JPH03220229A - Resin composition - Google Patents

Resin composition

Info

Publication number
JPH03220229A
JPH03220229A JP30887790A JP30887790A JPH03220229A JP H03220229 A JPH03220229 A JP H03220229A JP 30887790 A JP30887790 A JP 30887790A JP 30887790 A JP30887790 A JP 30887790A JP H03220229 A JPH03220229 A JP H03220229A
Authority
JP
Japan
Prior art keywords
formulas
tables
resin
formula
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30887790A
Other languages
Japanese (ja)
Other versions
JP2823682B2 (en
Inventor
Masaru Ota
賢 太田
Kenichi Yanagisawa
健一 柳沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP30887790A priority Critical patent/JP2823682B2/en
Publication of JPH03220229A publication Critical patent/JPH03220229A/en
Application granted granted Critical
Publication of JP2823682B2 publication Critical patent/JP2823682B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a lowly viscous resin composition for sealing semiconductor excellent in thermal shock resistance, soldering-heat resistance and moldability by mixing a specified epoxy resin with a specified curing agent, a specified amount of an inorganic filler and a cure accelerator. CONSTITUTION:The title composition essentially consists of an epoxy resin containing 30-100wt.%, based on the total epoxy amount, mixture of a naphthalene-derived epoxy compound of formula I with a biphenyl-derived epoxy compound of formula II (wherein R is H or CH3) in a weight ratio of 10/90-90/10, a curing agent containing 30-100wt.%, based on the total curing agent, silicone-modified phenol novolac resin curing agent obtained by reacting at least one silicone compound selected between a compound of formula III [wherein R1 is a group of formula V or VI or C2H5; R2 is R1 or CH3; A is H, -R-COOH or a group of formula VII or VIII (wherein R is lower alkylene); 10<=N=l+m+n+2<=200; 0<=m/N<=0.1; and 5<=N/n<=50] or a compound of formula IV, 70-90wt.%, based on the total resin composition, inorganic filler (e.g. fused silica) and a cure accelerator (e.g. triphenylphosphine).

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高集精度IC封止用樹脂組成物に適する超低応
力、高強度、低粘度のエポキシ樹脂組成物に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an epoxy resin composition with ultra-low stress, high strength, and low viscosity that is suitable for a resin composition for high-accuracy IC sealing.

〔従来技術〕[Prior art]

エポキシ樹脂は耐熱性、電気特性、機械強度や接着性に
優れた樹脂であり、塗料、接着剤、電子部品封止用樹脂
、積層板用樹脂やその信子方面にわたって広く用いられ
ている樹脂である。
Epoxy resin is a resin with excellent heat resistance, electrical properties, mechanical strength, and adhesive properties, and is widely used in paints, adhesives, electronic component sealing resins, laminate resins, and their components. .

例えばIC,LSI、トランジスター、ダイオードなと
の半導体素子や電子回路等の樹脂封止には特性、コスト
の両面からエポキシ樹脂組成物か一般に用いられている
For example, epoxy resin compositions are generally used for resin encapsulation of semiconductor elements and electronic circuits such as ICs, LSIs, transistors, and diodes, from the viewpoint of both properties and cost.

しかし近年ICサイズの増大、パッケージサイズの小型
化・薄・自他により、■温度サイクルによるパッケージ
クラックの増大、■表面実装時の半田熱衝撃によるパッ
ケージクラックの増大か生しやすくなり、これらを改善
する効果的な手法が強く求められている。
However, in recent years, with the increase in IC size and the miniaturization, thinness, and other factors of package sizes, it has become easier to cause (increase in package cracks due to temperature cycling) and (increase in package cracks due to solder thermal shock during surface mounting), so these issues need to be improved. There is a strong need for effective methods to do so.

これらを改善するため、(D低弾性率化、■低熱膨張係
数化、■高衝撃強度化、■低吸水率化が検討されている
In order to improve these, (D) lowering the elastic modulus, (2) lowering the coefficient of thermal expansion, (2) increasing impact strength, and (2) lowering water absorption are being considered.

(D低弾性率化については、シリコーン変性エポキシ樹
脂化合物を利用する方法(特開昭61−73725号公
報、特開昭62−174222号公報)か効果かあると
言われているか、単に低弾性化するたけては強度も低下
するため半田耐熱性か低下し、良好な半導体封止用樹脂
組成物は得られなかった。
(D Regarding lowering the elastic modulus, it is said that there is a method using a silicone-modified epoxy resin compound (JP-A-61-73725, JP-A-62-174222). As the resin composition deteriorates, the strength also decreases, and the soldering heat resistance also decreases, making it impossible to obtain a good resin composition for semiconductor encapsulation.

■低熱膨張係数化については、樹脂組成物中のノリ力充
填材量を増加させることが効果的といわれるか、充填材
量増加にともなう樹脂組成物の粘度の上昇が問題となり
、成形性の著しい低下をクリアする必要かあった。
■Increasing the amount of adhesive filler in the resin composition is said to be effective for lowering the coefficient of thermal expansion, or the problem is that the viscosity of the resin composition increases as the amount of filler increases, resulting in significant moldability. It was necessary to clear the decline.

■高衝撃強度化については、ビフェニル型エポキシ樹脂
や3官能エポキシ樹脂の使用(特開昭61−16862
0号公報)が効果あるといわれているが、いずれも成形
性、特にウスバリ特性や金型汚れ性の低下がみられる。
■For high impact strength, use of biphenyl-type epoxy resin or trifunctional epoxy resin (Japanese Patent Application Laid-Open No. 61-16862
No. 0) is said to be effective, but all of them show deterioration in moldability, especially in mold properties and mold staining properties.

■低吸水率化については、シリコーン変性樹脂の使用や
充填材量の増加が効果あるといわれているが、いずれも
上記に示す欠点があり、実用化にまでは至っていない。
(2) It is said that using silicone-modified resin and increasing the amount of filler are effective in reducing water absorption, but both have the drawbacks mentioned above and have not been put into practical use.

〔発明か解決しようとする課題〕[Invention or problem to be solved]

本IIS明の目的とするところは成形性、流動性、電気
特性および他の諸特性を劣化させることなく耐熱衝撃性
、半田耐熱性に非常に優れた樹脂組成物を提供すること
にある。
The purpose of this IIS is to provide a resin composition that has excellent thermal shock resistance and soldering heat resistance without deteriorating moldability, fluidity, electrical properties, and other various properties.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らはこれらの問題を解決するために鋭意研究を
進め、つぎの組成をもつ組成物を見出した。衝撃強度向
上、低粘度化に効果を有する下記式(1)で示されるナ
フタレン型エポキシ化合物と、式(II)で示される、
ビフェニル型エポキシ化合物 またはこれらの化合物とエポキシ樹脂との混合物と、低
弾性率化、低吸水率化に効果を有するシリコーン変性フ
ェノール樹脂硬化剤(下記式(I[)、(IV)で示さ
れるノリコーン化合物とフェノール樹脂との反応物) を組み合わせ、さらに全樹脂組成物中の無機充填材の含
有量を70〜90重量%とじ、硬化促進剤を必須成分と
することにより、低弾性、低熱膨張係数、高強度、低吸
水率の極めてバランスのとれた優れた半導体封止用樹脂
組成物かえられることを見出して本願発明を完成するに
至ったものである。
The present inventors conducted extensive research to solve these problems and discovered a composition having the following composition. A naphthalene type epoxy compound represented by the following formula (1) which is effective in improving impact strength and reducing viscosity, and a naphthalene type epoxy compound represented by formula (II),
A biphenyl-type epoxy compound or a mixture of these compounds and an epoxy resin, and a silicone-modified phenolic resin curing agent that is effective in lowering the elastic modulus and water absorption (Noricone represented by the following formulas (I[) and (IV))] By combining a compound (a reaction product of a compound and a phenolic resin), limiting the content of inorganic filler in the total resin composition to 70 to 90% by weight, and making a curing accelerator an essential component, low elasticity and a low coefficient of thermal expansion are achieved. The present invention was completed by discovering that it is possible to create an excellent resin composition for semiconductor encapsulation that has an extremely well-balanced combination of high strength and low water absorption.

〔作  用〕[For production]

本発明において用いられる式〔I〕で示される構造のナ
フタレン型エポキシ樹脂や、式(II)で示されるビフ
ェニル型エポキシ樹脂は成形温度(165〜185°C
)において数センチボイズという低粘度を存するために
樹脂組成物の粘度を著しく低下させることか可能のため
、樹脂組成物中の充填材含有量を通常量より大幅にアッ
プさせることか出来る。
The naphthalene type epoxy resin having the structure represented by the formula [I] used in the present invention and the biphenyl type epoxy resin having the structure represented by the formula (II) have a molding temperature (165 to 185°C).
) has a low viscosity of several centimeter voids, which makes it possible to significantly reduce the viscosity of the resin composition, making it possible to significantly increase the filler content in the resin composition compared to the usual amount.

そしてこれらの平面構造を有するエポキン化合物は分子
同志のバッキングか良好のために樹脂組成物の衝撃強度
を向上させ、耐熱衝撃性、半田耐湿性、半田後の耐湿性
等に優れるという特徴を有している。
These Epoquin compounds with a planar structure have good backing between molecules, which improves the impact strength of the resin composition, and has characteristics such as excellent thermal shock resistance, soldering moisture resistance, and post-soldering moisture resistance. ing.

しかしながら、これらの樹脂を30重量%以上含むエポ
キシ樹脂は、他の樹脂との反応性、相溶性が悪く、しか
も粘度が低いために成形性、特にウスバリ特性、金型汚
れ性か低下するという問題を有していた。
However, epoxy resins containing 30% by weight or more of these resins have poor reactivity and compatibility with other resins, and low viscosity, resulting in a problem of poor moldability, especially thinness properties, and mold stain resistance. It had

しかし、この問題は後述するシリコーン変性フェノール
樹脂との組み合わせてクリアすることか可能である。
However, this problem can be overcome by combining it with a silicone-modified phenol resin, which will be described later.

式〔I〕で示されるナフタレン型エポキシ化合物とCI
I)で示されるビフェニル型エポキシ化合物は、他のエ
ポキシ樹脂と混合して用いても良いか、総量か総エボキ
ソ樹脂量中の30重量%以北とすることか必要である。
Naphthalene type epoxy compound represented by formula [I] and CI
The biphenyl type epoxy compound represented by I) may be used in combination with other epoxy resins, or it must be used in an amount of 30% by weight or more based on the total amount of epoxy resin.

30重量%未満の場合は低粘度、低吸水、高衝撃強度の
いずれも得られず、半田耐熱性や流動性の悪い樹脂組成
物となる。
When the amount is less than 30% by weight, neither low viscosity, low water absorption, nor high impact strength can be obtained, resulting in a resin composition with poor soldering heat resistance and fluidity.

式〔I〕で示されるナフタレン型エポキシ樹脂と、式(
IIIで示されるビフェニル型エポキシ樹脂とは重量比
で10/90〜90/ 10の割合内で併用する。
A naphthalene type epoxy resin represented by the formula [I] and a naphthalene type epoxy resin represented by the formula (
It is used together with the biphenyl type epoxy resin represented by III in a weight ratio of 10/90 to 90/10.

ナフタレン型エポキシ化合物は反応性が高く、しかも強
度向上に効果有るため半田耐熱性は良くなるが、耐熱衝
撃性は十分でない。また液状のために取扱いか困難であ
・る。
Naphthalene-type epoxy compounds have high reactivity and are effective in improving strength, so they improve soldering heat resistance, but do not have sufficient thermal shock resistance. Also, because it is liquid, it is difficult to handle.

一方、ビフェニル型エポキシ化合物は半田耐熱性と耐熱
衝撃性にすぐれ、結晶性のために取扱いに不便さはない
か、多少反応性か低い傾向にある。
On the other hand, biphenyl-type epoxy compounds have excellent soldering heat resistance and thermal shock resistance, and because of their crystallinity, they tend to be inconvenient to handle or have somewhat low reactivity.

両者を併用して使用することにより、お互いの欠点をお
ぎなう樹脂組成物を得ることができる。
By using both in combination, a resin composition that overcomes the drawbacks of each can be obtained.

本発明で(B)成分として用いるシリコーン変性フェノ
ール樹脂の原料としてのフェノール樹脂はフェノールノ
ボラック樹脂、クレゾールノホラソタ樹脂及びこれらの
変性樹脂等か挙げられ、これらは1#@又は2種以上混
合して用いることも出来る。
Phenolic resins as raw materials for the silicone-modified phenolic resin used as component (B) in the present invention include phenol novolac resins, cresol nohorasota resins, and modified resins thereof, and these may be used in 1#@ or in combination of two or more. It can also be used as

これらのフェノール樹脂の中でも、水酸基当量か80〜
+50、軟化点か60〜120℃でありNa’、CI−
等のイオン性不純物を出来る限り除いたものか好ましい
Among these phenolic resins, the hydroxyl equivalent is 80~
+50, softening point is 60~120℃, Na', CI-
It is preferable to remove ionic impurities such as as much as possible.

また、本発明のシリコーン変性フェノール樹脂の一方の
原料として用いられるオルガノポリシロキサンは、上述
のフェノール樹脂と反応し得る官能基を有するもので、
官能基としては、たとえばカルボキシル基、シクロヘキ
シル型エポキシ基、グリシジル型エポキシ基、活性水素
等が挙げられる。
Furthermore, the organopolysiloxane used as one of the raw materials for the silicone-modified phenolic resin of the present invention has a functional group that can react with the above-mentioned phenolic resin,
Examples of the functional group include a carboxyl group, a cyclohexyl epoxy group, a glycidyl epoxy group, and active hydrogen.

分子構造は下記式(III)、(IV)で示される才。The molecular structure is shown by the following formulas (III) and (IV).

ルガノポリシロキサンてあり R・低級アルキレン N (/+m+n+2)か10未満の時は、低弾性率性
、高強度性が低下し、しかもフェノールノボラック樹脂
と、の反応性基(式(III)、(IV)のA基〉が1
分子中に1つも存在しないオルガノポリシロキサンが副
生成物として存在する可能性が大きくなるためにシリコ
ーン変性フェノール樹脂硬化剤の合成が困難となり、メ
リットか少ない。
When the ratio of luganopolysiloxane R and lower alkylene N (/+m+n+2) is less than 10, low elastic modulus and high strength decrease, and moreover, reactive groups (formula (III), ( IV) A group〉 is 1
Since there is a greater possibility that organopolysiloxane, which does not exist at all in the molecule, exists as a by-product, it becomes difficult to synthesize a silicone-modified phenolic resin curing agent, and there are few benefits.

また、Nか200より大きい場合、フェノールノボラッ
ク樹脂との混和性が低下し、十分に合成反応か進まない
ために、樹脂からシリコーンオイルがブリードし、成形
性を大きく損なう。
Furthermore, if N is greater than 200, the miscibility with the phenol novolak resin decreases and the synthesis reaction does not proceed sufficiently, causing silicone oil to bleed from the resin, greatly impairing moldability.

さらに、式(It)、(I)のすルガノポリノロキサン
において、m / Nはθ〜0.1か望ましく、0.1
を越えるとシロキサン鎖の熱運動か抑制され、ノロキサ
ン成分のTgか高温側にシフトするためにより高温域か
らてないと低応力効果か生じず、樹脂組成物の耐熱衝撃
性か低下する。
Furthermore, in the sulfanopolynoroxanes of formulas (It) and (I), m/N is preferably θ ~ 0.1, preferably 0.1
If the temperature exceeds this temperature, the thermal movement of the siloxane chains will be suppressed, and the Tg of the noroxane component will shift to the high temperature side, so that a low stress effect will not be produced unless the temperature is within a higher temperature range, and the thermal shock resistance of the resin composition will deteriorate.

また、0.1を越えるとオルガノポリシロキサン合成の
コストが高くなってしまう。
Moreover, if it exceeds 0.1, the cost of organopolysiloxane synthesis will increase.

m/NはO,1以下ならばとのような値であっても良い
か、0.05程度が望ましい。
m/N may be a value such as O.1 or less, or is preferably about 0.05.

シロキサンのTgの高温へのシフトもなく、しかも側鎖
官能基の存在のためフェノールノボラック樹脂との相溶
性が向上し、ノリコーン変性フェノール樹脂の合成が容
易となるためである。
This is because there is no shift in the Tg of siloxane to high temperatures, and the presence of side chain functional groups improves compatibility with phenol novolak resins, making it easier to synthesize noricone-modified phenol resins.

そして5≦N/n≦50であることが望ましい。It is desirable that 5≦N/n≦50.

N/nが50より大きければオルガノポリシロキサンと
フェノール樹脂との反応性か悪いため、未反応のすルガ
ノポリシロキサンのブリードがあり、成形性が低下する
。5より小さければ、合成反応時にゲル化を起こし、満
足出来るノリコーン変性フェノール樹脂か得られない。
If N/n is greater than 50, the reactivity between the organopolysiloxane and the phenol resin is poor, and unreacted sulganopolysiloxane bleeds out, resulting in poor moldability. If it is smaller than 5, gelation will occur during the synthesis reaction, making it impossible to obtain a satisfactory noricone-modified phenol resin.

ノリコーン変性フェノール樹脂中のノリコーン成分の含
有lは原料フェノール樹脂100重量部に対して10〜
50重量部となる範囲のものか好適に用いられる。
The content of the noricorn component in the noricorne modified phenolic resin is 10 to 100 parts by weight per 100 parts by weight of the raw material phenolic resin.
A range of 50 parts by weight is preferably used.

シリコーン成分が10重量部未満の場合は耐熱衝撃性が
不十分てあり、50重量部を越えれば反応率が低下し、
未反応のすルガノポリシロキサンかブリードし成形性か
低下する。
If the silicone component is less than 10 parts by weight, the thermal shock resistance is insufficient, and if it exceeds 50 parts by weight, the reaction rate will decrease.
Unreacted surganopolysiloxane bleeds, reducing moldability.

尚、本発明においてシリコーン変性フェノール樹脂硬化
剤は単独もしくは従来からあるフェノール系樹脂硬化剤
と混合して用いても良いか、これらの混合系においては
ランダム共重合シリコーン変性フェノール樹脂は硬化剤
系の内30重量%以上用いることか好ましく、30重量
%未満となると耐熱衝撃性が低下する。
In the present invention, the silicone-modified phenolic resin curing agent may be used alone or in combination with a conventional phenolic resin curing agent. In these mixed systems, the random copolymerized silicone-modified phenolic resin may be used as a curing agent. It is preferable to use 30% by weight or more, and if it is less than 30% by weight, thermal shock resistance will decrease.

総エポキシ成分と総フェノール成分は当量比でエポキシ
基/フェノール性水酸基か70/100〜I OO/7
0の範囲か好適である。当量比か70/100未満もし
くは+ 00/70より大きいとTgの低下、熱時硬度
の低下、耐湿性の低下等か生し、半導体封止用樹脂組成
物として不適となってしまう。
The equivalent ratio of the total epoxy component and the total phenol component is epoxy group/phenolic hydroxyl group or 70/100 to IOO/7.
A range of 0 is preferred. If the equivalent ratio is less than 70/100 or greater than +00/70, there will be a decrease in Tg, a decrease in hardness when heated, a decrease in moisture resistance, etc., making it unsuitable as a resin composition for semiconductor encapsulation.

なお、通常のエボキン樹脂−フエノール樹脂系組成物に
上記ナフタレン型エポキシ化合物およびビフェニル型エ
ポキシ化合物を配合すればウスバリ特性が低下するが、
本発明のようにエポキシ樹脂−シリコーン変性フェノー
ル樹脂系組成物にナフタレン型エポキシ化合物およびビ
フェニル型エポキシ化合物を配合すれば、低分子のエポ
キシ化合物はシリコーン変性による高重合度成分とも反
応するため、ブリードしに((なり、ウスバリ特性は低
下しない。 本発明で用いられる(C)成分としての無
機充填材としては結晶性シリカ、溶融シリカ、アルミナ
、炭酸カルシウム、タルク、マイカ、ガラス繊維等が挙
げられ、これらは1種又は2種以上混合して使用される
。これらの中で特に結晶性シリカまたは溶融シリカが好
適に用いられる。
Note that if the naphthalene-type epoxy compound and biphenyl-type epoxy compound are blended into a normal Evokin resin-phenol resin composition, the usability properties will decrease;
If a naphthalene-type epoxy compound and a biphenyl-type epoxy compound are blended into an epoxy resin-silicone-modified phenol resin composition as in the present invention, the low-molecular-weight epoxy compound also reacts with the high degree of polymerization component resulting from silicone modification, so it will not bleed. The inorganic filler as component (C) used in the present invention includes crystalline silica, fused silica, alumina, calcium carbonate, talc, mica, glass fiber, etc. These may be used alone or in combination of two or more. Among these, crystalline silica or fused silica is particularly preferably used.

いずれの場合も、無機充填材の量は総樹脂組成物中の7
0〜90重fiLo4を占めることか必要である。70
重量06未満の場合は、熱膨張係数が増大し、低応力効
果か十分てないために耐熱衝撃性が低下し、また吸水率
か上昇することにより半田耐熱性か低下し、さらに低粘
度になりすぎるためウスバリが発生し成形性が低下する
In either case, the amount of inorganic filler is 7% in the total resin composition.
It is necessary to occupy 0 to 90 times fiLo4. 70
If the weight is less than 06, the coefficient of thermal expansion will increase, the low stress effect will not be sufficient, so the thermal shock resistance will decrease, and the water absorption will increase, so the soldering heat resistance will decrease, and the viscosity will further decrease. If it is too thick, burrs will occur and moldability will deteriorate.

90重量06より大きい場合は高粘度になりすぎ成形で
きなくなる。
If the weight exceeds 90 and 06, the viscosity becomes too high and molding becomes impossible.

また、本発明に使用される硬化促進剤はエポキシ基とフ
ェノール性水酸基との反応を促進するものであれば良く
、一般に封止用材料に使用されているものを広く使用す
ることができ、例えばBDMA等の第3級アミン類、イ
ミダゾール類、l、8−ジアザビシクロ〔5,4,0〕
ウンデセン−7、トリフェニルホスフィン等の有機リン
化合物等が単独もしくは2種以上混合して用いられる。
Further, the curing accelerator used in the present invention may be one that promotes the reaction between the epoxy group and the phenolic hydroxyl group, and a wide variety of those commonly used in sealing materials can be used, such as Tertiary amines such as BDMA, imidazoles, l,8-diazabicyclo[5,4,0]
Organic phosphorus compounds such as undecene-7 and triphenylphosphine can be used alone or in combination of two or more.

その他必要に応じてワックス類等の離型剤、ヘキサブロ
ムベンゼン、デカブロムビフェニルエーテル、三酸化ア
ンチモン等の難燃剤、カーボンプラック、ベンガラ等の
着色網、ンランカソブリング剤その地熱可塑性樹脂等を
適宜添加配合することかてきる。
In addition, as necessary, mold release agents such as waxes, flame retardants such as hexabromobenzene, decabromo biphenyl ether, and antimony trioxide, colored nets such as carbon plaque and red iron oxide, phosphorescent bonding agents, geothermal plastic resins, etc. It can be added and blended as appropriate.

本発明の半導体封止用エポキシ樹脂組成物を製造するに
は一般的な方法としては、所定の配合比の原料をミキサ
ー等によって十分に混合した後、更にロールやニーダ−
等により溶融混線処理し、次いて冷却固化させて適当な
大きさに粉砕することにより容易に製造することが出来
る。
The general method for producing the epoxy resin composition for semiconductor encapsulation of the present invention is to thoroughly mix raw materials in a predetermined blending ratio using a mixer, etc., and then further mix them using a roll or kneader.
It can be easily produced by carrying out a melt cross-fertilization process, followed by cooling and solidifying, and pulverizing into an appropriate size.

〔実施例〕〔Example〕

フェノールノボラック樹脂(軟化点105℃、OH当量
105)とオルガノポリシロキサンとを溶媒中で触媒存
在下で反応させ、第−表に示すンリコーン変性フェノー
ル樹脂(イ〜チ)を得た。
A phenol novolac resin (softening point: 105 DEG C., OH equivalent: 105) and an organopolysiloxane were reacted in a solvent in the presence of a catalyst to obtain oleicone-modified phenol resins (1 to 1) shown in Table 1.

実施例1 ナフタレン型エポキシ化合物    50重量部ビフェ
ニル型エポキシ化合物A   501量部臭素化ビスフ
ェノールA型エポキシ樹脂(エポキシ当量370、軟化
点65℃、臭素含有率37%)           
  lO重量部シリコーン変性フフェノールノボラック
樹脂イ)70重量部 破砕状溶融ンリカ        800重量部三酸化
アンチモン         10重量部シランカップ
リング剤        2重量部トリフェニルホスフ
・イン       2重量部カーボンブラック   
       3重量部カルナバワックス      
    3重量部を常温で十分に混合し、更に95〜1
00℃で2軸ロールにより混練し、冷却後粉砕して成形
材料とし、これをタブレット化して半導体封止用エポキ
シ樹脂組成物を得た。
Example 1 Naphthalene type epoxy compound 50 parts by weight Biphenyl type epoxy compound A 501 parts by weight Brominated bisphenol A type epoxy resin (epoxy equivalent 370, softening point 65°C, bromine content 37%)
10 parts by weight Silicone-modified phenol novolac resin a) 70 parts by weight Crushed molten liquor 800 parts by weight Antimony trioxide 10 parts by weight Silane coupling agent 2 parts by weight Triphenylphosphine 2 parts by weight Carbon black
3 parts by weight carnauba wax
Thoroughly mix 3 parts by weight at room temperature, and then add 95 to 1
The mixture was kneaded using twin-screw rolls at 00°C, cooled, and then ground to obtain a molding material, which was then made into tablets to obtain an epoxy resin composition for semiconductor encapsulation.

この材料をトランスファー成形機(成形条件:金型温度
175℃、硬化時間2分)を用いて成形し、得られた成
形品を175℃、8時間で後硬化し評価した。結果を第
2表に示す。
This material was molded using a transfer molding machine (molding conditions: mold temperature 175°C, curing time 2 minutes), and the resulting molded product was post-cured at 175°C for 8 hours and evaluated. The results are shown in Table 2.

実施例2〜4 実施例1と同様にして第1表に示す組成物の半導体封止
用エポキシ樹脂組成物を得た。
Examples 2 to 4 Epoxy resin compositions for semiconductor encapsulation having the compositions shown in Table 1 were obtained in the same manner as in Example 1.

この半導体封止用エポキシ樹脂組成物の評価結果を第2
表に示す。
The evaluation results of this epoxy resin composition for semiconductor encapsulation were evaluated in the second
Shown in the table.

比較例1〜11 実施例1と同様にして第1表に示す組成物の半導体封止
用エボキン樹脂組成物を得た。
Comparative Examples 1 to 11 Evoquin resin compositions for semiconductor encapsulation having the compositions shown in Table 1 were obtained in the same manner as in Example 1.

この半導体封止用エポキシ樹脂組成物の評価結果を第2
表に示す。
The evaluation results of this epoxy resin composition for semiconductor encapsulation were evaluated in the second
Shown in the table.

※l 下記式(V〕て示されるオルがノポリシロキサン ※3 下記式〔■〕で示されるオルガノポリシロキサン ※4 下記式〔■〕で示されるオルガノポリシロ※2 
下記式(VI)で示されるオルガノポリシロ※5 下記
式(IX)で示されるオルガノポリシロキサン キサン ※6 下記式 () で示されるオルガノポリノロ ※9 下記式 %式%) て示されるビフェニル型工 牛サン ポキシ化合物A (エポキシ当量1 85) ※10 下記式B (XIV) て示されるビフェニル型 ※7 下記式〔X!〕 で示されるオルガノボリノ エホキシ化合物 (エポキシ当量1 55) ロキサン ※11 下記式 に示すエポキシ樹脂 西。
*l Nopolysiloxane represented by the following formula (V) *3 Organopolysiloxane represented by the following formula [■] *4 Organopolysiloxane represented by the following formula [■] *2
Organopolysiloxane represented by the following formula (VI) *5 Organopolysiloxane xane represented by the following formula (IX) *6 Organopolysiloxane represented by the following formula () *9 Biphenyl type represented by the following formula (% formula %) Engineered sampoxy compound A (epoxy equivalent: 1 85) *10 Biphenyl type shown by the following formula B (XIV) *7 The following formula [X! ] Organoborino epoxy compound represented by (epoxy equivalent: 155) Roxane*11 An epoxy resin represented by the following formula.

※8 下記式 ([) で示すナフタレン型エポキ シ化合物(エポキシ当量1 51) ※12 下記式 () に示すフェノール樹脂 評価方法 スパイラルフロー EMMI−1−66に準したスパイラルフロー測定用金
型を用い、試料を20g、成形温度175℃、成形圧カ
フ、 OM P a、成形時間2分て成型した時の成形
品の長さ。
*8 Naphthalene-type epoxy compound represented by the following formula ([) (epoxy equivalent: 151) *12 Using a spiral flow measurement mold according to the phenol resin evaluation method spiral flow EMMI-1-66 shown in the following formula (), The length of the molded product when 20 g of sample was molded at a molding temperature of 175°C, a molding pressure cuff of OM Pa, and a molding time of 2 minutes.

ウスバリ長さ 得られた16pDIP成形品のベントバリの長さ。Usbari length The length of the bent burr of the obtained 16p DIP molded product.

曲げ強度、弾性率 テンシロン曲げ強さ測定機、スパン100mm、負荷速
度10111I/min 、室温における測定値。
Bending strength, elastic modulus Tensilon bending strength measuring machine, span 100 mm, loading rate 10111 I/min, measured values at room temperature.

熱膨張係数 熱膨張係数測定機、サンプルサイズ15×3×4閣、2
5℃時の熱膨張係数。
Thermal expansion coefficient Thermal expansion coefficient measuring machine, sample size 15 x 3 x 4, 2
Thermal expansion coefficient at 5℃.

Tg(ガラス転移温度) 熱膨張係数測定機、サンプルサイズ15×34m 耐熱衝撃試験 成形品(チップサイズ36閣2 パッケージ厚2.(l
oa)20個の温度サイクルのテスト(+150〜−1
96℃)にかけ、+000サイクルのテストを行いクラ
ックの発生した個数を示す。
Tg (glass transition temperature) Thermal expansion coefficient measuring machine, sample size 15 x 34 m, thermal shock resistance test molded product (chip size 36 cm, package thickness 2. (l)
oa) Test of 20 temperature cycles (+150 to -1
96°C) and subjected to a test of +000 cycles, and the number of cracks generated is shown.

半田耐熱性試験 成形品(チップサイズ36閣2 パッケージ厚2.0m
+)20個について85°C185%RHの水蒸気下で
72時間処理後、240″CのIRリフロー処理を行い
、クラックの発生した個数を示す。
Solder heat resistance test molded product (chip size 36mm 2, package thickness 2.0m)
+) 20 pieces were treated under steam at 85°C and 185% RH for 72 hours, and then subjected to IR reflow treatment at 240″C, and the number of pieces with cracks is shown.

〔発明の効果〕〔Effect of the invention〕

本発明のナフタレン型エポキシ化合物及びビフェニル型
エポキシ化合物、シリコーン変性フェノール樹脂硬化刑
、無機充填剤および硬化促進剤を必須成分とする半導体
封止用樹脂組成物は耐熱衝撃性に極めて優れ、低粘度で
あり、このため金線変形性および充填性に優れ、さらに
成形加工性(樹脂パリ)や半田耐熱性にも優れ、極めて
バランスのとれた樹脂組成物であるため高集積度IC封
止用樹脂組成物として非常に信頼性の高いものである。
The semiconductor encapsulation resin composition of the present invention, which contains a naphthalene-type epoxy compound, a biphenyl-type epoxy compound, a silicone-modified phenol resin curing agent, an inorganic filler, and a curing accelerator as essential components, has extremely excellent thermal shock resistance, low viscosity, and As a result, it has excellent gold wire deformability and filling properties, as well as excellent molding processability (resin breakage) and soldering heat resistance, and is an extremely well-balanced resin composition, making it an excellent resin composition for encapsulating highly integrated ICs. It is extremely reliable as a product.

Claims (1)

【特許請求の範囲】[Claims] (1)(A)下記式〔 I 〕で示されるナフタレン型の
エポキシ化合物と下記式〔II〕で示されるビフェニル型
エポキシ化合物を重量比で10/90〜90/10の割
合で混合した混合物を総エポキシ量に対し30〜100
重量%含有するエポキシ樹脂。 ▲数式、化学式、表等があります▼〔 I 〕 ▲数式、化学式、表等があります▼〔II〕 (R:H又はCH_3) (B)下記式〔III〕および下記式〔IV〕の内の少なく
とも1種以上のシリコーン化合物とフェノールノボラッ
ク樹脂とを反応させて得られるシリコーン変性フェノー
ルノボラック樹脂硬化剤を総硬化剤量に対して30〜1
00重量%含有する硬化剤。 ▲数式、化学式、表等があります▼〔III〕 ▲数式、化学式、表等があります▼〔IV〕 R_1:▲数式、化学式、表等があります▼、−C_2
H_4−▲数式、化学式、表等があります▼、C_2H
_5R_2:▲数式、化学式、表等があります▼、−C
_2H_4−▲数式、化学式、表等があります▼、C_
2H_5、CH_3A:−R−COOH、−R−▲数式
、化学式、表等があります▼、−R−▲数式、化学式、
表等があります▼、HR:低級アルキレン ここで10≦N:l+m+n+2≦200 0≦m/N≦0.1、5≦N/n≦50 (C)総樹脂組成物量に対し70〜90重量%を占める
無機充填材。 (D)硬化促進剤 を必須成分とする半導体封止用の樹脂組成物。
(1) (A) A mixture of a naphthalene type epoxy compound represented by the following formula [I] and a biphenyl type epoxy compound represented by the following formula [II] in a weight ratio of 10/90 to 90/10. 30-100 for total epoxy amount
Epoxy resin containing % by weight. ▲There are mathematical formulas, chemical formulas, tables, etc.▼[I] ▲There are mathematical formulas, chemical formulas, tables, etc.▼[II] (R:H or CH_3) (B) Among the following formulas [III] and the following formulas [IV] A silicone-modified phenol novolac resin curing agent obtained by reacting at least one silicone compound with a phenol novolac resin is added at a ratio of 30 to 1% based on the total amount of curing agent.
Hardening agent containing 00% by weight. ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ [III] ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ [IV] R_1: ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼, -C_2
H_4-▲There are mathematical formulas, chemical formulas, tables, etc.▼, C_2H
_5R_2:▲There are mathematical formulas, chemical formulas, tables, etc.▼, -C
_2H_4-▲There are mathematical formulas, chemical formulas, tables, etc.▼、C_
2H_5, CH_3A: -R-COOH, -R-▲Mathematical formulas, chemical formulas, tables, etc.▼, -R-▲Mathematical formulas, chemical formulas,
There are tables, etc. ▼, HR: Lower alkylene where 10≦N: l+m+n+2≦200 0≦m/N≦0.1, 5≦N/n≦50 (C) 70 to 90% by weight based on the total amount of resin composition inorganic fillers. (D) A resin composition for semiconductor encapsulation containing a curing accelerator as an essential component.
JP30887790A 1989-11-22 1990-11-16 Resin composition Expired - Fee Related JP2823682B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30887790A JP2823682B2 (en) 1989-11-22 1990-11-16 Resin composition

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1-301975 1989-11-22
JP30197589 1989-11-22
JP30887790A JP2823682B2 (en) 1989-11-22 1990-11-16 Resin composition

Publications (2)

Publication Number Publication Date
JPH03220229A true JPH03220229A (en) 1991-09-27
JP2823682B2 JP2823682B2 (en) 1998-11-11

Family

ID=26562949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30887790A Expired - Fee Related JP2823682B2 (en) 1989-11-22 1990-11-16 Resin composition

Country Status (1)

Country Link
JP (1) JP2823682B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0496929A (en) * 1990-08-14 1992-03-30 Shin Etsu Chem Co Ltd Epoxy resin composition and semiconductor device
JPH05129475A (en) * 1991-11-05 1993-05-25 Shin Etsu Chem Co Ltd Sealing material for tab type semiconductor device, and tab type semiconductor device
JPH05320317A (en) * 1992-05-21 1993-12-03 Fujitsu Ltd Epoxy resin composition
JPH06287273A (en) * 1993-03-31 1994-10-11 Toray Ind Inc Epoxy resin composition for sealing semiconductor
JP2003026769A (en) * 2001-05-09 2003-01-29 Hitachi Chem Co Ltd Epoxy resin molding material for sealing and electronic part device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0496929A (en) * 1990-08-14 1992-03-30 Shin Etsu Chem Co Ltd Epoxy resin composition and semiconductor device
JPH05129475A (en) * 1991-11-05 1993-05-25 Shin Etsu Chem Co Ltd Sealing material for tab type semiconductor device, and tab type semiconductor device
JPH05320317A (en) * 1992-05-21 1993-12-03 Fujitsu Ltd Epoxy resin composition
JPH06287273A (en) * 1993-03-31 1994-10-11 Toray Ind Inc Epoxy resin composition for sealing semiconductor
JP2003026769A (en) * 2001-05-09 2003-01-29 Hitachi Chem Co Ltd Epoxy resin molding material for sealing and electronic part device

Also Published As

Publication number Publication date
JP2823682B2 (en) 1998-11-11

Similar Documents

Publication Publication Date Title
JPS6355532B2 (en)
JPH07268186A (en) Epoxy resin composition
JPH03220229A (en) Resin composition
JPH10158360A (en) Epoxy resin composition
JP2933706B2 (en) Resin composition for semiconductor encapsulation
JPH03220227A (en) Resin composition
JP2744500B2 (en) Resin composition
JP3008983B2 (en) Resin composition
JPH03195725A (en) Resin composition
JPH04183709A (en) Resin composition
JPH03220228A (en) Resin composition
JP2823634B2 (en) Resin composition
JP2986900B2 (en) Resin composition
JP4145438B2 (en) Epoxy resin composition and semiconductor device
JPH11181238A (en) Epoxy resin composition and semiconductor device
JPH11181244A (en) Epoxy resin composition and semiconductor device
JP2823658B2 (en) Resin composition
JPH04198211A (en) Resin composition
JPH1045872A (en) Epoxy resin composition
JP2003155393A (en) Epoxy resin composition and semiconductor device
JP2983613B2 (en) Epoxy resin composition
JP3478380B2 (en) Epoxy resin composition and semiconductor device
JPH02155915A (en) Epoxy resin composition
JPH07188515A (en) Resin composition for semiconductor sealing
JPH11172075A (en) Epoxy resin composition and semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees