JPH03218481A - Method and device for diagnosing insulation degradation of cv cable - Google Patents

Method and device for diagnosing insulation degradation of cv cable

Info

Publication number
JPH03218481A
JPH03218481A JP32564889A JP32564889A JPH03218481A JP H03218481 A JPH03218481 A JP H03218481A JP 32564889 A JP32564889 A JP 32564889A JP 32564889 A JP32564889 A JP 32564889A JP H03218481 A JPH03218481 A JP H03218481A
Authority
JP
Japan
Prior art keywords
current
cable
pulsating
deterioration
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32564889A
Other languages
Japanese (ja)
Other versions
JP2832737B2 (en
Inventor
Kunihiko Sanada
邦彦 真田
Yoshio Tsunoda
角田 美伯
Masato Miyako
都 真人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP32564889A priority Critical patent/JP2832737B2/en
Publication of JPH03218481A publication Critical patent/JPH03218481A/en
Application granted granted Critical
Publication of JP2832737B2 publication Critical patent/JP2832737B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Testing Relating To Insulation (AREA)

Abstract

PURPOSE:To detect insulation degradation without fail by impressing an alternative current voltage to the power cable of a measuring object, detecting a ground line current from the ground line, detecting a pulsating current component from a ground line current and taking out only a specified frequency from the pulsating current component. CONSTITUTION:For electrostatic capacity CK between the conductor of a supply power cable such as a CV cable, etc., as the measuring object and a shielding layer, an (a) side is defined as the conductor side of the cable and a (b) side is defined as the shielding layer side. One end of an alternative current source E is grounded and the other end is connected to the conductor (a) side of the supply cable. With this configuration, when a voltage is impressed to the supply cable by the power source E, the alternative current flows to the capacity CK provided at the cable and a ground current ie flows from the shielding layer (b) side through the ground line to the ground. The current ie detected by a current detector 10 is sent to low-pass filter 1. Only the pulsating current component is taken out by the current ie. Only the signal of the specified frequency is taken out of the pulsating current component as the output of a filter 1 and amplified and an output from an amplifier 2 is supplied to a waveform display device 3.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、活線下においてCVケーブルの水トリー等に
よる絶縁劣化の程度を診断する絶縁劣化診断方法および
装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an insulation deterioration diagnosis method and apparatus for diagnosing the degree of insulation deterioration due to water tree etc. of a CV cable under live wires.

[従来の技術] 一般的に、電力ケーブルは布設後の経年変化により電気
絶縁体の絶縁性能が低下する。特に、CVケーブルでは
架橋ポリエチレン絶縁体に樹状の亀裂が生じ、この亀裂
に水分が侵入する所謂水トリ一の発生が絶縁劣化の主な
原囚であることが知られている。このような絶縁性能の
低下は、放置すると進展して早晩大きな絶縁破壊事故に
つながる慣れがある。従って、ケーブルの絶縁抵抗の変
化を把握し、劣化を早期に発見することが極めて重要で
ある。このため、従来から種々の絶縁測定方法が知られ
ているが、特に近年では測定時に送電を停止することな
く活線状態で診断する方法が幾つか提案ざれており、常
時の状態監視も可能である等の有利な点が多いため注目
ざれている。
[Prior Art] Generally, the insulation performance of the electric insulator of a power cable deteriorates due to aging after installation. In particular, it is known that in CV cables, dendritic cracks occur in the crosslinked polyethylene insulation, and the occurrence of so-called water trapping, in which water enters the cracks, is the main cause of insulation deterioration. If left untreated, this kind of deterioration in insulation performance will progress and sooner or later lead to a major dielectric breakdown accident. Therefore, it is extremely important to understand changes in cable insulation resistance and discover deterioration early. For this reason, various insulation measurement methods have been known for a long time, but in recent years in particular, several methods have been proposed for diagnosing live wires without stopping power transmission during measurement, making it possible to constantly monitor the condition. It is attracting attention because of its many advantages.

このような常時監視を行なう方法としては、従来では例
えば特公昭60−8465号公報等に記載されているよ
うに送電交流電流に直流電流を重畳ざせ、この結果とし
て検出ざれるケーブル漏洩電流の直流成分からケーブル
の絶縁抵抗を求めて評価する所謂直流重畳法や、或は特
開昭60−185171号公報等に記載ざれているよう
に送電電圧波形と電流波形とを測定し、誘電圧接を求め
て評価する所謂janδ法が一般に用いられている。ま
た、持にCVケーブルの場合では特開昭59−2020
75号公報において水トリーに電流整流作用があるとし
て、交流送電中のケーブル漏洩電流の直流分を測定し、
その方向と絶対値とから水トリーの分布と長き及び体積
を推定する方法が開示ざれている。
Conventionally, as a method for performing such constant monitoring, as described in Japanese Patent Publication No. 60-8465, etc., a direct current is superimposed on the power transmission alternating current, and as a result, the undetected direct current of the cable leakage current is detected. The so-called DC superposition method is used to determine and evaluate the insulation resistance of the cable from its components, or the dielectric voltage is determined by measuring the transmission voltage waveform and current waveform as described in Japanese Patent Application Laid-open No. 60-185171. The so-called jan δ method is generally used. In addition, in the case of CV cable, Japanese Patent Application Laid-Open No. 59-2020
In Publication No. 75, assuming that the water tree has a current rectifying effect, the DC component of the cable leakage current during AC power transmission was measured,
A method for estimating the distribution, length, and volume of water trees from their directions and absolute values is disclosed.

[発明が解決しようとする課題] しかしながら、上述した公知の従来方法は何れも絶縁劣
化を早期に且つ正確に発見したいという要求を必ずしも
充分に満足し得る方法ではない。
[Problems to be Solved by the Invention] However, none of the above-mentioned known conventional methods can fully satisfy the demand for early and accurate detection of insulation deterioration.

即ち、第1に述べた直流重畳法は一般的に劣化の程度に
対する検出感度が悪いときれ、相当に程度の激しい劣化
でなければ検出ざれないという問題がある。また測定時
に数10V程度の直流重畳電圧を必要とし、このため直
流電源を別個に準備しなければならない。
That is, the first-mentioned DC superimposition method generally suffers from poor detection sensitivity with respect to the degree of deterioration, and has the problem that it cannot be detected unless the degree of deterioration is extremely severe. Furthermore, a DC superimposed voltage of approximately several tens of volts is required during measurement, and therefore a separate DC power source must be prepared.

一方、janδ法ではケーブル全体にわたる劣化は検出
ざれるものの、水トリーのような局部的な劣化に対する
検出感度は悪いという欠点が知られている。
On the other hand, although the JAN δ method cannot detect deterioration over the entire cable, it is known to have a drawback in that it has poor detection sensitivity for localized deterioration such as water trees.

更に、水トリ一の整流作用を利用する特開昭59  2
02075号公報の場合では、同公報に記述ざれている
ようにケーブル絶縁体に導体側から発生する所謂内導水
トリーとシース側から発生する外導水トリーとでは、発
生する直流電流が互いに逆極性であることから、両種の
水トリーが同時に発生した場合には検出ざれる直流電流
は互いに打ち消し合って充分な測定ができなくなる慣れ
がある。
Furthermore, Japanese Patent Application Laid-Open No. 59-2 utilizes the rectifying action of water filters.
In the case of Publication No. 02075, as described in the same publication, the so-called internal water conduction tree generated from the conductor side of the cable insulator and the external water conduction tree generated from the sheath side have opposite polarity of generated DC current. For this reason, when both types of water trees occur at the same time, the undetected DC currents cancel each other out, making it impossible to make sufficient measurements.

上述のような問題点に鑑み、本発明者らが水トリー現象
について鋭意研究した結果、次のような新事実を発見し
た。すなわち、測定対象とする電力ケーブルに交流電圧
を印加し、この印加交流電圧の振幅を零から次第に大き
くしてゆく過程で、その接地線電流のうち士数Hz以下
の準直流成分を検出した場合に、 ■ 印加交流電圧の振幅が或る値に達すると脈動電流が
検出ざれる。
In view of the above-mentioned problems, the present inventors conducted intensive research on the water tree phenomenon and discovered the following new fact. In other words, when an AC voltage is applied to the power cable to be measured, and in the process of gradually increasing the amplitude of the applied AC voltage from zero, a quasi-DC component of the ground line current below a few Hz is detected. (2) When the amplitude of the applied AC voltage reaches a certain value, a pulsating current is detected.

■ 水トリー劣化が激しいケーブルほど、脈動の始まる
交流電圧の振幅値が小さい。
■ The more severe the water tree deterioration of the cable, the smaller the amplitude value of the AC voltage at which pulsation begins.

■ 電流脈動の振幅は印加交流電圧の振幅に対して単調
に増加する。
■ The amplitude of current pulsation increases monotonically with the amplitude of applied AC voltage.

かかる新知見に基づいて、本発明者らは新しい絶縁劣化
診断方法を先に提案した(特願平t−i67910号)
。しかしながら、当該絶縁劣化診断を行なうに際しては
次のような問題があることが判明した。すなわち、接地
線電流より検出ざれる脈動電流の大きざから絶縁体の劣
化度合を判定するわけであるが、該脈動電流信号は微小
な信号であるため評価がきわめて困難なのである。また
、評価を容易とすべく脈動電流を単に増幅すると、雑音
電流成分も同時に増幅ざれてしまい、やはり評価が困難
となってしまう。
Based on this new knowledge, the present inventors have previously proposed a new method for diagnosing insulation deterioration (Japanese Patent Application No. I67910).
. However, it has been found that there are the following problems when performing the insulation deterioration diagnosis. That is, the degree of deterioration of the insulator is determined from the magnitude of the pulsating current detected from the ground line current, but since the pulsating current signal is a minute signal, it is extremely difficult to evaluate. Furthermore, if the pulsating current is simply amplified to facilitate evaluation, the noise current component will also be amplified at the same time, making evaluation difficult.

従って本発明は、上記新事実に基づく絶縁劣化診断法に
おいて、より確実な絶縁劣化の検知が行ない得るCVケ
ーブルの絶縁劣化診断方法および装置を提供することを
目的とする。
Therefore, an object of the present invention is to provide a method and apparatus for diagnosing insulation deterioration of a CV cable, which can detect insulation deterioration more reliably in an insulation deterioration diagnosing method based on the above-mentioned new facts.

[課題を解決するための手段] 本発明は上記目的を達成すべくなし、増幅されたもので
あって、その要旨とするところは、測定対象の電力ケー
ブルに交流電圧を印加し、その接地線より接地線電流を
検出し、該接地線電流より脈流成分を検出し、さらに該
脈流成分の中から特定周波数の信号のみを取り出してこ
れを増幅し、増幅し、増幅された特定周波数の脈流成分
の時間解析を行なうことにより、ケーブル絶縁体の劣化
の程度を検知することを特徴とするCVケーブルの絶縁
劣化診断方法、及び、CVケーブルの遮蔽層より電位基
準との間を接続する接地線より接地線電流を検出する電
流検出装置と、検出した接地線電流より脈流成分を取り
出すローパスフィルタと、該ローパスフィルタの出力に
接続ざれる狭帯域増幅器と、該狭帯域増幅器の出力信号
を時間軸に表示する波形表示手段とを備えたことを特徴
とするCVケーブルの絶縁劣化診断装置にある。
[Means for Solving the Problems] The present invention has been made to achieve the above object, and is amplified.The gist thereof is to apply an AC voltage to a power cable to be measured, and to apply an AC voltage to a power cable to be measured, Detects the grounding line current, detects the pulsating current component from the grounding line current, extracts only the signal of a specific frequency from the pulsating current component, amplifies it, and amplifies the amplified specific frequency signal. A method for diagnosing insulation deterioration of a CV cable, which is characterized by detecting the degree of deterioration of a cable insulator by time analysis of pulsating flow components, and a method for connecting a potential reference from a shielding layer of the CV cable. A current detection device that detects a ground line current from a ground line, a low pass filter that extracts a pulsating current component from the detected ground line current, a narrow band amplifier connected to the output of the low pass filter, and an output signal of the narrow band amplifier. A CV cable insulation deterioration diagnosing device is characterized in that it is equipped with a waveform display means for displaying the waveform on a time axis.

[作用] 第1請求項において、接地線電流より数Hz以下の脈流
成分を検出することにより、上記新知見に基づくケーブ
ル絶縁体の水トリー劣化検知が可能となる。ところが、
前述したように脈流成分は極めて微小な信号であるので
、増輻して評価し易いようにする必要がある。ここで、
脈流成分を単に広帯域増幅したのでは雑音電流成分も増
輻してしまうことになるので、特定周波数の脈流成分の
みを取り出して増幅するようにしてS/N比を向上きせ
る。このようにして得た特定周波数脈流成分の増幅信号
の時間解析を行ない、ケーブル絶縁体の劣化程度を検知
するものである。なお、接地線電流の検出を接地線を切
断せずに行えば、対地要領の影響を受けない、シースの
絶縁抵抗によらず測定できる、等の利点がある。
[Function] In the first aspect, water tree deterioration of the cable insulator can be detected based on the above-mentioned new knowledge by detecting a pulsating flow component of several Hz or less than the ground wire current. However,
As mentioned above, since the pulsating flow component is an extremely small signal, it is necessary to increase the intensity to make it easier to evaluate. here,
If the pulsating flow component is simply amplified over a wide band, the noise current component will also increase, so the S/N ratio is improved by extracting and amplifying only the pulsating flow component at a specific frequency. The time analysis of the amplified signal of the specific frequency pulsating flow component obtained in this manner is performed to detect the degree of deterioration of the cable insulator. Note that if the grounding wire current is detected without cutting the grounding wire, there are advantages such as being unaffected by grounding conditions and being able to measure regardless of the insulation resistance of the sheath.

第3請求項において、ローパスフィルタにより接地線電
流から取り出した脈流成分を、狭帯域増幅器を用いて極
めて狭い範囲の周波数帯域において増輻することにより
、検出した金脈流成分のうちのある一つの特定周波数の
脈流成分信号のみを選択的に増輻することができる。従
って、S/N比を向上きせて増輻することができ、該信
号を波形表示手段に表示ざせることにより水トリー劣化
の評価を容易に行なうことができる。
In the third claim, by amplifying the pulsating current component extracted from the ground wire current by a low-pass filter in an extremely narrow frequency band using a narrow band amplifier, one of the detected gold pulsating current components is It is possible to selectively amplify only the pulsating flow component signal of a specific frequency. Therefore, the S/N ratio can be improved and the signal can be increased, and water tree deterioration can be easily evaluated by displaying the signal on the waveform display means.

[実施例] 以下図面に基づいて本発明の一実施例を詳細に説明する
[Example] An example of the present invention will be described in detail below based on the drawings.

第1図は本発明の劣化診断方法を実施するためのブロッ
ク図である。図において、Ckは測定対象とするCVケ
ーブル等の供試電力ケーブルの導体と遮蔽層間の静電容
量であり、a側をケーブルの導体側、b側を遮蔽層側と
している。Eは交流電源であり、一端を接地し、他端を
供試電力ケーブルの導体a側に接続する。ここで交流電
源Eにて供試電力ケーブルに電圧を印加すると、ケーブ
ルが有する静電容量Ckに充電電流が流れ、遮蔽層b側
から大地に接地線を通り接地線電流ieが流れることに
なる。該接地線より接地線電流ieを検出する役目を果
たすのが、遮蔽層b側と大地との間に接続きれている電
流検出装置1、0である。
FIG. 1 is a block diagram for implementing the deterioration diagnosis method of the present invention. In the figure, Ck is the capacitance between the conductor and the shielding layer of a test power cable such as a CV cable to be measured, and the a side is the conductor side of the cable and the b side is the shielding layer side. E is an AC power source, one end of which is grounded, and the other end connected to the conductor a side of the power cable under test. When a voltage is applied to the power cable under test from the AC power supply E, a charging current flows through the capacitance Ck of the cable, and a grounding line current ie flows from the shielding layer b side to the ground through the grounding wire. . Current detection devices 1 and 0, which are connected between the shielding layer b side and the ground, serve to detect the ground line current ie from the ground line.

電流検出装置10にて検出し、増幅された接地線電流i
eはローパスフィルター1に送出され、ここで接地線電
流ieより脈流成分のみが取り出ざれる。ローパスフィ
ルター1の出力には、検出した上記脈流成分の中から特
定周波数の信号のみを取り出して増幅する増幅器2が接
続きれ、さらに該増幅器2の出力には、この増幅信号を
時間軸に表示するためのペングラフ、オシロスコープ等
の波形表示装置3が接続ざれている。
Ground line current i detected and amplified by current detection device 10
e is sent to a low-pass filter 1, where only the pulsating flow component is extracted from the ground line current ie. The output of the low-pass filter 1 is connected to an amplifier 2 that extracts and amplifies only a signal of a specific frequency from the detected pulsating flow components, and the output of the amplifier 2 displays this amplified signal on the time axis. A waveform display device 3, such as a pen graph or an oscilloscope, is connected.

第2図は第1図に示すブロック図の回路構成図の一例を
示している。図中Eは交流電源であるが、ケーブルが活
線状態の場合において本発明を実施する場合は、印加ざ
れている線路電圧をそのまま利用すれば良く、交流電源
Eは不要となる。4は供試CVケーブルであり、41は
その導体、42は絶縁体、43は遮蔽層をそれぞれ示し
ている。
FIG. 2 shows an example of a circuit configuration diagram of the block diagram shown in FIG. E in the figure is an AC power supply, but if the present invention is carried out when the cable is in a live state, the applied line voltage can be used as is, and the AC power supply E is not necessary. 4 is a test CV cable, 41 is its conductor, 42 is an insulator, and 43 is a shielding layer.

遮蔽層43から大地に引き出し、増幅された接地線には
、変流器CT (第1図における電流検出装置10に対
応する)がカップリングざれており、接地線中を流れる
接地線電流ieは変流器CTにより検出される。
A current transformer CT (corresponding to the current detection device 10 in FIG. 1) is coupled to the amplified grounding wire drawn out from the shielding layer 43 to the ground, and the grounding line current ie flowing through the grounding wire is Detected by current transformer CT.

接地線より接地線電流ieを検出する他の方法としては
、接地線に抵抗を挿入し、この抵抗の両端に現れる電圧
を利用する手段や、鉄心とホール素子を用いたクランブ
式電流検出器等を使用する手段などが挙げられる。しか
しながら抵抗による検出の場合、先ず接地線を切断して
抵抗を挿入せねばならず、また被測定CVケーブルと大
地との間に電位差が発生することになり、その結果ケー
ブルー大地静電容量が測定に悪影響を及ぼすこととなる
ので好ましくない。これに対し、変流器CTや上記クラ
ンブ式電流検出器等(すなわち接地線を切断しない電流
検出手段)では、上述の静電容量の問題を殆ど考慮せず
とも良く、また接地線を切断したりする等の加工を何等
施す必要がないので既設線路への適用が容易であり、さ
らに局部電池の影響を受けない等、様々な利点がある。
Other methods for detecting the grounding wire current ie from the grounding wire include inserting a resistor into the grounding wire and utilizing the voltage appearing across the resistor, and using a clamp-type current detector using an iron core and a Hall element. Examples include means using . However, in the case of detection using a resistance, the ground wire must first be cut and a resistor inserted, and a potential difference will occur between the CV cable under test and the earth, and as a result, the cable-earth capacitance will be measured. This is not desirable as it will have a negative effect on On the other hand, with current transformers CT, the above-mentioned clamp-type current detectors, etc. (i.e., current detection means that do not cut the ground wire), there is almost no need to consider the above-mentioned capacitance problem, and there is no need to take the above-mentioned capacitance issue into account. Since there is no need to perform any processing such as heating, it is easy to apply to existing lines, and it has various advantages such as not being affected by local batteries.

ローパスフィルター1としては、図示するように遮蔽層
43と大地との間にコンデンサCoを接続し、これより
コイルL L +コンデンサC,及びコイルL 2 +
コンデンサC2からなる2段の所謂定K型フィルタを用
いた場合を例示している。ローパスフィルター1は、ケ
ーブル導体41への交流電源Eの印加により生ずる接地
線電流ieの中から脈流成分のみを出力し、該出力は狭
帯域型の増幅器2へ入力ざれる。
As the low-pass filter 1, as shown in the figure, a capacitor Co is connected between the shielding layer 43 and the ground, and from this, a coil L L + capacitor C, and a coil L 2 +
A case is illustrated in which a two-stage so-called constant K type filter including a capacitor C2 is used. The low-pass filter 1 outputs only the pulsating current component from the ground line current ie generated by application of the AC power source E to the cable conductor 41, and this output is input to the narrowband amplifier 2.

増幅器2としては、各種狭帯域型のものを用いることが
でとるが、本実施例では低周波帯でよく用いられる並列
T型CR回路20を帰還回路に用いた帰還増幅器を使用
した場合を例示している。
As the amplifier 2, various narrowband types can be used, but in this embodiment, a feedback amplifier using a parallel T-type CR circuit 20, which is often used in a low frequency band, as a feedback circuit is exemplified. are doing.

並列T型CR回路(Twin−T回路)20は、2個の
同抵抗値の抵抗Ra,RaとコンデンサcbからなるT
型回路、及び2個の同容量のコンデンサCa,Caと抵
抗RbからなるT型回路の並列回路で構成ざれ、コンデ
ンサcb及び抵抗Rbは、それぞれCb=2Ca.Rb
=Ra/2の値とざれている。このように構成し、増幅
された並列T型CR回路20は、fo− 1/2n ・
Ca−Raの周波数信号を最大{a号で通過ぎせる周波
数特性を備えており、負帰還増幅器の帰還回路に該回路
を用いれば、上記foの周波数以外では負帰還が生じる
ため、周波数f。の{i号の選択増輻、すなオ〕も脈流
成分の中からある一つの特定周波数のイa号のみを取り
出して増輻することが可能となる。
The parallel T-type CR circuit (Twin-T circuit) 20 is a T-type CR circuit (Twin-T circuit) consisting of two resistors Ra, Ra having the same resistance value and a capacitor cb.
It consists of a parallel circuit of a T-type circuit and a T-type circuit consisting of two capacitors Ca and Ca of the same capacity and a resistor Rb, and the capacitor cb and the resistor Rb are each Cb=2Ca. Rb
= Ra/2 value. The parallel T-type CR circuit 20 configured and amplified in this way has fo-1/2n.
It has a frequency characteristic that allows the Ca-Ra frequency signal to pass at a maximum frequency f. {selective increase of the i number, i.e. O] also makes it possible to extract and increase the intensity of only one specific frequency of the i number from among the pulsating flow components.

なお図中Gはアンプを示している。そして増幅器2の出
力は波形表示装置3に送出ざれ、脈流成分の特定周波数
48号が時間軸に表示ざれる。
Note that G in the figure indicates an amplifier. The output of the amplifier 2 is then sent to the waveform display device 3, and the specific frequency No. 48 of the pulsating flow component is displayed on the time axis.

第3図は上述の装置におけるローパスフィルタ1の出力
の、時間変化のグラフ図の一例であり、横軸に時間t1
縦軸に電流■を示している。供試CVケーブル4に交流
電圧が印加ざれている状態となると、遮蔽層43には導
体41との静電結合により印加交流電圧に応じた電荷が
誘起され、この時間変化のため大地との間に印加交流電
圧の周波数と同程度の周期で変動ずる電流(接地線電流
ie)が流れることになるが、これに加え絶縁体42に
水トリー劣化が存在する場合には、前述の脈動電流が重
畳ざれることとなる。脈動電流とは印加交流電圧に依存
する電流以外の電流を言い、印加交流電圧の周波数以下
の周波数電流である。
FIG. 3 is an example of a graph of the time change of the output of the low-pass filter 1 in the above-mentioned device, and the horizontal axis shows the time t1.
The vertical axis shows the current ■. When an AC voltage is applied to the test CV cable 4, a charge corresponding to the applied AC voltage is induced in the shielding layer 43 due to electrostatic coupling with the conductor 41, and due to this time change, the distance between the shielding layer 43 and the ground increases. A current (grounding line current ie) that fluctuates at a period comparable to the frequency of the applied AC voltage will flow, but if there is water tree deterioration in the insulator 42 in addition to this, the above-mentioned pulsating current will flow. They will be overlapped. The pulsating current refers to a current other than a current that depends on the applied AC voltage, and is a current with a frequency lower than the frequency of the applied AC voltage.

通常、印加交流電圧の周波数は50Hz又は60Hzで
あるので、例えば50Hz又は60Hz以下の周波数信
号を通過させ得るようにローパスフィルタ1の回路を設
計すれば、第3図に示す如ぎ脈流成分のみを接地線電流
ie中から検出することができる。検出する脈流成分の
周波数は任意であるが、周波数が高い程対地容量の面で
不利となるため、5Hz程度以下であることが望ましい
Normally, the frequency of the applied AC voltage is 50 Hz or 60 Hz, so if the circuit of the low-pass filter 1 is designed to pass frequency signals of 50 Hz or 60 Hz or less, only pulsating flow components as shown in Fig. 3 can be eliminated. can be detected from the ground wire current ie. Although the frequency of the pulsating flow component to be detected is arbitrary, it is preferably about 5 Hz or less because the higher the frequency, the more disadvantageous it becomes in terms of ground capacity.

この脈流成分の振輻Aは、水トリー劣化の程度が激しい
程大ぎくなるので、該振幅Aを求めることにより水トリ
ー劣化の程度を推測することはできる。しかしながら、
ローパスフィルタ1の出力電流は極めて微小なものであ
り、この出力では振幅Aの大きさの正確な判断は困難で
ある。また脈流成分は、その周波数帯域は狭いとは言え
多数の周波数成分から構成されており、さらに雑音成分
も多く含んでいる。
The amplitude A of this pulsating flow component becomes larger as the degree of water tree deterioration becomes more severe, so the degree of water tree deterioration can be estimated by determining the amplitude A. however,
The output current of the low-pass filter 1 is extremely small, and it is difficult to accurately determine the magnitude of the amplitude A using this output. Further, although the frequency band of the pulsating flow component is narrow, it is composed of many frequency components and also contains many noise components.

そこで、当該出力電流を前述した帰還増幅器2で増輻す
ることにより、脈流成分の特定周波数の信号のみを増輻
した第4図に示す如き出力を得る。
Therefore, by amplifying the output current using the feedback amplifier 2 described above, an output as shown in FIG. 4 is obtained in which only the signal of a specific frequency of the pulsating flow component is amplified.

この増幅し、増幅された出力では、その振輻A゜は前記
振幅八よりも大きく且つS/N比は良好であり、さらに
単一周波数であるので波形表示装置3による波形mi′
/Qy)が容易となり、より正確に水トリー劣化の程度
を知見することができる。
In this amplified output, its amplitude A° is larger than the amplitude 8, the S/N ratio is good, and since it has a single frequency, the waveform mi' shown by the waveform display device 3 is
/Qy) becomes easier, and the degree of water tree deterioration can be more accurately determined.

本発明は水トリー劣化を検知しようとするCVケーブル
が活線時、非活線時のいずれでも適用可能である。活線
時においては、第1図及び第2図における交流電源Eと
して線路に印加されている交流電圧をそのまま利用し、
上述のように脈流成分の振幅の大ざざから水トリー劣化
を知見することができる。また非活線時においては、別
途に交流電源を用意する必要があるが、この場合印加電
圧を可変し得る電源を用い、ケーブルへの印加電圧を零
から次第に増加ざせることにより、より一層正確な劣化
診断が可能となる。この場合の脈流成分の時間変化は、
例えば第5図のグラフ図に示すようになる。なお、横軸
は時間t1縦軸は電流Iとしている。前述したように印
加交流電圧の振幅を増加していくと、第5図に示すよう
にある振幅値かVoら脈動が認められ、またこの脈動開
始電圧Voは水トリー劣化が激しい程低くなる。従って
この脈動開始電圧V。を求めても、水トリー劣化の程度
を推測することが可能となる。
The present invention is applicable whether the CV cable whose water tree deterioration is to be detected is live or not. When the line is live, the AC voltage applied to the line is used as it is as the AC power source E in Figures 1 and 2,
As mentioned above, water tree deterioration can be detected from the roughness of the amplitude of the pulsating flow component. Also, when the cable is not live, it is necessary to prepare a separate AC power supply, but in this case, by using a power supply that can vary the applied voltage and gradually increasing the voltage applied to the cable from zero, it is possible to obtain even more accurate results. This enables accurate deterioration diagnosis. In this case, the time change of the pulsating flow component is
For example, it becomes as shown in the graph diagram of FIG. Note that the horizontal axis represents time t and the vertical axis represents current I. As described above, when the amplitude of the applied AC voltage is increased, pulsations are observed from a certain amplitude value Vo as shown in FIG. 5, and the pulsation starting voltage Vo becomes lower as the water tree deterioration becomes more severe. Therefore, this pulsation starting voltage V. It is also possible to estimate the degree of water tree deterioration by determining .

なお、脈動開始電圧Voを用いて診断を行なう場合の判
定の目安として、第6図に測定対象のケーブルの静電容
量Fと脈動開始電圧■0のグラフ図を示す。横軸は静電
容量Fを対数目盛で示し、縦軸には脈動開始電圧Voを
示している。第6図において、水トリー劣化のない健全
なケーブルでは静電容量Fと肱動開始電圧V。を示す状
態点Xが概ね実線B−B“上に存在するのに対し、水ト
リー劣化が生じたケーブルでは同じ静電容量Fでの脈動
開始電圧VOは低下し、状態点X′は矢印で示すように
実線B−B ’から外れることになる。従って実liB
−B’からの状態点X゜のずれを基に、水トリー劣化の
程度を定量的に評価することが可能となる。
As a guideline for diagnosis when pulsation start voltage Vo is used, FIG. 6 shows a graph of capacitance F of the cable to be measured and pulsation start voltage 0. The horizontal axis shows the capacitance F on a logarithmic scale, and the vertical axis shows the pulsation start voltage Vo. In Fig. 6, a healthy cable with no water tree deterioration has a capacitance F and a bending start voltage V. state point X, which indicates the current state, is approximately on the solid line B-B", whereas in a cable with water tree deterioration, the pulsation starting voltage VO at the same capacitance F decreases, and the state point X' is indicated by the arrow. As shown, it deviates from the solid line B-B'. Therefore, the real liB
It becomes possible to quantitatively evaluate the degree of water tree deterioration based on the deviation of the state point X° from -B'.

さらに、上述した本発明にがかるCVケーブルの絶縁劣
化診断装置は、診断すべき全てのケーブルに個々に設け
て据置型として常時監視に用いても良いし、或は運搬が
容易な図示しない筐体に組み入れた可条型とし、複数の
ケーブルに共通して用いても良い。
Further, the CV cable insulation deterioration diagnosis device according to the present invention described above may be installed individually on all cables to be diagnosed and used for constant monitoring as a stationary type, or it may be installed in a housing (not shown) that is easy to transport. It may be a flexible type that is incorporated into the cable and used in common for multiple cables.

また、本実施例においては単芯電力ケーブルへの適用の
場合を例示しているが、三芯一括電力ケーブル或は単芯
三線電力ケーブル線路にも同様にして適用可能である。
Further, in this embodiment, application to a single-core power cable is exemplified, but the present invention can be similarly applied to a three-core bundled power cable or a single-core three-wire power cable line.

し効果] 以上説明した通りの本発明のCVケーブルの絶縁劣化診
断方法及び装置によれば、ケーブル接地線電流中の脈流
成分を検出し、さらにこの脈流成分の中から単一周波数
信号を取り出して増輻した出力信号を時間解析して水ト
リー劣化の程度を知見する方法であり、脈流成分を単に
時間解析する場合に比べ、水トリー劣化の程度の判定基
準となる脈流の振幅を高精度に読み取れ、またS/N比
も良好であるので、より確実な劣化診断が行ない得る。
Effect] According to the CV cable insulation deterioration diagnosis method and device of the present invention as described above, a pulsating current component in a cable grounding wire current is detected, and a single frequency signal is further detected from this pulsating current component. This method analyzes the extracted and amplified output signal over time to determine the degree of water tree deterioration.Compared to simply time-analyzing the pulsating flow component, the amplitude of the pulsating flow is a criterion for determining the degree of water tree deterioration. can be read with high precision and has a good S/N ratio, so more reliable deterioration diagnosis can be performed.

さらに、脈流成分の中から特定周波数の信号のみを取り
出して増輻する手段として狭帯域型増幅器、例えば帰還
回路に低周波帯域における選択度が高い並列T型CR回
路を用いた帰還増幅器を使用することにより、脈流成分
を高選択度で増輻することができ、S/N比を向上きせ
ることかできるので、より確実で正確な劣化診断を行な
うことができる。
Furthermore, as a means of extracting and amplifying only the signal of a specific frequency from the pulsating flow components, a narrowband amplifier is used, for example, a feedback amplifier using a parallel T-type CR circuit with high selectivity in the low frequency band as a feedback circuit. By doing so, the pulsating flow component can be increased with high selectivity and the S/N ratio can be improved, so that more reliable and accurate deterioration diagnosis can be performed.

【図面の簡単な説明】 第1図は本発明のCVケーブルの劣化診断方法を実施す
るための一例を示すブロック図、第2図は第1図に示す
ブロック図の具体的な回路構成の一例を示す回路構成図
、第3図はローパスフィルタの出力の時間変化を示すグ
ラフ図、第4図は帰還増幅器の出力の時間変化を示すグ
ラフ図、第5図は停止線路の診断における表示波形のグ
ラフ図、第6図は停止線路の診断基準のグラフ図をそれ
ぞれ表している。 1・・・ローパスフィルタ、10・・・電流検出装置、
2・・・増幅器、20・・・並列T型CR回路、3・・
・波形表示装置、4・・・供試CVケーブル、41・・
・導体、42・・・絶縁体、43・・・遮蔽層、ie・
・・接地線電流、E・・・交流電源、CT・・・変流器
[Brief Description of the Drawings] Fig. 1 is a block diagram showing an example of implementing the CV cable deterioration diagnosis method of the present invention, and Fig. 2 is an example of a specific circuit configuration of the block diagram shown in Fig. 1. 3 is a graph showing the time change in the output of the low-pass filter, FIG. 4 is a graph showing the time change in the output of the feedback amplifier, and FIG. 5 is a graph showing the time change in the output of the feedback amplifier. The graph diagram and FIG. 6 each represent a graphic diagram of the diagnostic criteria for a stopped line. 1...Low pass filter, 10...Current detection device,
2...Amplifier, 20...Parallel T-type CR circuit, 3...
・Waveform display device, 4... Test CV cable, 41...
・Conductor, 42... Insulator, 43... Shielding layer, ie・
...Grounding wire current, E...AC power supply, CT...current transformer

Claims (3)

【特許請求の範囲】[Claims] (1)測定対象の電力ケーブルに交流電圧を印加し、そ
の接地線より接地線電流を検出し、該接地線電流より脈
流成分を検出し、さらに該脈流成分の中から特定周波数
の信号のみを取り出してこれを増幅し、増幅された特定
周波数の脈流成分の時間解析を行なうことにより、ケー
ブル絶縁体の劣化の程度を検知することを特徴とするC
Vケーブルの絶縁劣化診断方法。
(1) Apply AC voltage to the power cable to be measured, detect the grounding line current from the grounding line, detect the pulsating current component from the grounding line current, and then detect a signal of a specific frequency from the pulsating current component. The degree of deterioration of the cable insulation is detected by extracting and amplifying the pulsating flow component of the amplified specific frequency, and performing time analysis of the amplified pulsating flow component of a specific frequency.
Method for diagnosing insulation deterioration of V cable.
(2)上記接地線からの接地線電流の検出は、接地線を
切断せずに行うことを特徴とする特許請求の範囲第(1
)項記載のCVケーブルの絶縁劣化診断方法。
(2) The detection of the grounding wire current from the grounding wire is performed without cutting the grounding wire.
) The method for diagnosing insulation deterioration of CV cables described in section 2.
(3)CVケーブルの遮蔽層より電位基準との間を接続
する接地線より接地線電流を検出する電流検出装置と、
検出した接地線電流より脈流成分を取り出すローパスフ
ィルタと、該ローパスフィルタの出力に接続される狭帯
域増幅器と、該狭帯域増幅器の出力信号を時間軸に表示
する波形表示手段とを備えたことを特徴とするCVケー
ブルの絶縁劣化診断装置。
(3) a current detection device that detects a ground line current from a ground line connecting between the shielding layer of the CV cable and a potential reference;
A low-pass filter for extracting a ripple component from the detected ground line current, a narrow-band amplifier connected to the output of the low-pass filter, and a waveform display means for displaying the output signal of the narrow-band amplifier on a time axis. A CV cable insulation deterioration diagnostic device.
JP32564889A 1989-11-17 1989-12-15 Method and apparatus for diagnosing insulation deterioration of CV cable Expired - Fee Related JP2832737B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32564889A JP2832737B2 (en) 1989-11-17 1989-12-15 Method and apparatus for diagnosing insulation deterioration of CV cable

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP29895389 1989-11-17
JP1-298953 1989-11-17
JP32564889A JP2832737B2 (en) 1989-11-17 1989-12-15 Method and apparatus for diagnosing insulation deterioration of CV cable

Publications (2)

Publication Number Publication Date
JPH03218481A true JPH03218481A (en) 1991-09-26
JP2832737B2 JP2832737B2 (en) 1998-12-09

Family

ID=26561722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32564889A Expired - Fee Related JP2832737B2 (en) 1989-11-17 1989-12-15 Method and apparatus for diagnosing insulation deterioration of CV cable

Country Status (1)

Country Link
JP (1) JP2832737B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115453273A (en) * 2022-06-30 2022-12-09 中广核(东至)新能源有限公司 Power cable insulation monitoring device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115453273A (en) * 2022-06-30 2022-12-09 中广核(东至)新能源有限公司 Power cable insulation monitoring device

Also Published As

Publication number Publication date
JP2832737B2 (en) 1998-12-09

Similar Documents

Publication Publication Date Title
JPH0242196B2 (en)
US6817760B2 (en) Method of monitoring current probe transformer temperature
US7076374B2 (en) Methods and systems for detecting and locating damage in a wire
JPH03218481A (en) Method and device for diagnosing insulation degradation of cv cable
JPH0331776A (en) Diagnostic device for insulation deterioration of cv cable
JP2876322B2 (en) Diagnosis method for insulation deterioration of CV cable
US4871972A (en) Apparatus for detecting faulty power line insulator
JP3034651B2 (en) Diagnosis method for insulation of CV cable
JPH0415577A (en) Diagnostic method for insulation deterioration of cv cable
JP5154235B2 (en) Water tree deterioration diagnosis method
RU2556332C1 (en) Leakage current monitor in load of single-phase rectifier
JPH0331775A (en) Diagnostic method for insulation deterioration of cv cable
JP3010367B2 (en) Insulation resistance measurement method of cable sheath under hot wire
JP2000009788A (en) Deterioration diagnosis method of cables
JP3306370B2 (en) Diagnosis method for insulation deterioration of power cable
JPH0429067A (en) Diagnostic device for water tree deterioration
JP3954523B2 (en) Damage position detector for buried coated steel pipe
JP2003084028A (en) Hot line diagnostic method for power cable
JPH03214078A (en) Diagnosis of deterioration in hot-line insulation
JPH03102268A (en) Diagnostic method of deterioration of insulation of power cable
JP3176490B2 (en) Diagnosis method for insulation of CV cable
JP2750713B2 (en) Simple insulation resistance measurement method for low voltage wiring etc.
JP2000147052A (en) Method of diagnosing insulation deterioration of cable
JPH01110267A (en) Insulation deterioration diagnostic apparatus
JPH02122284A (en) Diagnostic device for deterioration of cable

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees