JPH0321696A - Gasifier for fine powdery raw material and method for operation thereof - Google Patents

Gasifier for fine powdery raw material and method for operation thereof

Info

Publication number
JPH0321696A
JPH0321696A JP15582889A JP15582889A JPH0321696A JP H0321696 A JPH0321696 A JP H0321696A JP 15582889 A JP15582889 A JP 15582889A JP 15582889 A JP15582889 A JP 15582889A JP H0321696 A JPH0321696 A JP H0321696A
Authority
JP
Japan
Prior art keywords
raw material
burner
raw materials
fine powder
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15582889A
Other languages
Japanese (ja)
Other versions
JPH086098B2 (en
Inventor
Akio Ueda
昭雄 植田
Hiroshi Ishizaka
浩 石坂
Naruhito Takamoto
成仁 高本
Isao Koyama
勲 小山
Yoshiki Watabe
渡部 芳樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP1155828A priority Critical patent/JPH086098B2/en
Publication of JPH0321696A publication Critical patent/JPH0321696A/en
Publication of JPH086098B2 publication Critical patent/JPH086098B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Gasification And Melting Of Waste (AREA)

Abstract

PURPOSE:To attain a high carbon gasification ratio without sticking of raw materials to a furnace wall by providing feeding line systems for feeding carbon fine powdery raw materials having different properties to burners in respective stages. CONSTITUTION:For example, a low caking raw material with inferior reactivity is fed to a burner 62 for distributing a large amount of an oxidizing agent and enhancing atmospheric temperature above the melting point of ash in the lower stage and a raw material having a high button index with excellent reactivity is fed to a burner 61 for distributing only a small amount of the oxidizing agent and forming active char in the upper stage to provide a high gasification efficiency.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は石炭、コークス、石炭液化残渣等の炭素微粉原
料ガス化装置に係わり、特に性状の異なる炭素微粉原料
を効率よくガス化するガス化装置およびその運転方法に
関する。
The present invention relates to an apparatus for gasifying carbon powder raw materials such as coal, coke, coal liquefaction residue, etc., and more particularly to a gasifier for efficiently gasifying carbon powder raw materials having different properties, and a method for operating the same.

【従来の技術】[Conventional technology]

従来、ガス化装置には、固定層、流動層、噴流層等を用
いる各方式が種々提案されている。これらの方式の中で
、噴流層を用いる方式は石炭等の原料を微粉にして酸素
、空気等の酸化剤と共に石炭灰の融点以上(1300〜
1600℃)の温度のガス化装置内に供給して炭素微粉
原料をガス化させるため、他の方式に比較し、ガス化効
率が高く、適用原料種が広く、また、公害性の副産物が
少ない等の特徴を有していることから、合戒ガスの製造
、複合発電、燃料電池等の燃料製造に適している。 噴流層方式の炭素微粉原料ガス化装置としては、微粉炭
等の炭素微粉原料またはチヤ−(原料の揮発分がなくな
り、ガスと共に飛散するカーボン粒子)とガス化剤(酸
素、空気、スチーム等)を同じバーナより吹き込む一段
方式の装置と、前記のバーナに加えて、微粉炭またはチ
ャーだけを単独に吹き込むバーナを設置する二段方式の
装置がある。 ガス化反応は大別すると以下の方式で表される。 原料→チャー、H2,Co,Co2,CH4・・・・ 
(1〉 チャー+02→Co2,Co,H2 ・・・・ (2)
原料+02−Co,CO2.H2   ・・・・ (3
)(1)式は熱分解反応であり、前記した二段方式にお
いて、微粉炭等の原料だけを単独に吹き込むバーナによ
って起こりやすい6 (1)式と(2)式の反応を明ら
かに区別して併発させる方式の代表例としては公知のご
とく米国BI−GASプロセスがある。またバーナから
炭素微粉原料とガス化剤とを同時に供給し、意図的に(
1〉式と(2〉式とを区別しない(3)式の反応式によ
るプロセスがあり、代表例としてはTexacoプロセ
ス、She l l−Koppersプロセス等がある
。 また、本発明者らは、例えば特願昭58−47162号
公報および特願昭58−50496号公報に示すように
、ガス化装置内に酸化剤の配分の異なるバーナを二段設
け、二段バーナを複数設置した二段方式のプロセスを提
案している.第5図に、そのガス化装置の概略構成図を
示す.ガス化装置は装置をコンパクトにするため、一m
に加圧装置となっており、炭素微粉原料は、常圧ホツパ
10および二基の加圧ホッパ20および30を介してフ
ィーダ40に定量供給され、フイーダ40下流のエジェ
クタ50で導入される窒素ガス等の搬送ガスに搬送され
、搬送ライン51を経て、上段バーナ61および下段バ
ーナ62に供給される。上段バーナ61および下段バー
ナ62には、それぞれ酸素、空気等の酸化剤がライン6
3およびライン64から送られる.そして、炭素微粉原
料はガス化装置60のガス化室65でガス化され、生戒
ガスはライン69より排出される.下段バーナ62に対
する酸化剤の供給量を上段バーナ61のそれよりも多く
配分することによって、ガス化室65内の下部の温度は
スラグが溶融する温度に高めて、下段バーナ62では特
に、 原料+02→COz+f{20    ・・・・・ (
4)上段バーナ61では特に、 チヤー十C O 2→2CO     ・・・・・ (
5)チャー+H20→H 2 + C○  ・・・・・
 (6〉の反応を起こりやすくするものである。本方法
では、酸化剤を下段バーナ62に多く配分し、ガス化室
65内の下部を高温にし、かつ上段バーナ61では活性
なチャーを生成させようとするものである。 (5)式および(6〉式に示すガス化反応は(1〉式の
乾留反応に比較して反応速度が約1/20〜1/50と
小さいので、(5)式および(6)式の反応をいかに早
く行わせるかが重要となる。
Conventionally, various systems using a fixed bed, a fluidized bed, a spouted bed, etc. have been proposed for gasifiers. Among these methods, the method using a spouted bed is one in which raw materials such as coal are pulverized and mixed with oxidizing agents such as oxygen and air to a temperature higher than the melting point of coal ash (1300~
Since the carbon powder raw material is gasified by feeding it into a gasifier at a temperature of 1,600℃, it has higher gasification efficiency than other methods, can be applied to a wide variety of raw materials, and produces fewer polluting byproducts. Because of these characteristics, it is suitable for the production of gas, combined cycle power generation, and fuel for fuel cells, etc. A spouted bed type carbon powder raw material gasifier uses a carbon powder raw material such as pulverized coal or char (carbon particles that scatter with the gas after the volatile content of the raw material disappears) and a gasifying agent (oxygen, air, steam, etc.). There is a one-stage system in which pulverized coal or char is blown in from the same burner, and a two-stage system in which, in addition to the burner described above, a burner is installed in which only pulverized coal or char is blown individually. Gasification reactions can be broadly classified into the following methods. Raw materials → Char, H2, Co, Co2, CH4...
(1> Char+02→Co2, Co, H2... (2)
Raw material +02-Co, CO2. H2... (3
) Equation (1) is a thermal decomposition reaction, and in the two-stage system described above, it is likely to occur when a burner injects only raw materials such as pulverized coal. A typical example of a system in which simultaneous processing is performed is the well-known BI-GAS process in the United States. In addition, the carbon fine powder raw material and the gasification agent are simultaneously supplied from the burner, and the
There is a process based on the reaction equation (3) that does not distinguish between equation (1) and equation (2), and typical examples include the Texaco process and the Shell-Koppers process. As shown in Japanese Patent Application No. 58-47162 and Japanese Patent Application No. 58-50496, two stages of burners with different distributions of oxidizing agents are installed in the gasifier, and a two-stage system in which a plurality of two-stage burners are installed is used. We are proposing a process. Figure 5 shows a schematic diagram of the gasification equipment. In order to make the equipment compact, the gasification equipment is
The carbon fine powder raw material is supplied in a constant quantity to the feeder 40 via an ordinary pressure hopper 10 and two pressure hoppers 20 and 30, and nitrogen gas introduced by an ejector 50 downstream of the feeder 40. etc., and is supplied to the upper burner 61 and the lower burner 62 via the transfer line 51. An oxidizing agent such as oxygen or air is supplied to the upper burner 61 and the lower burner 62 through a line 6, respectively.
3 and line 64. Then, the carbon fine powder raw material is gasified in the gasification chamber 65 of the gasifier 60, and the raw gas is discharged from the line 69. By distributing a larger amount of oxidizing agent to the lower burner 62 than to the upper burner 61, the temperature in the lower part of the gasification chamber 65 is raised to a temperature at which the slag melts, and in the lower burner 62, in particular, the raw material +02 →COz+f{20... (
4) Especially in the upper stage burner 61, 10 CO 2→2 CO... (
5) Char+H20→H2+C○・・・・・・
(This makes it easier for the reaction 6> to occur. In this method, a large amount of the oxidizing agent is distributed to the lower burner 62, the lower part of the gasification chamber 65 is heated to a high temperature, and active char is generated in the upper burner 61. The reaction rate of the gasification reactions shown in equations (5) and (6> is about 1/20 to 1/50 smaller than that of the carbonization reaction of equation (1), so ) and (6) are important in how quickly the reactions are carried out.

【発明が解決しようとする課題】 日本のように、石炭のほとんどを輸入に頼っている国で
は、ガス化装置で一種類の原料だけを用いるのは稀であ
り、数種類の原料を用いるのが普通である。また、原料
についても石炭のみならずい原料をガス化するニーズが
高まってきている。 石炭液化残渣は軟化点が約200℃以下であるため、こ
の温度になると原料は溶融し、更に温度を高めると膨ら
んでくるため、比表面積が石炭に比較して非常に小さい
く反応性が悪い。また石炭液化残渣および石油コークス
は元素分析の結果によると酸素および水素の割合が少な
く、炭素の割合が多い。このような原料が高温の炉内に
供給されたとき、(1)式および(6)式で水素および
酸素は原料より速やがに抜けてチャーとなるが、酸素お
よび水素の割合が少ないのでチャーは比表面積の小さい
、すなわち反応性の悪いチャーとなる.ところが上述し
たように多種多様な原料を用いてガス化するとき、単に
性質の異なる原料を混合したのでは効率も低く、場合に
よってはガス化炉が正常に運転できなくなることもある
.例えば、石炭液化残渣は前述したように軟化点が約2
00’C以下であるので、少ない酸化剤の雰囲気下では
原料が炉壁に付着し、そこで溶融、軟化して揮発分が抜
け、炭化するので、炉壁で大きなカーボンフラワを形成
し、同じ段に設置しているバーナの先端を塞ぐことがあ
る。第6図に、石炭液化残渣の炉壁への付着性に関して
の試験結果を示す。これは酸化剤の量とガス化炉内温度
を変化させて付着性を調べたものである。炉内温度を高
くし、かつ酸化剤/原料供給重量比を高くしないとW.
料の炉壁への付着性を弱くすることはできない。従って
、このような原料をガス化する場合、ガス化炉壁での原
料の付着性をなくそうとして、酸化剤を多く供給すると
生成ガスは発熱量を持たない水( H z O )およ
び二酸化炭素( C O 2 )の割合が多くなってし
まうことになる。そこで石炭液化残渣のごとき原料の反
応性を高めようとして、反応性のよい石炭を混合して炉
内に供給しても、酸化剤はまず反応性のよい石炭と反応
するので、結局反応性の悪い原料の性質を変えることは
できない。 本発明の目的は、上記した従来技術に欠点を無くし、性
質の異なる原料、特に反応性の劣る原料を用いても、高
いガス化効率が得られるガス化装置および運転方法を提
供するにある。
[Problem to be solved by the invention] In a country like Japan, which relies on imports for most of its coal, it is rare to use only one type of raw material in a gasifier, and it is difficult to use several types of raw materials. It's normal. In addition, as for raw materials, there is a growing need to gasify not only coal but also hard raw materials. Coal liquefaction residue has a softening point of approximately 200°C or lower, so at this temperature the raw material melts, and when the temperature is raised further it expands, so the specific surface area is very small compared to coal and the reactivity is poor. . Furthermore, according to the results of elemental analysis, coal liquefaction residue and petroleum coke have a low proportion of oxygen and hydrogen, and a high proportion of carbon. When such raw materials are fed into a high-temperature furnace, hydrogen and oxygen quickly escape from the raw materials and become char in equations (1) and (6), but since the proportion of oxygen and hydrogen is small, Char has a small specific surface area, which means it has poor reactivity. However, as mentioned above, when gasifying a wide variety of raw materials, simply mixing raw materials with different properties will result in low efficiency, and in some cases, the gasifier may not be able to operate properly. For example, as mentioned above, coal liquefaction residue has a softening point of about 2.
Since the temperature is below 00'C, in an atmosphere with a small amount of oxidizing agent, the raw material will adhere to the furnace wall, where it will melt and soften, remove volatile matter, and carbonize, forming large carbon flowers on the furnace wall and forming a large carbon flower on the same stage. may block the tip of the burner installed in the FIG. 6 shows test results regarding the adhesion of coal liquefaction residue to the furnace wall. This study investigated adhesion by varying the amount of oxidizing agent and the temperature inside the gasifier. W.
It is not possible to weaken the adhesion of the material to the furnace wall. Therefore, when gasifying such raw materials, if a large amount of oxidizing agent is supplied in an attempt to eliminate the adhesion of the raw materials on the gasifier wall, the generated gas will become water (HzO) and carbon dioxide, which have no calorific value. (CO 2 ) ratio will increase. Therefore, in an attempt to increase the reactivity of a raw material such as coal liquefaction residue, even if highly reactive coal is mixed and fed into the furnace, the oxidizing agent will first react with the highly reactive coal, so in the end the reactive You can't change the nature of bad ingredients. An object of the present invention is to eliminate the drawbacks of the above-mentioned conventional techniques and to provide a gasifier and an operating method that can achieve high gasification efficiency even when raw materials with different properties, particularly raw materials with poor reactivity, are used.

【課題を解決するための手段】[Means to solve the problem]

上記の目的は、以下にのべる構戊により達成される。 すなわち、炭素微粉原料のガス化反応領域に酸素、空気
等の酸化剤と共に、炭素微粉原料を噴出するバーナを二
段以上備えたガス化装置において、各段毎のバーナに異
なる性状の炭素微粉原料を供給する供給ライン系統を設
けたことを特徴とする微粉原料ガス化装置である。 この微粉原料ガス化装置の各段のバーナには酸化剤供給
量調節弁を設け、また、各段のバーナへの供給ライン系
統には相互に供給原料を交換しうる供給ラインを備えて
もよい。 また、性状の異なる炭素微粉原料の中で少なくとも最下
段のバーナには反応性の劣る炭素微粉原料を酸化剤と共
に供給し、少なくとも最上段のバーナには反応性の良好
な炭素微粉原料を供給するガス化装置の運転方法である
。 反応性の劣る炭素微粉原料として無水・無灰ベースの元
素分析で(水素+酸素〉/炭素の値が低い原料または粘
結性の高い原料を用い、反応性の良好な炭素微粉原科は
無水・無灰ベースの元素分析で(水素+酸素)/炭素の
値が高い原料または粘結性の低い原料を用いても良い。 また、粘結性の異なる炭素微粉原料を用いるときは、定
常運転時には粘結性の高い原料を供給する、少なくとも
最下段のバーナに、微粉原料ガス化装置の起動時および
停止時にのみ粘結性の高い原料に代えて粘結性の低い原
料を供給する運転方法を採用しても良い.
The above object is achieved by the structure described below. That is, in a gasifier equipped with two or more stages of burners that eject the carbon powder raw material together with an oxidizing agent such as oxygen or air into the gasification reaction region of the carbon powder raw material, the carbon powder raw material with different properties is placed in the burner for each stage. This is a fine powder raw material gasification apparatus characterized by being provided with a supply line system for supplying. The burners at each stage of this fine powder raw material gasification apparatus may be provided with an oxidizing agent supply amount control valve, and the supply line system to the burners at each stage may be provided with a supply line that can mutually exchange the feedstock. . In addition, among carbon powder raw materials with different properties, a carbon powder raw material with poor reactivity is supplied to at least the bottom burner together with an oxidizing agent, and a carbon powder raw material with good reactivity is supplied to at least the top burner. This is a method of operating a gasifier. Anhydrous and ashless based elemental analysis (hydrogen + oxygen>/low carbon or highly caking raw material is used as a carbon fine powder raw material with poor reactivity.・You may use a raw material with a high (hydrogen + oxygen)/carbon value or a raw material with low caking property based on ashless-based elemental analysis.Also, when using carbon powder raw materials with different caking properties, steady operation is required. An operating method in which a highly caking raw material is sometimes supplied, and at least the lowest stage burner is supplied with a low caking raw material in place of the highly caking raw material only when starting and stopping the pulverized raw material gasifier. may be adopted.

【作用】[Effect]

上述したように、二段以上のガス化反応により炭素微粉
原料をガス化する方法では、下段バーナにおける酸化剤
の供給量を上段バーナより多くして原料の灰分が溶融す
る温度までガス化炉内を高温化し、一方、上段バーナで
は酸化剤を少なく配分して活性に富むチャーに変換し、
下段バーナ部で生戒したCO2およびH20と反応させ
て、C○およびH2にするガス化反応を行わそうとする
ものである。 無水・無灰ベースの元素分析によると一般に、炭素微粉
原料の熱分解によって特に、水素および酸素を含む化合
物、例えば水素、メタンが熱分解初期に放出するので、
反応温度が灰の溶融点以下であれば、無水・無灰ベース
の元素分析で(H+0)/Cの高い原料ほど、原料から
水素原子および酸素原子を含む化合物が放出する割合が
高い.すなわち比表面積の大きいチャーに変換するので
ある6したがって、酸化剤を多く配分し、雰囲気温度を
灰の溶融点以上に高める下段バーナには反応性の劣る原
料を供給し、まず、炭素微粉原料からCO2およびHz
Oを生成させ、下段バーナで生或したCO2およびH2
0とチャーとを反応させるために上段バーナには酸化剤
を少量しか配分せずに、反応性の優れた原料を供給する
ことによって、高いガス化効率が得られるのである. 同様のことが粘結性の違う炭素微粉原料にも言える。粘
結性の高い、すなわちボタン指数の高い原料を、酸化剤
を多く配分する下段バーナに供給し、原料をできる限り
燃焼させて炉壁に原料が付?しないようにさせ、同時に
CO■とH20を生或させ、このCO2と820とを粘
結性の低い原料が供給される上段バーナにおいて活性な
チャ一生戒させる。このとき、上段バーナにおいては粘
結性の低い原料が供給されているので酸化剤の配分量を
少なくしても、原料が炉壁に付着することなく、高いカ
ーボンガス化率が得られる。ただし、炉壁温度が低下し
ている炭素微粉原料ガス化装置起動時あるいは停止には
、下段バーナにも粘結性の低い原料を供給することで炉
壁への原料付着を防止できる。
As mentioned above, in the method of gasifying carbon powder raw material through two or more stages of gasification reaction, the amount of oxidizing agent supplied to the lower stage burner is larger than that of the upper stage burner, so that the inside of the gasifier is heated to a temperature at which the ash content of the raw material melts. is raised to high temperature, while the upper burner distributes less oxidizing agent and converts it into highly active char.
The purpose is to perform a gasification reaction by reacting the CO2 and H20 collected in the lower burner section to convert them into C○ and H2. According to elemental analysis on an anhydrous and ashless basis, in general, compounds containing hydrogen and oxygen, such as hydrogen and methane, are released in the early stage of pyrolysis by the pyrolysis of carbon fine powder raw materials.
If the reaction temperature is below the melting point of the ash, the higher the (H+0)/C of the raw material in elemental analysis on an anhydrous/ashless basis, the higher the rate at which compounds containing hydrogen atoms and oxygen atoms are released from the raw material. In other words, it converts it into char with a large specific surface area.6 Therefore, a less reactive raw material is supplied to the lower burner, which distributes a large amount of oxidizing agent and raises the atmospheric temperature above the melting point of the ash. CO2 and Hz
O is generated, and CO2 and H2 are produced in the lower burner.
High gasification efficiency can be achieved by distributing only a small amount of oxidizing agent to the upper burner and supplying raw materials with excellent reactivity to cause the reaction between carbon dioxide and char. The same can be said for carbon fine powder raw materials with different caking properties. The raw material with high caking property, that is, the raw material with a high button index, is supplied to the lower burner which distributes a large amount of oxidizing agent, and the raw material is burned as much as possible so that the raw material sticks to the furnace wall. At the same time, CO₂ and H20 are produced, and these CO₂ and 820 are prevented from being activated by active carbon in the upper burner to which raw materials with low caking properties are supplied. At this time, since the raw material with low caking property is supplied to the upper stage burner, even if the amount of oxidizing agent distributed is reduced, the raw material does not adhere to the furnace wall and a high carbon gasification rate can be obtained. However, when starting or stopping the carbon powder raw material gasifier when the furnace wall temperature is low, it is possible to prevent the raw material from adhering to the furnace wall by supplying the raw material with low caking property to the lower stage burner as well.

【実施例】【Example】

以下、本発明の実施例を図面に基づいて説明する. 実施倒1 第1図は、本発明のガス化装置の一実施例を示す概略的
楕或図である。一般にガス化炉は装置をコンパクトにす
るため、加圧装置となっており、炭素微粉原料を用いる
場合は、上段バーナ61および下段バーナ62それぞれ
について、常圧ホッバ10および二基の加圧ホッパ20
および30を介してフィーダ40により定量供給され、
ホッパ40の下流にあるエジエクタ50において、搬送
ガスライン51から導入される窒素ガス等の搬送ガスに
より、バーナに炭素微粉原料が供給される.すなわち、
本発明では上段バーナ61と下段バーナ62にはそれぞ
れ別の供給系を設置している.また、上段バーナ用の加
圧ホッパ30’からは、バルブ34を設けたライン36
を経て下段バーナ用のフィーダ40にも上段バーナ用の
原料を供給できるようになっている.ガス化装置60の
上段バーナ61および下段バーナ62には、それぞれ酸
素、空気等の酸化剤が供給ライン63および64を介し
て送られる。炭素微粉原料はガス化室65でガス化され
、生成ガスはガス化装置60上端のライン6つより排出
される.下段バーナ62に対する酸化剤の供給量を上段
バーナ61よりも多く配分することによって、ガス化室
65の下部の温度はスラグが溶融する温度に高められる
.なお、生或スラグはガス化装置60の底部において冷
却水66で冷却され、ホッパ68を経て排出される. 本発明の運転方法の一例を第2図に示す。上段バーナ6
1には無水・無灰ベースの元素分析で(H+○)/Cの
割合の高い原料を、下段バーナ62には上記分析値の低
い石炭を供給するものである。 炉内に機能の異なるバーナを二段設置して、ガス化反応
を行わせるガス化装置60では、下段バーナ62におけ
る酸化剤の配分を上段バーナ61より多くして、原料の
灰分が溶融する温度まで高め、上段バーナ61では酸化
剤を少なく配分して炭素微粉原料を活性に富むチャーに
変換し、下段バーナ62で生成したCO2およびH20
と反応させて、COおよびH2にするガス化反応を行わ
そうとするものである.したがって、下段バーナ62の
機能は高温の雰囲気を形成することであり、酸化剤を多
く配分するので原料の反応性の良否はほとんど関係ない
.一方、上段バーナ61の機能は活性なチャーを生威し
、ガス化反応を行わせることであるので、できるだけ反
応の優れたチャーを生成するほうがガス化効率を高くす
ることができる.活性に富むチャーとは、比表面積の大
きいチャーのことであり、熱分解によって、特にHおよ
び0の元素を持つ化合物が放出されるので、無水・無灰
ベースの元素分析で(H+O),/Cの高い原料を上段
バーナ61に供給するものである.したがって、酸化剤
を多く配分し、雰囲気温度を灰の溶融点以上に高める下
段バーナ62には反応性の劣る原料を供給し、酸化剤を
少量しか配分せずに活性なチャーを生成させる上段バー
ナ61には反応性の優れた原料を供給することによって
、高いガス化効率が得られるのである。 第1表に、本発明なるガス化法の試験結果を、第2表に
使用した原料の性状を示す.なお、第1表で、原料を加
算した、例えば、A十BあるいはC+Dは、それぞれの
性状の異なる原料を1:1の割合で混合した調整原料で
ある.(以下余白〉第1表 原料供給量:20kg/h 酸素/原料比:上段バーナ0.4kg/kg下段バーナ
1.2kg/kg 第2表 *:無水、無灰ベース 第1表の試験No.1−1および1−2より明らかなよ
うに、(H十o)/Cの高い原料と低い原料とを混合し
た場合に比較して、(H+O)/Cの高い原料を上段バ
ーナ61に供給することによって、ガス化効率は4%向
上していることが分かる,さらに、試験NO.2−1お
よび2−2より粘結性の高い、すなわちボタン指数が高
い原料と低い原料とを混合した原料では、対向する上段
バーナ61の炉壁に原料が付着、溶融しバーナ出口が閉
塞してガス化できなかったが、ボタン指数が高い原料を
酸化剤を多く配分する下段バーナ62に供給することに
よって、ガス化試験ができ、高い力一ボンガス化率が得
られた. 実施例2 第3図には粘結性の違う炭素微粉原料のガス化装置の運
転方法を示す。実施例1で示す石炭液化残渣のごとき原
料(第2表の原料D)は第6図に示すように、炉内温度
が低いとき、バーナから噴肘した原料が炉壁に付着し大
きなカーボンの塊を形成する.したがって、炉内温度が
低くなるガス化装置の起動時および停止前に、下段バー
ナより粘結性の低い原料を供給するものである.すなわ
ち、起動時および停止前に第1図に示す加圧ホッパ30
出口のバルブ31を閉め、バルブ34を開けて粘結性の
低い原料を下段バーナ62に供給するものである.第1
図では上段バーナ61に原料を供給する加圧ホッパ30
’より下段バーナ62用のフィーダ40にライン36と
バルブ34を設置したものであるが、第4図に示すよう
に、下段バーナ62に供給するホッパ群を二系列設けて
も同様の効果が得られる.
Embodiments of the present invention will be described below based on the drawings. Embodiment 1 FIG. 1 is a schematic oval diagram showing an embodiment of the gasification apparatus of the present invention. Generally, the gasifier is a pressurized device in order to make the device compact, and when using carbon powder raw material, an ordinary pressure hopper 10 and two pressurized hoppers 20 are installed for each of the upper stage burner 61 and lower stage burner 62.
and 30 are fed in a fixed quantity by a feeder 40,
In the ejector 50 located downstream of the hopper 40, carbon fine powder raw material is supplied to the burner by a carrier gas such as nitrogen gas introduced from a carrier gas line 51. That is,
In the present invention, separate supply systems are installed for the upper burner 61 and the lower burner 62, respectively. In addition, a line 36 with a valve 34 is connected from the pressure hopper 30' for the upper burner.
The raw material for the upper burner can also be supplied to the feeder 40 for the lower burner through the feeder 40 for the lower burner. Oxidizing agents such as oxygen and air are sent to the upper burner 61 and lower burner 62 of the gasifier 60 via supply lines 63 and 64, respectively. The carbon powder raw material is gasified in the gasification chamber 65, and the generated gas is discharged from six lines at the upper end of the gasifier 60. By distributing a larger amount of oxidizing agent to the lower burner 62 than to the upper burner 61, the temperature in the lower part of the gasification chamber 65 is raised to a temperature at which the slag melts. The raw slag is cooled by cooling water 66 at the bottom of the gasifier 60 and is discharged through a hopper 68. An example of the operating method of the present invention is shown in FIG. Upper burner 6
1 is supplied with a raw material having a high ratio of (H+○)/C in elemental analysis on an anhydrous and ashless basis, and coal with a low analysis value is supplied to the lower burner 62. In a gasifier 60 in which two stages of burners with different functions are installed in a furnace to perform a gasification reaction, the distribution of oxidizing agent in the lower stage burner 62 is larger than that in the upper stage burner 61, so that the temperature at which the ash content of the raw material melts is increased. The upper stage burner 61 distributes a small amount of oxidizing agent to convert the carbon fine powder raw material into highly active char, and the lower stage burner 62 generates CO2 and H20.
The aim is to perform a gasification reaction that converts CO and H2 into CO and H2. Therefore, the function of the lower burner 62 is to form a high-temperature atmosphere, and since it distributes a large amount of oxidizing agent, the reactivity of the raw materials is almost irrelevant. On the other hand, since the function of the upper burner 61 is to generate active char and cause a gasification reaction to occur, gasification efficiency can be increased by generating char with as good a reaction as possible. A highly active char is a char with a large specific surface area, and as a result of thermal decomposition, compounds containing especially H and 0 elements are released. This feeds raw material with high C content to the upper burner 61. Therefore, a less reactive raw material is supplied to the lower burner 62, which distributes a large amount of the oxidizing agent and raises the ambient temperature above the melting point of the ash, while the upper burner distributes only a small amount of the oxidizing agent and generates active char. By supplying raw materials with excellent reactivity to 61, high gasification efficiency can be obtained. Table 1 shows the test results of the gasification method of the present invention, and Table 2 shows the properties of the raw materials used. In Table 1, the addition of raw materials, for example, A+B or C+D, is an adjusted raw material in which raw materials with different properties are mixed at a ratio of 1:1. (Left below) Table 1 Raw material supply rate: 20 kg/h Oxygen/raw material ratio: Upper burner 0.4 kg/kg Lower burner 1.2 kg/kg Table 2 *: Anhydrous, ashless base Table 1 Test No. As is clear from 1-1 and 1-2, a raw material with a high (H+O)/C is supplied to the upper burner 61 compared to the case where a raw material with a high (H0o)/C and a raw material with a low value are mixed. It can be seen that the gasification efficiency was improved by 4% by doing this.Furthermore, compared to Test No. 2-1 and 2-2, raw materials with higher caking properties, that is, raw materials with a high Button index and raw materials with a low Button index were mixed. Regarding the raw material, the raw material adhered to the furnace wall of the opposing upper stage burner 61, melted, and the burner outlet was blocked, so that gasification could not be achieved. However, the raw material with a high button index was supplied to the lower stage burner 62, which distributes a large amount of oxidizing agent. A gasification test was conducted and a high rate of gasification was obtained.Example 2 Figure 3 shows a method of operating a gasification device for carbon powder raw materials with different caking properties.As shown in Example 1. As shown in Figure 6, when the furnace temperature is low, raw materials such as coal liquefaction residue (raw material D in Table 2) are ejected from the burner and adhere to the furnace wall, forming large carbon lumps. Therefore, when starting and before stopping the gasifier, when the temperature inside the furnace is low, a material with lower caking property is supplied from the lower burner.In other words, when starting and before stopping the gasifier, pressurize as shown in Figure 1. Hopper 30
The outlet valve 31 is closed and the valve 34 is opened to supply the low caking raw material to the lower burner 62. 1st
In the figure, a pressurized hopper 30 that supplies raw materials to an upper burner 61
Although the line 36 and the valve 34 are installed in the feeder 40 for the lower burner 62, as shown in FIG. It will be done.

【発明の効果】【Effect of the invention】

本発明によれば、性状の異なる炭素微粉原料を、その性
状に合わせ効率よく、かつカーボンフラワ等の生成もな
くガス化できる。とくに反応性の低い炭素微粉原料であ
ってもそれらをそれぞれ反応性の高い炭素微粉原料とそ
れぞれの原料に対する酸化剤の供給量をうまく組み合わ
せることにより、効率良くガス化することができ、石炭
液化残渣あるいは石油コークスなどのガス化にも適用で
きる,
According to the present invention, fine carbon powder raw materials having different properties can be efficiently gasified according to their properties and without producing carbon flour or the like. In particular, even carbon powder raw materials with low reactivity can be efficiently gasified by combining highly reactive carbon powder raw materials and the amount of oxidizing agent supplied to each raw material. It can also be applied to the gasification of petroleum coke, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

Claims (7)

【特許請求の範囲】[Claims] (1)炭素微粉原料のガス化反応領域に酸素、空気等の
酸化剤と共に、炭素微粉原料を噴出するバーナを二段以
上備えたガス化装置において、各段毎のバーナに性状の
異なる炭素微粉原料を供給する供給ライン系統を設けた
ことを特徴とする微粉原料ガス化装置。
(1) In a gasifier equipped with two or more stages of burners that eject fine carbon powder raw materials together with oxidizing agents such as oxygen and air into the gasification reaction region of carbon fine powder raw materials, each burner has carbon fine powder with different properties. A fine powder raw material gasification device characterized by being provided with a supply line system for supplying raw materials.
(2)各段のバーナに酸化剤供給量調節弁を設けたこと
を特徴とする請求項1記載の微粉原料ガス化装置。
(2) The fine powder raw material gasification apparatus according to claim 1, characterized in that an oxidizing agent supply amount regulating valve is provided in each stage of the burner.
(3)各段のバーナへの炭素微粉原料供給ライン系統は
相互に供給原料を、交換しうる供給ラインを付設したこ
とを特徴とする請求項1または2記載の微粉原料ガス化
装置。
(3) The fine powder raw material gasification apparatus according to claim 1 or 2, characterized in that the carbon fine powder raw material supply line system to the burners in each stage is provided with a supply line that allows the feed raw materials to be exchanged with each other.
(4)少なくとも最下段のバーナには反応性の劣る原料
を酸化剤と共に供給し、少なくとも最上段のバーナには
反応性の良好な原料を供給することを特徴とする請求項
1〜3記載の微粉原料ガス化装置の運転方法。
(4) A raw material with poor reactivity is supplied together with an oxidizing agent to at least the burner in the lowest stage, and a raw material with good reactivity is supplied to at least the burner in the highest stage. How to operate a fine powder raw material gasifier.
(5)反応性の劣る原料は無水・無灰ベースの元素分析
で(水素+酸素)/炭素の値が低い原料であり、反応性
の良好な原料は無水・無灰ベースの元素分析で(水素+
酸素)/炭素の値が高い原料であることを特徴とする請
求項4記載の微粉原料ガス化装置の運転方法。
(5) Raw materials with poor reactivity are raw materials with a low value of (hydrogen + oxygen)/carbon in elemental analysis on an anhydrous and ashless basis, and raw materials with good reactivity are raw materials with a low value of (hydrogen + oxygen) / carbon in elemental analysis on an anhydrous and ashless basis. Hydrogen +
5. The method of operating a fine powder raw material gasification apparatus according to claim 4, wherein the raw material has a high value of oxygen)/carbon.
(6)反応性の劣る原料は粘結性の高い原料であり、反
応性の良好な原料は粘結性の低い原料であることを特徴
とする請求項4記載の微粉原料ガス化装置の運転方法。
(6) Operation of the fine powder raw material gasification apparatus according to claim 4, wherein the raw material with poor reactivity is a raw material with high caking property, and the raw material with good reactivity is a raw material with low caking property. Method.
(7)定常運転時には粘結性の高い原料を供給する、少
なくとも最下段のバーナに、微粉原料ガス化装置の起動
時および停止時にのみ粘結性の高い原料に代えて粘結性
の低い原料を供給することを特徴とする請求項6記載の
ガス化装置の運転方法。
(7) During steady operation, a highly caking raw material is supplied to at least the lowest burner, and a low caking raw material is supplied in place of the highly caking raw material only when starting and stopping the fine powder raw material gasifier. 7. The method of operating a gasifier according to claim 6, wherein:
JP1155828A 1989-06-20 1989-06-20 Fine powder raw material gasifier and its operating method Expired - Lifetime JPH086098B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1155828A JPH086098B2 (en) 1989-06-20 1989-06-20 Fine powder raw material gasifier and its operating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1155828A JPH086098B2 (en) 1989-06-20 1989-06-20 Fine powder raw material gasifier and its operating method

Publications (2)

Publication Number Publication Date
JPH0321696A true JPH0321696A (en) 1991-01-30
JPH086098B2 JPH086098B2 (en) 1996-01-24

Family

ID=15614385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1155828A Expired - Lifetime JPH086098B2 (en) 1989-06-20 1989-06-20 Fine powder raw material gasifier and its operating method

Country Status (1)

Country Link
JP (1) JPH086098B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104910965A (en) * 2015-05-07 2015-09-16 北京中科诚毅科技发展有限公司 Novel utilization method for oil coal tar and design method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61246287A (en) * 1985-04-24 1986-11-01 Mitsubishi Heavy Ind Ltd Spouted bed coal gasification oven
JPS61266491A (en) * 1985-05-21 1986-11-26 Mitsubishi Heavy Ind Ltd Method of gasifying coal
JPS6422998A (en) * 1987-07-17 1989-01-25 Hitachi Ltd Apparatus for feeding formed char for gasification plant
JPH02202993A (en) * 1989-02-02 1990-08-13 Mitsubishi Heavy Ind Ltd Method for operating coal gasifier

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61246287A (en) * 1985-04-24 1986-11-01 Mitsubishi Heavy Ind Ltd Spouted bed coal gasification oven
JPS61266491A (en) * 1985-05-21 1986-11-26 Mitsubishi Heavy Ind Ltd Method of gasifying coal
JPS6422998A (en) * 1987-07-17 1989-01-25 Hitachi Ltd Apparatus for feeding formed char for gasification plant
JPH02202993A (en) * 1989-02-02 1990-08-13 Mitsubishi Heavy Ind Ltd Method for operating coal gasifier

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104910965A (en) * 2015-05-07 2015-09-16 北京中科诚毅科技发展有限公司 Novel utilization method for oil coal tar and design method thereof
CN104910965B (en) * 2015-05-07 2017-12-15 北京中科诚毅科技发展有限公司 The new Application way and design method of a kind of oily coal tar

Also Published As

Publication number Publication date
JPH086098B2 (en) 1996-01-24

Similar Documents

Publication Publication Date Title
AU2008364497B2 (en) High-temperature gasification process using biomass to produce synthetic gas and system therefor
CA2755353C (en) Two stage dry feed gasification system and process
US4531949A (en) Entrained flow coal gasification process
JP2011522084A (en) Two-stage high-temperature preheating steam gasifier
CN109906264A (en) Method for converting carbonaceous material to producing low-tar synthesis gas body
PL135926B1 (en) Method of and apparatus for gasifying carbon containing materials
GB725635A (en) Improvements in or relating to process and apparatus for the production of fuel and synthesis gases
GB2169310A (en) Gas production
AU595247B2 (en) Process for producing gas containing CO and H2 and apparatus for performing the same
TW304982B (en)
WO2013014995A1 (en) Method for producing coal gas and method for producing methane
JPH0321696A (en) Gasifier for fine powdery raw material and method for operation thereof
CN1118009A (en) Method for production of sponge iron by using gas-making shaft furnace method of coal-base melting bed
CN100595143C (en) Technique for purifying calcium carbide furnace gas
NO844801L (en) PROCEDURE AND DEVICE FOR REDUCTION OF OXYDE MATERIAL AND GENERATION OF ENERGY GAS
JP2002155289A (en) Gas-flowing bed type method for gasifying coal
NO844802L (en) PROCEDURE AND DEVICE FOR REDUCTION OF OXYDE MATERIAL
JPS59172589A (en) Gasification of coal
KR101818509B1 (en) Apparatus for manufacturing molten iron and method for manufacturing syngas using the same
CN106590759A (en) Method and system for coal hydrogasification coupling calcium carbide smelting
CN105623763A (en) Gas-carbon supplementing method for producing natural gas by combining coke oven gas and gasifier gas
JPS61266491A (en) Method of gasifying coal
CN117757527A (en) Integrated gasification furnace for solid-liquid segmented deslagging and production method of green chemical product
JPH03287695A (en) Method for decomposing and gasifying coal
CN111334336A (en) Reduction furnace system