JPH0415577A - Diagnostic method for insulation deterioration of cv cable - Google Patents

Diagnostic method for insulation deterioration of cv cable

Info

Publication number
JPH0415577A
JPH0415577A JP12035890A JP12035890A JPH0415577A JP H0415577 A JPH0415577 A JP H0415577A JP 12035890 A JP12035890 A JP 12035890A JP 12035890 A JP12035890 A JP 12035890A JP H0415577 A JPH0415577 A JP H0415577A
Authority
JP
Japan
Prior art keywords
current
cable
pulsating
component
deterioration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12035890A
Other languages
Japanese (ja)
Other versions
JP2893055B2 (en
Inventor
Masato Miyako
都 真人
Yoshio Tsunoda
角田 美伯
Shigeo Sakai
堺 繁夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP2120358A priority Critical patent/JP2893055B2/en
Publication of JPH0415577A publication Critical patent/JPH0415577A/en
Application granted granted Critical
Publication of JP2893055B2 publication Critical patent/JP2893055B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/1227Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials
    • G01R31/1263Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation
    • G01R31/1272Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation of cable, line or wire insulation, e.g. using partial discharge measurements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Relating To Insulation (AREA)

Abstract

PURPOSE:To exactly detect the degree of deterioration of a cable insulator by applying an AC voltage to a test CV cable, detecting a pulsating current component from its grounding cable current, rectifying and integrating it and converting it to a DC output signal. CONSTITUTION:As for a grounding cable G current detected by a current transformer 3, based on an AC charging current, a pulsating current component and a noise current component generated by existence of water tree deterioration are superposed. This grounding cable current is inputted to an LPF 21, and an AC charging current component is eliminated. An output of the LPF 21 is amplified 25, and inputted to a BPF 22. In the BPF 22, a single frequency signal is fetched from in the pulsating current component, and amplified 26. An output of the amplifier 26 is rectified by a detecting circuit 23, allowed to pass through an integration circuit 24 and its waveform is displayed by a display device 4. This waveform consists of a projecting part and a smooth stable part of a continuously low level. In such a state, by disregarding the projecting part as a noise and catching the stable part as a DC component corresponding to magnitude of the pulsating current component, the degree of water tree deterioration can be known exactly.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、CVケーブル絶縁体の水トリー等による劣化
の程度を知見するための方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for determining the degree of deterioration of CV cable insulation due to water trees, etc.

[従来の技術] 一般的に、電カケープルは布設後の経年変化により電気
絶縁体の絶縁性能が低下する。特に、CVケーブルでは
架橋ポリエヂレン絶縁体に樹状の亀裂が生じ、この亀裂
に水分が侵入する所謂水トリーの発生が絶縁劣化の主な
原因であることが知られている。このような絶縁性能の
低下は、放置すると進展して早晩大きな絶縁破壊事故に
つながる慣れがある。従って、ケーブルの絶縁抵抗の変
化を把握し、劣化を早期に発見することが極めて重要で
ある。
[Prior Art] Generally, the insulation performance of the electric insulator of an electric cable deteriorates over time after installation. In particular, it is known that in CV cables, dendritic cracks occur in the crosslinked polyethylene insulator, and the occurrence of so-called water trees, in which water enters the cracks, is the main cause of insulation deterioration. If left untreated, this kind of deterioration in insulation performance will progress and sooner or later lead to a major dielectric breakdown accident. Therefore, it is extremely important to understand changes in cable insulation resistance and discover deterioration early.

ケーブル絶縁体の水トリー劣化に起因する絶縁抵抗の変
化を常時監視するーっの方法として、本出願人の提案に
かかる脈流検出法がある。脈流検出法とは、交流課電中
のケーヘプルの接地線を流れる電流を検出した場合、り
゛−プル絶縁体中に水トリーが存在すると概ね数I(Z
以下の周期で変動する脈動電流が発生し、しかも水1・
り一劣化が激しい程この脈動電流成分は大きくなるとい
う新知見に基づいて案出されたものである。かかる脈動
電流により劣化診断を行う具体的手段としては、先ずロ
ーパスフィルタによって接地線電流から交流充電電流成
分を除去して脈流成分を取り出し、これを増幅して波形
表示手段に表示させ、該表示波形を時間解析する如き手
段が本出願人により提案されている。
As a method for constantly monitoring changes in insulation resistance caused by water tree deterioration of cable insulators, there is a pulsating current detection method proposed by the present applicant. The pulsating current detection method means that when detecting the current flowing through the grounding wire of a cable pull while AC current is being applied, if a water tree exists in the pulsating insulator, the current will be approximately I(Z).
A pulsating current that fluctuates at the following frequency is generated, and water 1.
This was devised based on the new knowledge that the more severe the deterioration of the pulsating current component, the larger the pulsating current component becomes. As a specific means for diagnosing deterioration using such pulsating current, first, a low-pass filter removes the AC charging current component from the ground line current to extract the pulsating current component, amplifies this component, displays it on the waveform display means, and displays the pulsating current component. The applicant has proposed a means for time-analyzing waveforms.

[発明が解決しようとする課題1 しかしながら本発明者らが脈流法についてざらに研究を
重ねた結果、脈流成分を単に波形表示させたのみではそ
の時間解析が困難であることがわかった。すなわち、前
述の通り脈流成分は水1・り一劣化程度に応じてその大
きざが変化するので、脈流の大きざを検知−Jることか
当該劣化診断法においては重要となるのであるが、脈流
波形は極めて不定的な波形であり、該波形そのものから
脈流成分本来の大きざを評価するのは非常に困難である
ということを知見した。
[Problem to be Solved by the Invention 1] However, as a result of extensive research into the pulsating flow method, the present inventors found that it is difficult to time-analyze the pulsating flow component simply by displaying it in a waveform. In other words, as mentioned above, the size of the pulsating flow component changes depending on the degree of water deterioration, so detecting the size of the pulsating flow is important in the deterioration diagnosis method. However, it has been found that the pulsating flow waveform is an extremely irregular waveform, and that it is very difficult to evaluate the original size of the pulsating flow component from the waveform itself.

従って本発明は、脈流法において、接地線より検出した
脈流成分の時間解析を容易とし、水1・り一劣化診断を
正確に行い得る方法を提供することを目的とする。
Therefore, an object of the present invention is to provide a method that facilitates time analysis of pulsating flow components detected from a ground wire in the pulsating flow method, and enables accurate diagnosis of water deterioration.

[課題を解決するための手段] 本発明のCVケーブルの絶縁劣化診断方法は、測定対象
のC■ケーブルに交流電圧を印加し、その接地線電流よ
り脈流成分を検出し、該脈流成分を整流すると共に積分
して得られた直流出力信号に基ついて、り゛−プル絶縁
体の劣化の程度を検知することを特徴とづるものである
[Means for Solving the Problem] The method for diagnosing insulation deterioration of a CV cable of the present invention applies an alternating current voltage to the C-cable to be measured, detects a pulsating current component from the ground wire current, and detects the pulsating current component. This method is characterized by detecting the degree of deterioration of the ripple insulator based on the DC output signal obtained by rectifying and integrating the current.

し作用」 脈流成分を整流して積分することにより、不定的な脈流
波形を定量的な準直流的波形に換算することかでざる。
By rectifying and integrating the pulsating flow component, the irregular pulsating current waveform can be converted into a quantitative quasi-DC waveform.

従って、脈流本来の大ぎざが知見し易くなり、また(h
分゛することによって突発的な雑音電流成分の影響を除
去することかでざる。
Therefore, it becomes easier to see the original large serrations of the pulsating flow, and (h
The only way to do this is to remove the influence of sudden noise current components.

し実施例」 以下図面に基ついて本発明の一実施例を詳細に説明する
EMBODIMENT OF THE INVENTION An embodiment of the present invention will be described in detail below with reference to the drawings.

第1図は本発明の劣化診断方法を実施するための回路構
成図である。図において、1は供試CVケーブルであり
、11は導体、12は架橋ポリエチレン絶縁体、13は
遮蔽層をそれぞれ示している。5は交流電源で、一端を
接地し、他端を供試CVゲーブル1の導体11に接続し
ている。なお、供試C■ケーブル]が活線状態の場合に
おいて本発明を実施するとぎは、印加されている線路電
圧をそのまま利用ずれば良く、この場合は交流電源5は
不要となる。
FIG. 1 is a circuit diagram for implementing the deterioration diagnosis method of the present invention. In the figure, 1 is a test CV cable, 11 is a conductor, 12 is a crosslinked polyethylene insulator, and 13 is a shielding layer. 5 is an AC power supply, one end of which is grounded and the other end connected to the conductor 11 of the CV cable 1 under test. Note that when the present invention is carried out when the test cable C2 is in a live state, the applied line voltage may be used as is, and in this case, the AC power supply 5 is not required.

G 7は供試CVケーブル1の遮蔽層13と大地との間
を接続する接地線であり、接地線Gには変流器3が結合
されている。接地線G中を流れる接地線電流ieは変流
器3によって検出され、該電流は測定器2に送出される
。接地線電流ieの他の検出手段としては、接地線Gの
中間部に抵抗を挿入し、該抵抗の両端に現れる端子電圧
を利用する方法等が挙げられる。
G7 is a grounding wire that connects the shielding layer 13 of the CV cable 1 under test and the ground, and the current transformer 3 is coupled to the grounding wire G. The ground line current ie flowing in the ground line G is detected by the current transformer 3 and sent to the measuring device 2. Other methods for detecting the ground line current ie include a method in which a resistor is inserted in the middle of the ground line G and a terminal voltage appearing at both ends of the resistor is utilized.

供試CVケーブル1に交流電圧が印加されると、導体1
−1と遮蔽層13との静電結合により印加交流電圧に応
じた電荷が誘起され、この時間変化のため印加交流電圧
の周波数と同程度の周期で変動する電流(交流充電電流
)が通常発生し、接地線G中を流れることとなる。これ
に加え、絶縁体12に水ト・り一劣化が存在する場合に
は前述の脈動電流が重畳されることとなる。脈動電流と
は印加交流電圧に依存する電流以外の電流を言い、印加
交流電圧の周波数以下の周波数の電流である。従って水
トリー劣化ケーブルの接地線電流ie中には、交流充電
電流成分、脈動電流成分、及び何らかの影響で発生ずる
雑音電流成分が存在していることになる。
When an AC voltage is applied to the test CV cable 1, the conductor 1
-1 and the shielding layer 13 induces a charge according to the applied AC voltage, and due to this time change, a current (AC charging current) that fluctuates at a period comparable to the frequency of the applied AC voltage is usually generated. Therefore, it will flow through the ground wire G. In addition to this, if the insulator 12 suffers from water damage, the above-mentioned pulsating current will be superimposed. The pulsating current refers to a current other than a current that depends on the applied alternating current voltage, and is a current having a frequency lower than the frequency of the applied alternating current voltage. Therefore, the ground line current ie of the water-tree deteriorated cable includes an alternating current charging current component, a pulsating current component, and a noise current component generated due to some influence.

測定器2は、例えば変流器3が検出しL二接地線電流i
eから上記交流充電電流成分を除去して脈流成分を取り
出すローバスツーイルター(以下LPF)21、検出き
れた全脈流成分の中から特定周波数成分のみを選択出力
するバンドパスフィルター(以下BPF)22、この出
力信号を整流する検波回路23、及び検波回路23の出
力を平滑な直流信号出力とするための積分回路24等か
らなっている。なお25.26はそれぞれの回路段階に
おいて信号を増幅するための増幅器である。そして積分
回路24の出力、すなわち測定器2の出力は、ペンレコ
ーダやシンクロスコープ等の表示装置4において表示さ
れる。
The measuring device 2 detects, for example, the current transformer 3 and the L2 grounding wire current i.
A low pass filter (hereinafter referred to as LPF) 21 removes the AC charging current component and extracts the pulsating current component from e, and a band pass filter (hereinafter referred to as BPF) selects and outputs only a specific frequency component from all detected pulsating current components. ) 22, a detection circuit 23 for rectifying this output signal, and an integration circuit 24 for converting the output of the detection circuit 23 into a smooth DC signal output. Note that 25 and 26 are amplifiers for amplifying signals in each circuit stage. The output of the integrating circuit 24, that is, the output of the measuring device 2, is displayed on a display device 4 such as a pen recorder or a synchroscope.

次いで、上述の絶縁劣化診断装置の動作を第2図を参照
しながら説明する。
Next, the operation of the above-mentioned insulation deterioration diagnosing device will be explained with reference to FIG.

第2図(a)は、変流器3が検出した接地線電流1eの
電流波形を示しており、交流充電電流をべ一スとし、水
1・り一劣化の存在によって発生J−る脈流成分及び雑
音電流成分が重畳されTニ形の波形となっている。この
ような接地線電流ieばL P F21に入力され、交
流充電電流成分が除去される、。
Fig. 2(a) shows the current waveform of the grounding line current 1e detected by the current transformer 3, based on the AC charging current, and the pulse generated by the presence of water 1/1 deterioration. The current component and the noise current component are superimposed to form a T-shaped waveform. Such a ground line current is input to the LPF21, and the alternating current charging current component is removed.

供試CVケーブルか活線状態の場合、交流充電電流の周
波数ば50H7(又は60 Hz )であり、一方脈流
成分は概ね数1(z以下の周波数であるので、L P 
F 2 ]としては例えば10I−IZ程度以下の電流
成分を通過ぎせる如き回路を用いれば良い。
When the test CV cable is in a live state, the frequency of the AC charging current is 50H7 (or 60 Hz), while the pulsating current component is approximately 1 (the frequency is less than z, so L P
F 2 ] may be a circuit that allows a current component of about 10I-IZ or less to pass through, for example.

L P F 21−の出力(脈流成分)は非常に微弱な
信号であるので、増幅器25により増幅し、しかる後B
PF22に入力される。B P F 22では脈流成分
の中から単一周波数信号(例えば]、 I−(z )を
取り出し、次段の増幅器26でこの信号を増幅する。
Since the output (pulsating flow component) of LPF 21- is a very weak signal, it is amplified by the amplifier 25, and then
It is input to PF22. The BPF 22 extracts a single frequency signal (for example, I-(z)) from the pulsating flow component, and amplifies this signal in the next stage amplifier 26.

第2図(b)の電流波形は前記増幅器26の出力波形を
示すものであり、この波形は脈流成分の中の単一周波数
信号成分を表している。BPF22を使用するのは、全
脈流成分を増幅すると雑音電流成分も同時に増幅してし
まい測定に悪影響を及ぼす可能性があるためで、BPF
22及び増幅器26で脈流成分を狭帯域増幅することに
より雑音成分の影響を小ざくするためである。従って本
発明を実施するに際しては、上述のような脈流成分の狭
帯域増幅回路を使用することが望ましい。
The current waveform in FIG. 2(b) shows the output waveform of the amplifier 26, and this waveform represents a single frequency signal component among the pulsating flow components. The reason for using BPF22 is that if all the pulsating current components are amplified, the noise current component will also be amplified at the same time, which may have an adverse effect on the measurement.
This is to reduce the influence of noise components by amplifying the pulsating flow components in a narrow band with the amplifiers 22 and 26. Therefore, when carrying out the present invention, it is desirable to use a narrow band amplification circuit for pulsating flow components as described above.

モして増幅器26の出力は検波回路23へ入力された整
流され、次いで積分回路24を通過ざぜることにより第
2図<c>の如と電流波形を得ることができる。
The output of the amplifier 26 is input to the detection circuit 23, where it is rectified, and then passed through the integration circuit 24 to obtain a current waveform as shown in FIG. 2<c>.

第2図(b)の波形において、振幅に若干の大小はある
ものの比較的安定した微動部a1と、振幅が突出的に犬
となる変動部b1とが存在しているが、前記微動部a1
を水トリー劣化度合に応じて生ずる脈動電流として、変
動部b1を突発的雑音電流としてとらえることができる
。従来は本波形をもって脈流成分の大ざきを評価してい
たが、微動部a、の波形は安定していないため正確な脈
流成分の大−きざを特定することが困難であった。そこ
で本発明の如く当該脈流成分を整流及び積分することに
より、第2図(C)に示すように、同図? (b)における変動部b1は波形の突出する部分b2と
して残存するものの、劣化診断に必要である微動部a1
は連続的に低いレベルの平滑な安定部a2に変換される
ことになる。劣化診断を行うに際してもよ、突出部b2
シよ雑音として無視し、安定部a2を脈流成分の大きざ
に応じた直流出力としてとらえれば良く、第2図(b)
の波形に比べ脈流成分本来の大ざざを評価するには非常
に都合が良くなるものである。
In the waveform of FIG. 2(b), there is a fine movement part a1 which is relatively stable although the amplitude is slightly different, and a fluctuating part b1 where the amplitude is noticeably small.
can be regarded as a pulsating current that occurs depending on the degree of water tree deterioration, and the fluctuation part b1 can be regarded as a sudden noise current. Conventionally, the amplitude of the pulsating flow component has been evaluated using this waveform, but since the waveform of the micro-tremor part a is not stable, it has been difficult to accurately identify the amplitude of the pulsating flow component. Therefore, by rectifying and integrating the pulsating flow component as in the present invention, as shown in FIG. Although the fluctuation part b1 in (b) remains as a protruding part b2 of the waveform, the slight fluctuation part a1 is necessary for deterioration diagnosis.
is converted into a smooth stable part a2 of a continuously lower level. The protrusion b2 is also useful when diagnosing deterioration.
Just ignore it as noise and treat the stable part a2 as a DC output depending on the size of the pulsating flow component, as shown in Figure 2 (b).
This is very convenient for evaluating the original roughness of the pulsating flow component compared to the waveform of .

上述の積分回路24としては例えばCR積分回路を使用
することがでとるが、脈流成分をより直流的に変換して
評価を容易とするために時定数は長くすること力ζ好ま
しく、少なくともCR=5以上、好ましくはCR=20
程度であれば良い。また、LPF21としては例えばL
C型の所謂定に型フィルタを使用することができ、BP
F22及び増幅器26の働ぎをするものとして例えば並
列T型CR回路(Twin−T型狭帯域増幅回路)を使
用することかでざる。
For example, a CR integrator circuit can be used as the above-mentioned integrator circuit 24, but it is preferable to make the time constant long in order to convert the pulsating flow component into a DC component and make the evaluation easier. =5 or more, preferably CR=20
It's fine as long as it's a certain amount. Further, as the LPF 21, for example, L
A type filter can be used for the so-called definition of type C, and BP
For example, a parallel T-type CR circuit (Twin-T narrowband amplifier circuit) may be used as the F22 and the amplifier 26.

測定器2の出力は表示装置4にて波形表示させても良い
が、該出力は直流信号であるのでディジタル変換が容易
であり、この出力をA/D変換しコンピュータで出力処
理することもでざる。
The output of the measuring instrument 2 may be displayed as a waveform on the display device 4, but since the output is a DC signal, it is easy to convert it into a digital signal, and this output can also be A/D converted and output processed by a computer. Colander.

[発明の効果] 以上説明した通りの本発明のCVケーブルの絶縁劣化診
断方法によれば、接地線より脈流成分を検出し、ざらに
整流して積分することにより、不定的な微動電流である
脈流成分を直流に変換するので、脈流成分本来の大きざ
を評価し易くなる。
[Effects of the Invention] According to the method for diagnosing insulation deterioration of CV cables of the present invention as explained above, pulsating current components are detected from the ground wire, roughly rectified and integrated, thereby detecting irregular microcurrent currents. Since a certain pulsating flow component is converted into direct current, it becomes easier to evaluate the original size of the pulsating flow component.

すなわち脈流成分の微妙な大小を直流信号であるがため
判断し易くなるため、従って正確な水トリー劣化度合を
知見でざるものである。、i−た脈流成分を積分するこ
とにより、雑音電流の影響も小ざくすることができる。
That is, since it is a direct current signal, it is easy to judge the subtle magnitude of the pulsating flow component, and therefore it is impossible to know the exact degree of water tree deterioration. , i-, the influence of noise current can be reduced by integrating the pulsating flow components.

また脈流成分の大きざを直流成分に変換するのでA/D
変換が容易となり、パソコン等で劣化診断を行うのに有
利になるという利点もある。
In addition, since the magnitude of the pulsating current component is converted into a DC component, the A/D
Another advantage is that conversion is easy and it is advantageous for deterioration diagnosis using a personal computer or the like.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の劣化診断方法を実施するための回路構
成図、第2図(a)〜(c)は第1図の回路における各
部の電流波形を表すグラフ図である。
FIG. 1 is a circuit configuration diagram for implementing the deterioration diagnosis method of the present invention, and FIGS. 2(a) to 2(c) are graphs showing current waveforms at various parts in the circuit of FIG. 1.

Claims (1)

【特許請求の範囲】[Claims]  測定対象のCVケーブルに交流電圧を印加し、その接
地線電流より脈流成分を検出し、該脈流成分を整流する
と共に積分して得られた直流出力信号に基づいて、ケー
ブル絶縁体の劣化の程度を検知することを特徴とするC
Vケーブルの絶縁劣化診断方法。
An AC voltage is applied to the CV cable to be measured, a pulsating current component is detected from the ground wire current, and the pulsating current component is rectified and integrated to determine the deterioration of the cable insulation based on the obtained DC output signal. C characterized by detecting the degree of
Method for diagnosing insulation deterioration of V cable.
JP2120358A 1990-05-10 1990-05-10 Diagnosis method for insulation deterioration of CV cable Expired - Fee Related JP2893055B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2120358A JP2893055B2 (en) 1990-05-10 1990-05-10 Diagnosis method for insulation deterioration of CV cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2120358A JP2893055B2 (en) 1990-05-10 1990-05-10 Diagnosis method for insulation deterioration of CV cable

Publications (2)

Publication Number Publication Date
JPH0415577A true JPH0415577A (en) 1992-01-20
JP2893055B2 JP2893055B2 (en) 1999-05-17

Family

ID=14784233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2120358A Expired - Fee Related JP2893055B2 (en) 1990-05-10 1990-05-10 Diagnosis method for insulation deterioration of CV cable

Country Status (1)

Country Link
JP (1) JP2893055B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0656543A2 (en) * 1993-12-01 1995-06-07 Sumitomo Wiring Systems, Ltd. Withstand voltage-testing apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0656543A2 (en) * 1993-12-01 1995-06-07 Sumitomo Wiring Systems, Ltd. Withstand voltage-testing apparatus
EP0656543A3 (en) * 1993-12-01 1996-06-19 Sumitomo Wiring Systems Withstand voltage-testing apparatus.

Also Published As

Publication number Publication date
JP2893055B2 (en) 1999-05-17

Similar Documents

Publication Publication Date Title
US6225810B1 (en) Loop resistance tester (LRT) for cable shield integrity
CA2009901A1 (en) Cathodic protection analyzer
JPH0415577A (en) Diagnostic method for insulation deterioration of cv cable
JPH0580112A (en) Failure diagnostic device for power cable
JP2742637B2 (en) Diagnosis method for insulation of CV cable
JPH10185800A (en) Evaluation method for corrosion-proof in cathode corrosion-proof system
JP2866533B2 (en) High frequency partial discharge detection system
JP2832737B2 (en) Method and apparatus for diagnosing insulation deterioration of CV cable
JPH0331776A (en) Diagnostic device for insulation deterioration of cv cable
JP3034651B2 (en) Diagnosis method for insulation of CV cable
JPH07113650B2 (en) Water tree deterioration diagnostic device
JP2000147052A (en) Method of diagnosing insulation deterioration of cable
JP2929047B2 (en) Diagnosis method for insulation deterioration of power cable
JPH0331775A (en) Diagnostic method for insulation deterioration of cv cable
JPH03172777A (en) Diagnostic method for insulation deterioration of cv cable
JP3010367B2 (en) Insulation resistance measurement method of cable sheath under hot wire
JP2542406B2 (en) Insulation deterioration diagnosis method for power cables
JP2000009788A (en) Deterioration diagnosis method of cables
JP3306370B2 (en) Diagnosis method for insulation deterioration of power cable
JPH0252829B2 (en)
JP2002207059A (en) Diagnostic method of insulation degradation for power cable
JP2003084028A (en) Hot line diagnostic method for power cable
JP3176490B2 (en) Diagnosis method for insulation of CV cable
JPH03102268A (en) Diagnostic method of deterioration of insulation of power cable
JP2003035742A (en) Method for diagnosing live wire in cv cable

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees