).

平均単糸弾性率: JIS−R−7601に規定されている単繊維試験法に
準じて測定した。測定回数100回の平均値を以て示し
た。
Average single fiber elastic modulus: Measured according to the single fiber test method specified in JIS-R-7601. The average value of 100 measurements is shown.

次に、かかる炭素繊維を用いた熱可塑性樹脂組成物につ
いて説明する。
Next, a thermoplastic resin composition using such carbon fibers will be explained.

用いる熱可塑性樹脂としては、例えば、ポリカーボネー
ト、ポリスチレン、ポリエステル、ポリアミド、ポリオ
レフィン、アクリル樹脂、ポリオキシメチレン、ポリフ
ェニレンサルファイド、ポリフェニレンエーテル、ポリ
フェニレンオキシド、ポリブチレンテレフタレート、ポ
リエーテルイミド、ポリエーテルエーテルケトン、ポリ
フェニレンスルホン、フッ素樹脂などのポリマー類又は
これらのコポリマー類などの公知の熱可塑性樹脂を挙げ
られ、好ましくは、ポリカーボネート、ポリオキシメチ
レン、ポリブチレンテレフタレート、ポリフェニレンオ
キシド、ポリフェニレンサルファイドを用いるのが良い
、そしてかかる熱可塑性樹脂100重量部に対し、上述
の炭素繊維を1〜70重量部、好ましくは5〜40重量
部配合するのがよい、配合する炭素繊維の形態としては
特に限定されないが、繊維長0.1〜30■■、好まし
くは1〜15+ms+の短繊維状がよい。
Examples of thermoplastic resins used include polycarbonate, polystyrene, polyester, polyamide, polyolefin, acrylic resin, polyoxymethylene, polyphenylene sulfide, polyphenylene ether, polyphenylene oxide, polybutylene terephthalate, polyetherimide, polyether ether ketone, and polyphenylene sulfone. , polymers such as fluororesins, or copolymers thereof, and preferably polycarbonate, polyoxymethylene, polybutylene terephthalate, polyphenylene oxide, polyphenylene sulfide, and such heat treatment. It is preferable to blend 1 to 70 parts by weight, preferably 5 to 40 parts by weight, of the above-mentioned carbon fibers to 100 parts by weight of the plastic resin.The form of the carbon fibers to be blended is not particularly limited, but the fiber length is 0.1 -30 ms+, preferably 1-15+ms+ short fibers are preferred.

また、かかる炭素繊維は、通常サイジング剤を表面に被
覆した後樹脂と含浸するが良いが、そのサイジング剤と
しては通常任意のものが使用することができ、モノフィ
ラメントの集束性の良いものが選択できる。本発明にて
使用するサイジング剤は例えばエポキシ化合物、飽和又
は不飽和ポリエステル、ポリフェニレンサルファイド、
ポリフェニレンエーテル、ポリカーボネート、ポリオキ
シメチレン、ポリスチレン、ポリオレフィン、アクリル
樹脂、酢酸ビニル樹脂、ポリアミド樹脂などのホモポリ
マー又はコポリマーが挙げられる。
In addition, such carbon fibers are usually coated with a sizing agent and then impregnated with a resin, but any sizing agent can be used, and one with good monofilament cohesiveness can be selected. . Sizing agents used in the present invention include, for example, epoxy compounds, saturated or unsaturated polyesters, polyphenylene sulfide,
Examples include homopolymers or copolymers such as polyphenylene ether, polycarbonate, polyoxymethylene, polystyrene, polyolefin, acrylic resin, vinyl acetate resin, and polyamide resin.

また必要に応じて、界面活性剤、シランカップリング剤
、エポキシ硬化剤、触媒、接着剤等を配合しても良い。
Additionally, surfactants, silane coupling agents, epoxy curing agents, catalysts, adhesives, etc. may be added as necessary.

その際使用するサイジング剤の付着量は繊維全量に対し
て0.1〜10重量%好ましくは0.5〜7重量%の範
囲で選択される。そして、その表面被覆方法としては、
例えば、数百〜数十万本の炭素長繊維束に、サイジング
剤を含浸させたのち、乾燥する。表面被覆に使用するサ
イジング剤は溶剤等に溶解させるか、あるいはサイジン
グ剤を含むエマルジョンを用いても良い。用いる溶剤と
しては、2−ブタノン、テトラヒドロフラン、N、N−
ジメチルホルムアミド、アセトン、クロロホルム、ジク
ロロメタン等が有る。またエマルジョンに用いる界面活
性剤としては、例えば、ポリオキシメチレンのヒマシ油
エーテル、ノニルフェニルエーテル、スチレン化フェニ
ルエーテルなどのポリオキシエチレンアルキルエーテル
又はポリオキシエチレンアルキルアリルエーテル及びポ
リビニルアルコールなどの中から選ばれた少なくとも1
種類の界面活性剤が挙げられる。サイジング剤の付着量
が0.1重量%未満では該炭素繊維集合体の集束性が劣
り、10重量%を越えると炭素繊維強化熱可塑性樹脂の
物性が低下するため好ましくない。また、熱可塑性樹脂
と本発明の炭素繊維との配合方法としては特に限定され
るものではないが、通常−軸押出機、二軸押出機、プレ
ス機、高速ミキサー、射出成形機、引き抜き成形機等の
方法により行なわれる。
The amount of the sizing agent used at this time is selected in the range of 0.1 to 10% by weight, preferably 0.5 to 7% by weight based on the total amount of fibers. The surface coating method is as follows:
For example, a bundle of hundreds to hundreds of thousands of long carbon fibers is impregnated with a sizing agent and then dried. The sizing agent used for surface coating may be dissolved in a solvent or the like, or an emulsion containing the sizing agent may be used. Solvents used include 2-butanone, tetrahydrofuran, N, N-
Examples include dimethylformamide, acetone, chloroform, dichloromethane, etc. The surfactant used in the emulsion may be selected from polyoxyethylene alkyl ethers such as polyoxymethylene castor oil ether, nonylphenyl ether, styrenated phenyl ether, polyoxyethylene alkyl allyl ether, and polyvinyl alcohol. at least 1
types of surfactants. If the amount of the sizing agent attached is less than 0.1% by weight, the cohesiveness of the carbon fiber aggregate will be poor, and if it exceeds 10% by weight, the physical properties of the carbon fiber reinforced thermoplastic resin will deteriorate, which is not preferable. Further, the method of blending the thermoplastic resin and the carbon fiber of the present invention is not particularly limited, but usually includes a screw extruder, twin screw extruder, press machine, high-speed mixer, injection molding machine, pultrusion molding machine. This is done using methods such as

更に、上記成分以外の本発明の効果を損なわない程度に
、例えば、他種の炭素繊維、ガラス繊維、アラミド繊維
、ボロン繊維、炭化珪素繊維等の短繊維及び長繊維、ウ
ィスカー類、あるいはカーボンブラック、二硫化モリブ
デン、マイカ、タルク、炭酸カルシウム、等のフィラー
類から成る強化材、安定剤、滑剤、その他添加剤などを
加えることができる。
Furthermore, to the extent that the effects of the present invention other than the above-mentioned components are not impaired, other types of carbon fibers, glass fibers, aramid fibers, boron fibers, short fibers such as silicon carbide fibers, long fibers, whiskers, or carbon black may be added. , reinforcing agents such as fillers such as molybdenum disulfide, mica, talc, calcium carbonate, stabilizers, lubricants, and other additives can be added.

(実施例) 次に実施例により本発明をさらに詳細に説明する。(Example) Next, the present invention will be explained in more detail with reference to Examples.

(A)炭素繊維の処理 実施例1 市販ピッチ系炭素繊維(単糸弾性率18Ton/mmり
を900℃の窒素雰囲気下で約1分間加熱して繊維中の
官能基を脱官能基した。
(A) Carbon fiber treatment example 1 A commercially available pitch-based carbon fiber (single yarn elastic modulus 18T/mm) was heated in a nitrogen atmosphere at 900° C. for about 1 minute to remove functional groups in the fiber.

かくして得られた炭素繊維についてX線分光法(E S
 CA)により、繊維最表面の官能基量(01S/CI
 S)を測定した結果、Q、 032であった。
The carbon fiber thus obtained was subjected to X-ray spectroscopy (ES
CA), the amount of functional groups on the outermost surface of the fiber (01S/CI
The result of measuring S) was Q, 032.

実施例2 市販ピッチ系炭素繊維(単糸弾性率23 Ton/am
”)を9′oO℃の窒素雰囲気下で約1分間加熱して繊
維中の官能基を脱官能基した。
Example 2 Commercially available pitch-based carbon fiber (single yarn elastic modulus 23 Ton/am
) was heated for about 1 minute at 9'oO<0>C under a nitrogen atmosphere to defunctionalize the functional groups in the fiber.

かくして得られた炭素繊維についてX線分光法(ESC
A)により、繊維最表面の官能基!(01S/CI S
)を測定した結果、0.024であった。
The carbon fiber thus obtained was subjected to X-ray spectroscopy (ESC).
By A), the functional group on the outermost surface of the fiber! (01S/CI S
) was measured and found to be 0.024.

比較例1 市販ピッチ系炭素繊維(単糸弾性率19Ton/mmり
を400℃の窒素雰囲気下で約1分間加熱した。
Comparative Example 1 A commercially available pitch-based carbon fiber (single yarn elasticity modulus: 19T/mm) was heated at 400° C. in a nitrogen atmosphere for about 1 minute.

かくして得られた炭素繊維についてX線分光法(ESC
A)により、繊維最表面の官能基量(OI S/CI 
S)を測定した結果、0.15であった。
The carbon fiber thus obtained was subjected to X-ray spectroscopy (ESC).
A) determines the amount of functional groups on the outermost surface of the fiber (OIS/CI
As a result of measuring S), it was 0.15.

比較例2 市販ピッチ系炭素繊維(単糸弾性率65Ton/s+が
)を900℃の窒素雰囲気下で約1分間加熱した。
Comparative Example 2 A commercially available pitch-based carbon fiber (single yarn elasticity modulus of 65 Ton/s+) was heated for about 1 minute at 900° C. in a nitrogen atmosphere.

かくして得られた炭素繊維についてX線分光法(ESC
A)により、繊維最表面の官能基量(01S/CI S
)を測定した結果、0.021であった。
The carbon fiber thus obtained was subjected to X-ray spectroscopy (ESC).
A), the amount of functional groups on the outermost surface of the fiber (01S/CIS
) was measured and found to be 0.021.

(B)炭素短繊維集合体の製造 上記ピッチ系炭素長繊維を、゛′エピコート834” 
(シェル化学社製)50重量部と“エピコート1004
”” (シェル化学社製)50重量部とのエマルジョン
溶液(濃度3重量%)中に含浸させたのち、約120°
Cで20分間加熱乾燥し、さらに切断機で61長の炭素
短繊維集合体を製造した。
(B) Production of short carbon fiber aggregate The pitch-based long carbon fibers were
(manufactured by Shell Chemical Co., Ltd.) 50 parts by weight and "Epicote 1004"
After impregnating it in an emulsion solution (concentration 3% by weight) with 50 parts by weight (manufactured by Shell Chemical Co., Ltd.),
The mixture was dried by heating at C for 20 minutes, and then a 61-length carbon short fiber aggregate was produced using a cutting machine.

得られた炭素短繊維集合体のエポキシ化合物含有量は3
.1重量%であった。
The epoxy compound content of the obtained short carbon fiber aggregate was 3
.. It was 1% by weight.

(C)炭素短繊維強化成形材料の製造 前記炭素短繊維集合体20重量部と乾燥したポリブチレ
ンテレフタレート樹脂ペレット(三菱化成株式会社製”
ノバドゥール”)80重量部とをトライブレンドした後
、スクリュー押出機にしこみ、溶融混合してストランド
状に押出し、水冷後ベレント状に切断した。
(C) Production of short carbon fiber reinforced molding material 20 parts by weight of the short carbon fiber aggregate and dried polybutylene terephthalate resin pellets (manufactured by Mitsubishi Kasei Corporation)
After tri-blending 80 parts by weight of "Novadur"), the mixture was poured into a screw extruder, melt-mixed, extruded into strands, cooled with water, and cut into strands.

このようにして得られた炭素短繊維強化成形材料を90
°C4時間乾燥した後、射出成形にて成形し試験片を得
た。
The short carbon fiber reinforced molding material obtained in this way was
After drying at °C for 4 hours, it was molded by injection molding to obtain a test piece.

ついで、これらの試験片について各物性は次のようにし
て測定した。
Next, the physical properties of these test pieces were measured as follows.

成形品の物性 成形品の物性は以下の法に準拠して測定する。Physical properties of molded products The physical properties of molded products are measured in accordance with the following methods.

引張強度  :  ASTM法 D638体積固有抵抗
:  5RIS法 5RIS2301尚、実施例1〜2
.比較例1〜2及び炭素繊維を加えていない未強化品の
試験片の力学的および電気的特性を第1表に示す。
Tensile strength: ASTM method D638 Volume resistivity: 5RIS method 5RIS2301 Examples 1 to 2
.. Table 1 shows the mechanical and electrical properties of the test specimens of Comparative Examples 1 and 2 and unreinforced specimens to which no carbon fibers were added.

第1表 (発明の効果) 本発明は繊維強化複合材の力学的、電気的特性を改善す
る炭素繊維を提供する。
Table 1 (Effects of the Invention) The present invention provides carbon fibers that improve the mechanical and electrical properties of fiber-reinforced composites.

三菱化成株式会社Mitsubishi Kasei Corporation

Claims (2)

【特許請求の範囲】[Claims] (1)X線電子分光法(ECSA)によって検出される
炭素繊維表面の官能基量(O1S/C1S)が0.02
〜0.05の範囲である繊維最表面層を有し、かつ引張
弾性率が10ton/mm^2〜30ton/mm^2
の範囲である導電性複合材料製造用炭素繊維。
(1) The amount of functional groups on the carbon fiber surface (O1S/C1S) detected by X-ray electron spectroscopy (ECSA) is 0.02
It has a fiber outermost layer in the range of ~0.05 and a tensile modulus of 10 ton/mm^2 to 30 ton/mm^2
carbon fiber for the production of conductive composite materials.
(2)熱可塑性樹脂100重量部に対してX線電子分光
法(ECSA)によって検出される炭素繊維表面の官能
基量(O1S/C1S)が0.02〜0.05の範囲で
ある繊維最表面層を有し、かつ引張弾性率が10ton
/mm^2〜30ton/mm^2の範囲である炭素繊
維を1〜70重量部配合してなる炭素繊維強化熱可塑性
樹脂組成物。
(2) The fibers have a functional group content (O1S/C1S) on the carbon fiber surface detected by X-ray electron spectroscopy (ECSA) in the range of 0.02 to 0.05 based on 100 parts by weight of the thermoplastic resin. Has a surface layer and has a tensile modulus of 10 tons
A carbon fiber-reinforced thermoplastic resin composition containing 1 to 70 parts by weight of carbon fiber having a carbon fiber content of 1 to 70 parts by weight in the range of 2 to 30 tons/mm2.
JP1636190A 1990-01-26 1990-01-26 Carbon fiber for producing electrically conductive composite material and thermoplastic resin composition using same fiber Pending JPH03220320A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1636190A JPH03220320A (en) 1990-01-26 1990-01-26 Carbon fiber for producing electrically conductive composite material and thermoplastic resin composition using same fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1636190A JPH03220320A (en) 1990-01-26 1990-01-26 Carbon fiber for producing electrically conductive composite material and thermoplastic resin composition using same fiber

Publications (1)

Publication Number Publication Date
JPH03220320A true JPH03220320A (en) 1991-09-27

Family

ID=11914200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1636190A Pending JPH03220320A (en) 1990-01-26 1990-01-26 Carbon fiber for producing electrically conductive composite material and thermoplastic resin composition using same fiber

Country Status (1)

Country Link
JP (1) JPH03220320A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0623935A1 (en) * 1993-05-03 1994-11-09 Du Pont De Nemours International S.A. Conductive composition
JP2013087269A (en) * 2011-10-21 2013-05-13 Res Inst For Prod Dev Short carbon fiber, method for producing the same, short carbon fiber-reinforced resin composition, and short carbon fiber-reinforced cement composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0623935A1 (en) * 1993-05-03 1994-11-09 Du Pont De Nemours International S.A. Conductive composition
JP2013087269A (en) * 2011-10-21 2013-05-13 Res Inst For Prod Dev Short carbon fiber, method for producing the same, short carbon fiber-reinforced resin composition, and short carbon fiber-reinforced cement composition

Similar Documents

Publication Publication Date Title
Wang et al. A material with high electromagnetic radiation shielding effectiveness fabricated using multi-walled carbon nanotubes wrapped with poly (ether sulfone) in a poly (ether ether ketone) matrix
EP0539936B1 (en) Short fiber-containing polymer composition and method for controlling electrical resistance of the polymer composition
JP2013173811A (en) Resin composition, molding material and method for producing the same
JPS58160346A (en) Resin composition
Ryu et al. Improvements of the electrical conductivity and EMI shielding efficiency for the polycarbonate/ABS/carbon fiber composites prepared by pultrusion process
JPH03220320A (en) Carbon fiber for producing electrically conductive composite material and thermoplastic resin composition using same fiber
JP2002317384A (en) Electrically conductive fiber bundle for filament pellet, filament pellet made thereof, and formed article produced by using the same
US5641572A (en) Short carbon fiber bundling mass, process for producing the same and fiber-reinforced thermoplastic resin composition
JP2001329072A (en) Carbon fiber reinforced resin composite, molded article, and method for recovery of carbon fiber
JPH05112657A (en) Resin composition reinforced with carbon fiber for thermoplastic resin reinforcement and carbon fiber reinforced thermoplastic resin composite material
JP2757454B2 (en) Short carbon fiber aggregate and fiber-reinforced thermoplastic resin composition obtained by blending the same
JP2000143826A (en) Short carbon fiber aggregate, its production, and fiber- reinforced resin composition
JP2003128799A (en) Carbon fiber for thermoplastic resin composition and thermoplastic resin composition produced by using the carbon fiber
JP2002146679A (en) Carbon fiber bundle, resin composition, forming material and formed product using the same
JP2002220786A (en) Carbon fiber bundle, resin composition, molding compound and molded product using the same
JP3040826B2 (en) Carbon fiber reinforced resin composition
JPH09157403A (en) Carbon short fiber assembly, its production and fiber-reinforced resin composition
JP2512028B2 (en) Carbon short fiber aggregate and fiber reinforced thermoplastic resin composition using the same
JP2003105676A (en) Carbon fiber, carbon fiber-reinforced thermoplastic resin composition, molding material and molded product
JPS63272536A (en) Manufacture of conductive resin molded product
JPH04279638A (en) Electrically conductive fiber-reinforced thermoplastic
JP3301099B2 (en) Short carbon fiber aggregate, method for producing the same, and fiber-reinforced thermoplastic resin composition using the same
JP2006152023A (en) Manufacturing method of carbon fiber resin composition
JP2003160673A (en) Resin composition for electromagnetic wave shielding and utilization thereof
JP2861260B2 (en) Carbon fiber and carbon fiber reinforced resin composition using the same