JPH03213555A - Ultrafine filament nonwoven cloth and its production - Google Patents

Ultrafine filament nonwoven cloth and its production

Info

Publication number
JPH03213555A
JPH03213555A JP2009256A JP925690A JPH03213555A JP H03213555 A JPH03213555 A JP H03213555A JP 2009256 A JP2009256 A JP 2009256A JP 925690 A JP925690 A JP 925690A JP H03213555 A JPH03213555 A JP H03213555A
Authority
JP
Japan
Prior art keywords
polymer component
component
fibers
polymer
filament
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009256A
Other languages
Japanese (ja)
Inventor
Fumio Matsuoka
文夫 松岡
Koichi Nagaoka
長岡 孝一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP2009256A priority Critical patent/JPH03213555A/en
Publication of JPH03213555A publication Critical patent/JPH03213555A/en
Pending legal-status Critical Current

Links

Landscapes

  • Nonwoven Fabrics (AREA)

Abstract

PURPOSE:To obtain the subject nonwoven cloth having refined surface form and dense structure by mixing a specific splittable bicomponent conjugate hollow filament composed of two kinds of mutually incompatible polymer components and filaments produced by splitting the above hollow filament. CONSTITUTION:The objective nonwoven cloth is produced by preparing a web of splittable bicomponent conjugate hollow filament [the hollowness expressed by (L-2l)/LX100 is preferably 2-65% from the viewpoints of splittability and openability]composed of a polymer A and polymer B having a melting point higher than that of the polymer A by 30-150 deg.C and incompatible with the polymer A and treating the web e.g. with a roll group having high linear pressure. The nonwoven cloth has a splitting ratio of >=30% and contains fibers partially welded to each other with the polymer A. The single fiber fineness of the split filament composed exclusively of the polymer B is <=0.8 denier. The ultrafine filament nonwoven cloth produced by the above process is suitable as a material for bag or envelope.

Description

【発明の詳細な説明】 (産業−1−の利用分野) 本発明は、極細長繊維からなる不織布に関り。[Detailed description of the invention] (Application field of industry-1-) The present invention relates to a nonwoven fabric made of ultrafine long fibers.

さらに詳しくは、繊細な表面形態と緻密な構造を有する
極細長繊維からなる不織布に関するものである。
More specifically, the present invention relates to a nonwoven fabric made of ultrathin long fibers having a delicate surface morphology and a dense structure.

(従来の技術) 従来から、不織布は、衣料用、産業資材用、土木建築資
材用、農芸園芸資材用、生活関連資材用あるいは医療衛
生材用等9種々の用途に使用されている。中でも、長繊
維からなる不織布は、短繊維からなる不織布に対し1強
力が高く、シかも生産性に優れるため、広く使用されて
いる。この長繊維からなる不織布において1表面が繊細
で、かつ緻密な構造を有する不織布を得る試みが数多く
なされてきた。例えば、特公昭44−24699号公報
(Prior Art) Nonwoven fabrics have conventionally been used in nine different applications, including clothing, industrial materials, civil engineering and construction materials, agricultural and horticultural materials, life-related materials, and medical and sanitary materials. Among these, nonwoven fabrics made of long fibers are widely used because they have higher tenacity and superior productivity than nonwoven fabrics made of short fibers. Many attempts have been made to obtain a nonwoven fabric made of long fibers that has a delicate and dense structure on one surface. For example, Japanese Patent Publication No. 44-24699.

特公昭52.−30629号公報及び特公昭62113
16号公報には、シートに化学薬品処理を施して繊維を
構成する重合体の一部を溶解させること、あるいは溶解
除去することにより細繊度の繊維から構成される不織布
を得ることが開示されている。また。
Tokuko Showa 52. -30629 Publication and Special Publication No. 62113
Publication No. 16 discloses that a nonwoven fabric composed of fine fibers can be obtained by subjecting a sheet to chemical treatment to dissolve or remove a portion of the polymer constituting the fibers. There is. Also.

特公平117585号公報及び特公平1−47586号
公報には、シートを高圧水流により処理し繊維を割繊し
て極細繊維とするとともに繊維に3次元的交絡を施した
不織布が開示されている。特公平147579号公報に
は、不織布を水洗処理して水溶性成分を除去することに
より極細繊維からなる不織布を得ることが開示されてい
る。しかしながら、これらの不織布あるいは不織布の製
造法には1割繊斑が生じるため品質の劣る不織布しか得
られないという問題が、また、生産工程が複雑であり、
しかも重合体を除去する必要があるため製造コストが高
くなるという問題がある。さらに、特公昭531016
9号公報には、シートをパフ掛けして繊維を割繊するこ
とにより極細繊維からなる不織布を得ることが開示され
ているが、この製造法には、構成繊維が部分的に損傷を
受けるという問題がある。
Japanese Patent Publication No. 117585 and Japanese Patent Publication No. 1-47586 disclose a nonwoven fabric in which a sheet is treated with a high-pressure water stream to split the fibers into ultrafine fibers and the fibers are three-dimensionally entangled. Japanese Patent Publication No. 147579 discloses that a nonwoven fabric made of ultrafine fibers can be obtained by washing the nonwoven fabric with water to remove water-soluble components. However, these nonwoven fabrics or nonwoven fabric manufacturing methods have the problem that 10% fiber unevenness occurs, resulting in only inferior quality nonwoven fabrics, and the production process is complicated.
Moreover, since it is necessary to remove the polymer, there is a problem in that the manufacturing cost increases. In addition, special public service No. 531016
Publication No. 9 discloses that a nonwoven fabric made of ultrafine fibers is obtained by puffing a sheet and splitting the fibers, but this manufacturing method has the disadvantage that the constituent fibers are partially damaged. There's a problem.

(発明が解決しようとする課題) 本発明は、前記問題を解決し、繊細な表面形態と緻密な
構造を有する極細長繊維からなる不織布及びその製造方
法を提供しようとするものである。
(Problems to be Solved by the Invention) The present invention aims to solve the above-mentioned problems and provide a nonwoven fabric made of ultrathin long fibers having a delicate surface morphology and a dense structure, and a method for producing the same.

(課題を解決するための手段) 本発明者らは、前記問題を解決すべく鋭意検討の結果1
本発明に到達した。すなわち9本発明は。
(Means for Solving the Problems) As a result of intensive studies to solve the above problems, the inventors have found
We have arrived at the present invention. In other words, the present invention is as follows.

1、重合体成分Aと、前記重合体成分Aに対し非相溶性
の重合体成分Bからなる2個以上の放射楔形状横断面を
有するセグメントとから構成される分割型2成分複合中
空長繊維と、前記分割型2成分複合中空長繊維の分割に
より発現した前記重合体成分Bのみから構成される単糸
繊度が0,8デニール以下の割繊長繊維とから構成され
る不織布であって、前記重合体成分Bの融点が重合体成
分への融点より30〜150℃高く1重合体成分Bのみ
からなる割繊長繊維の割繊割合が少なくとも30%であ
り。
1. A split type two-component composite hollow long fiber composed of a polymer component A and a segment having two or more radial wedge-shaped cross sections made of a polymer component B that is incompatible with the polymer component A. and a split filament long fiber having a single filament fineness of 0.8 denier or less and composed only of the polymer component B developed by splitting the splittable two-component composite hollow long fiber, The melting point of the polymer component B is 30 to 150° C. higher than the melting point of the polymer component, and the splitting ratio of splittable long fibers consisting of only one polymer component B is at least 30%.

かつ繊維間が重合体成分Aにより少なくとも部分的に接
着されていることを特徴とする極細長繊維=5 不織布。
A nonwoven fabric having ultrafine long fibers=5, characterized in that the fibers are at least partially bonded by polymer component A.

2、重合体成分Aと、前記重合体成分Aに対し非相溶性
かつ前記重合体成分Aの融点より30〜150℃高い融
点を有する重合体成分Bからなる2個以上の放射楔形状
横断面を有するセグメントとから構成される分割型2成
分複合中空長繊維を溶融複合紡出し、紡出された前記分
割型2成分複合中空長繊維をエアーサッカからなる引取
り手段により引取り,ウエブコンベア等の捕集面上に堆
積させてウェブとし,ウエブを2個以上のロールからな
る高線圧力のロール群で処理することによって前記高融
点の重合体成分Bからなる繊維を前記複合中空長繊維か
ら少なくとも一部剥離させて割繊長繊維とし、前記低融
点の重合体成分Aからなる繊維により繊維間を少なくと
も部分的に接着することを特徴とする極細長繊維不織布
の製造方法、を要旨とするものである。
2. Two or more radial wedge-shaped cross sections consisting of a polymer component A and a polymer component B that is incompatible with the polymer component A and has a melting point 30 to 150° C. higher than the melting point of the polymer component A. A split-type two-component composite hollow continuous fiber composed of segments having a segment is melt-spun, and the spun split-type two-component composite hollow continuous fiber is taken up by a taking-up means consisting of an air sucker, a web conveyor, etc. The fibers made of the polymer component B having a high melting point are separated from the composite hollow long fibers by depositing the fibers on the collection surface of the composite hollow fibers and treating the web with a roll group of two or more rolls with high linear pressure. The gist of the present invention is a method for producing an ultra-thin long fiber nonwoven fabric, characterized in that the fibers are at least partially exfoliated to produce split long fibers, and the fibers are at least partially adhered by fibers made of the low melting point polymer component A. It is something.

次に1本発明の詳細な説明する。Next, one aspect of the present invention will be explained in detail.

本発明の極細長繊維不織布は9重合体成分Aと。The ultrafine long fiber nonwoven fabric of the present invention is made of nine polymer component A.

前記重合体成分へに対し非相溶性の重合体成分B−6= からなる2個以−にの放射楔形状横断面を有するセグメ
ントとから構成される分割型2成分複合中空長繊維と、
前記分割型2成分複合中空長繊維の分割により発現した
前記重合体成分Bのみから構成される割繊長繊維とから
構成されるものである。
A split two-component composite hollow long fiber composed of two or more segments having a radial wedge-shaped cross section consisting of a polymer component B-6= which is incompatible with the polymer component;
It is composed of split long fibers made only of the polymer component B developed by splitting the splittable two-component composite hollow long fibers.

本発明における非相溶性の重合体成分A及びBとは、い
ずれも繊維形成能を有し2通常の溶融紡糸装置を使用し
て溶融紡出することができるものである。重合体成分A
及びBの組合せとしては。
In the present invention, the incompatible polymer components A and B both have fiber-forming ability and can be melt-spun using a conventional melt-spinning apparatus. Polymer component A
As for the combination of and B.

例えば、ポリエステル系とポリアミド系、ポリエステル
系とポリオレフィン系、ポリアミド系とポリオレフィン
系等が挙げられ、ポリエステル系重合体としては、ポリ
エチレンテレフタレート、ポリブチレンテレフタレート
あるいはそれらを主成分とする共重合ポリエステル等の
ポリエステルが。
Examples include polyester-based and polyamide-based, polyester-based and polyolefin-based, polyamide-based and polyolefin-based, etc. Polyester-based polymers include polyesters such as polyethylene terephthalate, polybutylene terephthalate, or copolyesters containing these as main components. but.

ポリアミド系としては、ナイロン6、ナイロン46゜ナ
イロン66、ナイロン610あるいはそれらを主成分と
する共重合ナイロン等のポリアミドが、ポリオレフィン
系としては、ポリプロピレン、高密度ポリエチレン、線
状低密度ポリエチレン、エチレン/プロピレン共重合体
等のポリオレフィンが挙げられる。また2重合体A及び
Bには、各々9通常の艶消剤、熱安定剤、顔料あるいは
重合体の結晶化促進剤等の添加剤が添加されていてもよ
い。
Examples of polyamides include nylon 6, nylon 46°, nylon 66, nylon 610, and copolymerized nylons containing these as main components; examples of polyolefins include polypropylene, high-density polyethylene, linear low-density polyethylene, and ethylene/ Examples include polyolefins such as propylene copolymers. Further, the bipolymers A and B may each contain nine conventional additives such as a matting agent, a heat stabilizer, a pigment, or a polymer crystallization accelerator.

本発明における重合体成分Bは9重合体底分Aの融点よ
り30〜150℃高い融点を有することが必要である。
It is necessary that the polymer component B in the present invention has a melting point 30 to 150° C. higher than the melting point of the 9-polymer base component A.

この融点差は、好ましくは30〜145℃。This melting point difference is preferably 30 to 145°C.

より好ましくは35〜140℃である。本発明でいう重
合体の融点とは、パーキンエルマ社製示差熱最計DSC
−2型を使用し、同装置のマニュアルに従い、試料量を
約5 mg+走査速度を20℃/分として測定して得ら
れるDSC曲線から求めたものである。重合体成分Bと
重合体成分Aとの融点差が30℃未満であると,ウエブ
を加熱ロールで熱接着するときに不織布が熱収縮して寸
法安定性が低下して不織布の風合いが悪くなったり、熱
接着時の接着温度域が狭くなり温度制御が困難となる等
の問題を生じるため、好ましくない。前記融点差が15
0℃を超えると、低融点の重合体成分への熱劣化が促進
するため、好ましくない。なお,ウエブを重合体成分A
の融点以上の表面温度の加熱ロールで熱接着すると、得
られる不織布はフィルム状あるいは表面の硬いものとな
るため、好ましくない。
More preferably it is 35-140°C. The melting point of the polymer as used in the present invention is determined by differential thermal measurement DSC manufactured by PerkinElmer
It was determined from a DSC curve obtained by measuring a sample amount of approximately 5 mg and a scanning speed of 20° C./min using Model-2 according to the manual of the device. If the melting point difference between polymer component B and polymer component A is less than 30°C, the nonwoven fabric will shrink due to heat when the web is thermally bonded with a heating roll, resulting in decreased dimensional stability and poor texture of the nonwoven fabric. This is not preferable because it also causes problems such as the bonding temperature range during thermal bonding becomes narrow and temperature control becomes difficult. The melting point difference is 15
If the temperature exceeds 0°C, thermal deterioration of the polymer component having a low melting point will be accelerated, which is not preferable. In addition, the web is made of polymer component A.
If the nonwoven fabric is thermally bonded with a heated roll having a surface temperature higher than the melting point of the nonwoven fabric, the resulting nonwoven fabric will be film-like or have a hard surface, which is not preferable.

本発明における分割型2成分複合中空長繊維は。The split type two-component composite hollow long fiber in the present invention is as follows.

前述したように9重合体底分Aと、前記重合体成分Aに
対し非相溶性の重合体成分Bからなる2個以上の放射楔
形状横断面を有するセグメントとから構成されるもので
ある。重合体成分Aが重合体成分Bを分割する数、すな
わち前記重合体成分Bからなる放射楔形状横断面を有す
るセグメントの数が1個であると、紡糸条件あるいは延
伸条件によっては複合中空長繊維に捲縮が生じ,ウエブ
化するときに繊維の開繊性が低下して均一なウェブを得
ることができない。このため、セグメントの数は2個以
上とする。セグメントの数が多いほど極細繊維を得るこ
とができて好ましいが、多過ぎると紡糸ノズル孔の製作
コストが高くなって不経済である。通常、2個以上30
個程度までとするのがよい。また、前記重合体成分Bか
らなるセグメントは、放射楔形状横断面を有することが
必要であり、この場合7重合体底分Bのみからなるセグ
メントが重合体成分Aと接触する接触周長が比較的短く
なるため、後工程で分割型2成分複合中空長繊維を割繊
するときに割繊性が向上する。
As described above, it is composed of a nine-polymer base A and two or more segments each having a radial wedge-shaped cross section and consisting of a polymer component B that is incompatible with the polymer component A. If the number of segments into which the polymer component A divides the polymer component B, that is, the number of segments having a radial wedge-shaped cross section made of the polymer component B, is one, depending on the spinning conditions or drawing conditions, a composite hollow continuous fiber may be formed. Crimp occurs in the fibers, and when the fibers are formed into a web, the spreadability of the fibers decreases, making it impossible to obtain a uniform web. Therefore, the number of segments should be two or more. The larger the number of segments, the more fine fibers can be obtained, which is preferable, but if the number is too large, the manufacturing cost of the spinning nozzle hole increases, which is uneconomical. Usually 2 or more 30
It is best to limit it to about 100 pieces. In addition, the segment made of the polymer component B needs to have a radial wedge-shaped cross section, and in this case, the contact circumference of the segment made only of the heptad polymer component B in contact with the polymer component A is comparatively As the target length becomes shorter, the splitting property is improved when splitting the splittable two-component composite hollow continuous fiber in the subsequent process.

第1図は9本発明における分割型2成分複合中空長繊維
の構造を説明するための横断面図、第2及び3図は1本
発明の極細長繊維不織布を得ることができる分割型2成
分複合中空長繊維の例を示す横断面図である。第1図に
おいて、Lは分割型2成分複合中空長繊維の繊維軸に垂
直な横断面における中空長繊維の直径、1は同横断面に
おける重合体成分Bと重合体成分Aとの接触長である。
FIG. 1 is a cross-sectional view for explaining the structure of the split-type two-component composite hollow continuous fiber according to the present invention, and FIGS. FIG. 2 is a cross-sectional view showing an example of composite hollow filaments. In Fig. 1, L is the diameter of the hollow long fiber in the cross section perpendicular to the fiber axis of the split type two-component composite hollow long fiber, and 1 is the contact length between polymer component B and polymer component A in the same cross section. be.

L及びβは、繊維断面を1000倍に拡大して撮影した
断面写真より実測して求めたものである。
L and β were determined by actual measurements from a cross-sectional photograph of the fiber cross-section magnified 1000 times.

本発明における分割型2成分複合中空長繊維は。The split type two-component composite hollow long fiber in the present invention is as follows.

中空率が2〜65%のものである。この中空率とは。The hollow ratio is 2 to 65%. What is this hollow rate?

第1図に示したし及びlから、下記0式により算出され
るものである。
It is calculated from the equation 0 shown in FIG. 1 and 1 below.

中空率(%)−[(L−2jり/L) X100・・・
・■この中空率が2%未満であると9重合体成分B0 と重合体成分Aとの接触長1が長くなり,ウエブあるい
は不織布を高線圧力の表面平滑なロール群で処理して重
合体成分Aと重合体成分Bとを剥離し割繊することが困
難となるので、好ましくない。
Hollowness ratio (%) - [(L-2jri/L) X100...
・■ If this hollowness ratio is less than 2%, the contact length 1 between the polymer component B0 and the polymer component A becomes long, and the web or nonwoven fabric is treated with a group of rolls with a smooth surface under high linear pressure to form a polymer. This is not preferred because it becomes difficult to separate component A and polymer component B and split the fibers.

前記中空率が65%を超えると9重合体成分Bと重合体
成分Aとの接触長lが短くなり9選択する重合体成分A
と重合体成分已によっては紡糸工程あるいは延伸工程で
前記重合体成分Aと重合体成分Bとが剥離してしまい、
紡糸工程あるいは延伸工程で断糸等の不都合が生じ,ウ
エブ化するときに繊維の開繊性が低下して均一なウェブ
を得ることができず、好ましくない。
When the hollowness ratio exceeds 65%, the contact length l between 9 polymer component B and polymer component A becomes short, and 9 selects polymer component A.
Depending on the polymer components, the polymer component A and the polymer component B may peel off during the spinning process or the stretching process.
Inconveniences such as yarn breakage occur during the spinning or drawing process, and when the fibers are formed into a web, the spreadability of the fibers decreases, making it impossible to obtain a uniform web, which is undesirable.

本発明の極細長繊維不織布は1重合体成分Bのみからな
る割繊長繊維の割繊割合が少なくとも30%のものであ
る。この割繊割合とは1分割型2成分複合中空長繊維と
、前記分割型2成分複合中空長繊維の分割により発現し
た前記重合体成分Bのみから構成される割繊長繊維とか
ら構成される不織布の任意の10個所を選び、不織布の
断面を100倍に拡大して断面写真を撮影し9次いで、
10枚の1 断面写真中、複合中空長繊維から剥離している重合体成
分Bのセグメント総数と存在する重合体成分Bのセグメ
ント総数とを求め、存在する重合体成分Bのセグメント
総数に対する剥離している重合体成分Bのセグメント総
数の比(%)を表すものである。本発明の極細長繊維不
織布は、繊細な表面と緻密な構造を有するものであるこ
とから。
The ultrafine long fiber nonwoven fabric of the present invention has a splitting ratio of splittable long fibers consisting of only one polymer component B of at least 30%. This splitting ratio is composed of one split type two-component composite hollow long fibers and split long fibers composed only of the polymer component B developed by splitting the split two-component composite hollow long fibers. Select 10 arbitrary locations on the nonwoven fabric, enlarge the cross section of the nonwoven fabric 100 times, take a cross-sectional photograph, and then
In 1 of 10 cross-sectional photographs, calculate the total number of segments of polymer component B that have peeled off from the composite hollow continuous fibers and the total number of segments of polymer component B that are present, and calculate the number of peeled segments of polymer component B that are present relative to the total number of segments of polymer component B that are present. It represents the ratio (%) of the total number of segments of polymer component B. This is because the ultrafine long fiber nonwoven fabric of the present invention has a delicate surface and a dense structure.

前記割繊割合が少なくとも30%であることが必要であ
る。この割繊割合が30%未満であると、繊細な表面を
有する不織布を得ることができない。
It is necessary that the splitting ratio is at least 30%. If the splitting ratio is less than 30%, a nonwoven fabric with a delicate surface cannot be obtained.

本発明における分割型2成分複合中空長繊維の分割によ
り発現した重合体成分Bのみから構成される割繊長繊維
は、単糸繊度が0.8デニール以下。
In the present invention, the split filament consisting only of the polymer component B developed by splitting the splittable two-component composite hollow filament has a single fiber fineness of 0.8 denier or less.

好ましくは0.5デニール以下、より好ましくは0.3
デニール以下のものである。割繊割合が30%以上であ
っても9重合体成分Bからなる前記割繊長繊維の単糸繊
度が0.8デニールを超えると、繊細な表面と緻密な構
造を有する不織布を得ることが困難となり、この単糸繊
度が小さいほど、繊細な表面と緻密な構造を有する不織
布を得ることができる。
Preferably 0.5 denier or less, more preferably 0.3
It is of denier or less. Even if the splitting ratio is 30% or more, if the single fiber fineness of the splitting long fibers made of 9 polymer component B exceeds 0.8 denier, it is difficult to obtain a nonwoven fabric with a delicate surface and a dense structure. The smaller the single filament fineness, the more difficult it is to obtain a nonwoven fabric with a delicate surface and dense structure.

2 本発明の極細長繊維不織布は、繊維間が重合体成分Aに
より少なくとも部分的に接着されているものであり、繊
維間が少なくとも部分的に接着されているため、実用上
、十分な強力を有する。
2. The ultrafine long fiber nonwoven fabric of the present invention has fibers at least partially bonded by the polymer component A, and since the fibers are at least partially bonded, it has sufficient strength for practical use. have

本発明の極細長繊維不織布の製造方法は、まず。First, the method for producing the ultrafine long fiber nonwoven fabric of the present invention is as follows.

前記重合体成分Aと、前記重合体成分Aに対し非相溶性
かつ前記重合体成分Aの融点より30〜150℃高い融
点を有する重合体成分Bからなる2個以上の放射楔形状
横断面を有するセグメントとから構成される分割型2成
分複合中空長繊維を1通常の溶融複合紡糸装置を使用し
て溶融複合紡出する。
Two or more radial wedge-shaped cross sections consisting of the polymer component A and a polymer component B that is incompatible with the polymer component A and has a melting point 30 to 150 ° C higher than the melting point of the polymer component A. A split-type two-component composite hollow continuous fiber composed of segments having the following components is melt-composite-spun using a conventional melt-composite spinning device.

紡糸口金装置としては1例えば、溶融した重合体成分A
の導入孔の外周部から溶融した重合体成分Bが2個以上
誘導され6重合体成分Aとともに中空ノズル孔から吐出
される構造の複合紡糸口金装置を使用するとよい。
As a spinneret device, for example, a molten polymer component A
It is preferable to use a composite spinneret device having a structure in which two or more molten polymer components B are guided from the outer periphery of the introduction hole and are discharged from the hollow nozzle hole together with the hexapolymer component A.

次に、紡出された分割型2成分複合中空長m維をエアー
サッカ等の引取り手段により引取り,ウエブコンベア等
の捕集面上に堆積させてウェブとし、ウニウェブを高線
圧力の加熱された表面平滑3 なロール群で処理することによって高融点の重合体成分
Bからなるセグメントを複合中空長繊維から剥離させて
割繊長繊維とし、それと同時に、低融点の重合体成分A
からなる繊維により繊維間を少なくとも部分的に接着す
る。また,ウエブを高線圧力の非加熱の表面平滑なロー
ル群で処理し。
Next, the spun split type two-component composite hollow long fibers are taken up by a taking means such as an air sucker, deposited on a collection surface such as a web conveyor to form a web, and the sea urchin web is heated under high linear pressure. By processing with a group of rolls having a smooth surface, the segments consisting of the polymer component B with a high melting point are peeled off from the composite hollow filaments to form split filaments, and at the same time, the segments made of the polymer component A with a low melting point are peeled off from the composite hollow filaments.
The fibers are at least partially bonded by the fibers. In addition, the web is processed using a group of unheated rolls with smooth surfaces and high linear pressure.

−旦、高融点の重合体成分Bからなるセグメントを複合
中空長繊維から剥離させて割繊長繊維とし。
- First, the segment consisting of the polymer component B having a high melting point is peeled off from the composite hollow filament to obtain a split filament.

次いで、加熱ロールで低融点の重合体成分へからなる繊
維により繊維間を少なくとも部分的に接着してもよい。
Next, the fibers may be at least partially bonded using a heating roll using fibers made of a low melting point polymer component.

表面平滑な加熱ロールに代わり、加熱されたエンボスロ
ールを使用することもできる。
A heated embossing roll can also be used instead of a heated roll with a smooth surface.

ウェブを加熱されたエンボスロールを使用し、低融点の
重合体成分Aからなる繊維により繊維間を少なくとも部
分的に接着して不織布を得1次いで。
Using a heated embossing roll, the fibers of the web are at least partially adhered by fibers made of the polymer component A having a low melting point to obtain a nonwoven fabric.

不織布を高線圧力の表面平滑なロール群で処理すること
によって高融点の重合体成分Bからなるセグメントを複
合中空長繊維から剥離させて割繊長繊維としてもよい。
By treating the nonwoven fabric with a group of rolls with a smooth surface under high linear pressure, the segments made of the polymer component B having a high melting point may be separated from the composite hollow filaments to produce split filaments.

なお、得られた不織布に、不織布の柔軟性を向上させる
ための柔軟加工を施し4 てもよい。
Note that the obtained nonwoven fabric may be subjected to a softening process to improve the flexibility of the nonwoven fabric.

ウェブ化には、溶融紡出された繊維束を冷却し。To form a web, the melt-spun fiber bundle is cooled.

延伸して得られる延伸複合中空長繊維あるいは高速紡糸
法により得られる高配向未延伸複合中空長繊維を使用す
ることができる。紡糸からウェブ化までを連続工程とし
てもよく、また、別途製造した延伸複合中空長繊維ある
いは高配向未延伸複合中空長繊維からウェブを作成して
もよい。ウェブは、これらの中空長繊維をエアーサッカ
等の引取り手段により引取り、帯電装置により強制的に
帯電させて繊維を開繊し、移動するウェブコンベア等の
捕集面上に堆積させることにより作成することができる
It is possible to use drawn composite hollow continuous fibers obtained by drawing or highly oriented undrawn composite hollow continuous fibers obtained by high-speed spinning. The process from spinning to web formation may be a continuous process, or the web may be created from separately produced drawn composite hollow continuous fibers or highly oriented undrawn composite hollow continuous fibers. The web is produced by taking these hollow long fibers with a taking means such as an air sucker, forcibly charging them with a charging device to spread the fibers, and depositing them on a collecting surface of a moving web conveyor etc. can be created.

本発明にいう高線圧力のロール群とは、2個以上のロー
ルから構成されるものであり2通常、1対のロールから
多段式の計10個のロールまでを使用することができる
。ロール数が多過ぎると設備投資費が高くなり、好まし
くない。ロール群の線圧力は、高融点の重合体成分Bか
らなるセグメントを複合中空長繊維から剥離させて割繊
長繊維とするに重要な要因であり、剪断、伸長、圧縮等
の応力により前記重合体成分Bからなるセグメントを剥
離する。この線圧力は、複合中空長繊維の割繊性にもよ
るが1通常、少なくとも20kg/cm程度とするのが
好ましい。20kg/cm未満であると前記重合体成分
Bからなるセグメントを十分剥離することができず、好
ましくない。
The high line pressure roll group referred to in the present invention is composed of two or more rolls, and usually a pair of rolls to a multistage type up to a total of 10 rolls can be used. If the number of rolls is too large, the equipment investment cost will increase, which is not preferable. The linear pressure of the roll group is an important factor in peeling off the segments made of polymer component B with a high melting point from the composite hollow filament to form split filament filaments. The segment consisting of the combined component B is peeled off. This linear pressure is preferably at least about 20 kg/cm, although it depends on the splitting properties of the composite hollow long fibers. If it is less than 20 kg/cm, the segments made of the polymer component B cannot be sufficiently peeled off, which is not preferable.

本発明においては1組み合わせる重合体の種類。In the present invention, one type of polymer to be combined.

重合体の複合化、紡糸条件、延伸条件、剥離割繊条件、
接着条件あるいは柔軟加工等の後加工条件を種々選択す
ることにより、使用目的に応じた極細長繊維不織布を得
ることができる。
Composite polymer, spinning conditions, stretching conditions, peeling and splitting conditions,
By selecting various bonding conditions or post-processing conditions such as softening processing, it is possible to obtain an ultrafine long fiber nonwoven fabric depending on the purpose of use.

(実施例) 次に、実施例に基づいて本発明を具体的に説明する。な
お、実施例における各種特性は次の方法により測定した
(Example) Next, the present invention will be specifically described based on Examples. In addition, various characteristics in the examples were measured by the following methods.

固有粘度:フェノールと四塩化エタンの等重量混合溶液
を溶媒とし、温度20℃で測定した。
Intrinsic viscosity: Measured at a temperature of 20°C using a mixed solution of equal weights of phenol and tetrachloroethane as a solvent.

相対粘度:濃度が96重量%の濃硫酸を溶媒とし。Relative viscosity: Using concentrated sulfuric acid with a concentration of 96% by weight as a solvent.

温度を25℃、試料濃度を1g/aとして測定した。Measurements were made at a temperature of 25° C. and a sample concentration of 1 g/a.

メルトインデックス:ASTM  D 1238 E法
により測定した。
Melt index: Measured by ASTM D 1238 E method.

融点:パーキンエルマ社製示差走査熱量計DSC−2型
を使用し、試料量を約5mg、走査速度20℃/分で測
定して得られたDSC曲線から求めた。
Melting point: Determined from a DSC curve obtained by measuring a sample amount of about 5 mg at a scanning rate of 20° C./min using a PerkinElmer differential scanning calorimeter model DSC-2.

不織布のタテ及びヨコ方向の引張強カニ幅が3cm、長
さが10cmの測定試料片を準備し、JIS  Li2
O2に記載のストリップ法により測定した。
Prepare a measurement sample piece of nonwoven fabric with a width of 3 cm and a length of 10 cm in the vertical and horizontal directions.
It was measured by the strip method described in O2.

実施例1 融点が128℃、メルトインデックス値が25g/10
分のポリエチレン重合体を重合体成分A、融点が258
℃、固有粘度が0.70のポリエチレンテレフタレート
重合体を重合体成分Bとし、複合中空紡糸孔を200孔
有する紡糸口金を通して分割型2成分複合中空長繊維を
溶融紡出した。溶融紡糸に際し1重合体成分Aの溶融温
度を230℃、単孔吐出量を0.60 g /分9重合
鉢底分Bの溶融温度を285℃、単孔吐出量を0.60
 g /分〔成分Aと成分Bの比(重量比)は1対1〕
とした。紡出された長繊維糸条を冷却した後、紡糸口金
下150 cmの位置に7 配設された8個のエアーサッカにフィラメント25本ず
つ通して吸引・延伸し、 3200m/分の速度で引取
り、帯電装置により強制的に帯電させて繊維を開繊し、
移動するウェブコンベア面上に堆積させ,ウエブを得た
Example 1 Melting point is 128°C, melt index value is 25g/10
Polyethylene polymer with a melting point of 258
A polyethylene terephthalate polymer having an intrinsic viscosity of 0.70 at 100° C. was used as polymer component B, and split two-component composite hollow long fibers were melt-spun through a spinneret having 200 composite hollow spinning holes. During melt spinning, the melting temperature of polymer component A was 230°C and the single-hole discharge rate was 0.60 g/min.
g/min [Ratio (weight ratio) of component A and component B is 1:1]
And so. After cooling the spun filament yarn, 25 filaments each were passed through eight air suckers placed 150 cm below the spinneret, drawn under suction, and drawn at a speed of 3200 m/min. The fibers are then forcibly charged using a charging device to open the fibers.
A web was obtained by depositing it on the surface of a moving web conveyor.

得られた分割型2成分複合中空長繊維の横断面形状は、
第2図に示したように9重合体成分Aと。
The cross-sectional shape of the obtained split two-component composite hollow long fiber is as follows:
9 with polymer component A as shown in FIG.

重合体成分Bからなる4個の放射楔形状横断面を有する
セグメントと、中空部とから構成されるものであった。
It was composed of four segments having a radial wedge-shaped cross section made of polymer component B and a hollow part.

繊維断面を1000倍に拡大して撮影した断面写真より
実測してL及びlを求め、中空率(%)を算出したとこ
ろ、中空率は25%であった。
L and l were actually measured from a cross-sectional photograph taken with the fiber cross section magnified 1000 times, and the hollowness ratio (%) was calculated, and the hollowness ratio was 25%.

また、この複合中空長繊維は割繊しておらず,ウエブは
均一なものであった。
Moreover, this composite hollow long fiber was not split, and the web was uniform.

次に、得られたウェブに加熱された表面平滑な多段式6
個のロールからなるロール群を使用して割繊・熱接着処
理を施して不織布を得た。この処理条件は、加熱ロール
群の表面温度を115℃、線圧力を50kg/cmとし
た。
Next, the obtained web was heated with a multi-stage 6
A nonwoven fabric was obtained by performing fiber splitting and thermal bonding treatment using a roll group consisting of individual rolls. The processing conditions were such that the surface temperature of the heating roll group was 115° C. and the linear pressure was 50 kg/cm.

得られた不織布は、目付けが50g/m’、タテ方B 向の引張強力が5.5 kg/ 3 cm、  ヨコ方
向の引張強力が3.9 kg/ 3 cmであった。不
織布の任意の10個所を選び、不織布の断面を100倍
に拡大して断面写真を撮影し1次いで、10枚の断面写
真中、複合中空長繊維から剥離している重合体成分Bの
セグメント総数と存在する重合体成分Bのセグメント総
数とを求め7割繊割合を求めたところ、90%であった
。また、前記複合中空長繊維の分割により発現した重合
体成分Bのみから構成される割繊長繊維の繊度を求めた
ところ、0.45デニールと極めて細いものであった。
The obtained nonwoven fabric had a basis weight of 50 g/m', a tensile strength in the vertical direction B of 5.5 kg/3 cm, and a tensile strength in the horizontal direction of 3.9 kg/3 cm. Select 10 arbitrary locations on the nonwoven fabric, enlarge the cross section of the nonwoven fabric 100 times, take cross-sectional photographs, and then calculate the total number of segments of polymer component B that have peeled off from the composite hollow filaments in the 10 cross-sectional photographs. The total number of segments of polymer component B present was determined, and the 70% fiber ratio was determined to be 90%. Further, when the fineness of the split filament consisting only of the polymer component B developed by splitting the composite hollow filament was determined, it was found to be extremely fine at 0.45 denier.

そして、この不織布は、繊細な表面形態と緻密な構造を
有するものであった。
This nonwoven fabric had a delicate surface morphology and a dense structure.

比較例1 融点が125℃、メルトインデックス値が30g/10
分のポリエチレン重合体を重合体成分A、紡紡糸合金し
て中空でない複合紡糸孔を200孔有する紡糸口金を使
用した以外は実施例1と同様にして。
Comparative Example 1 Melting point: 125°C, melt index value: 30g/10
The procedure was the same as in Example 1, except that a polyethylene polymer of 100% was used as polymer component A, and a spinneret having 200 solid composite spinning holes was used.

分割型2成分複合長繊維を溶融紡出し、冷却した後、エ
アーサッカにフィラメントを通して吸引・延伸し、 3
200m/分の速度で引取り、帯電装置により強制的に
帯電させて繊維を開繊し、移動するウェブコンベア面上
に堆積させ,ウエブを得た。
After melt-spinning the split type two-component composite filament and cooling it, the filament is passed through an air sucker and drawn by suction.
The fibers were taken up at a speed of 200 m/min, forcibly charged with a charging device to open the fibers, and deposited on the surface of a moving web conveyor to obtain a web.

得られた分割型2成分複合長繊維の横断面形状は、第4
図に示したように9重合体成分八と1重合体成分Bから
なる4個の放射楔形状横断面を有するセグメントとから
構成されるものであった。
The cross-sectional shape of the obtained split type two-component composite long fibers was
As shown in the figure, it was composed of four segments each having a radial wedge-shaped cross section and consisting of nine polymer components (8) and one polymer component (B).

また、この複合長繊維は割繊しておらず,ウエブは均一
なものであった。
Further, this composite long fiber was not split, and the web was uniform.

次に、実施例1と同様にして、得られたウェブに加熱さ
れた表面平滑なロール群を使用して割繊・熱接着処理を
施して不織布を得た。
Next, in the same manner as in Example 1, the resulting web was subjected to splitting and thermal bonding treatment using a group of heated rolls with smooth surfaces to obtain a nonwoven fabric.

得られた不織布は、その割繊割合が16%と低く。The resulting nonwoven fabric had a low splitting ratio of 16%.

繊細な表面形態と緻密な構造を有しないものであった。It had a delicate surface morphology and no dense structure.

実施例2 融点が125℃、メルトインデックス値が25g/10
分のポリエチレン重合体を重合体成分A、融点が258
℃、固有粘度が0.70のポリエチレンテレフタレート
重合体を重合体成分Bとし、複合中空紡糸孔を625孔
有する紡糸口金を通して分割型2成分複合中空長繊維を
溶融紡出した。溶融紡糸に際し1重合体成分Aの溶融温
度を230℃、単孔吐出量を0.20 g /分1重合
鉢底分Bの溶融温度を285℃、単孔吐出量を0.20
g/分〔成分Aと成分Bの比(重量比)は1対1〕とし
た。紡出された長繊維糸条を冷却した後1表面温度が7
5℃の加熱ワラ群により250 m/分の速度で引取り
、この加熱ローラ群と表面温度が90℃の加熱ローラ群
との間で倍率を4.0として延伸した。延伸繊維糸条を
25個のエアーサッカにフィラメント25本ずつ通して
吸引し、帯電装置により強制的に帯電させて繊維を開繊
し、移動するウェブコンベア面上に堆積させ,ウエブを
得た。
Example 2 Melting point is 125°C, melt index value is 25g/10
Polyethylene polymer with a melting point of 258
A polyethylene terephthalate polymer having an intrinsic viscosity of 0.70 at 0.01°C was used as polymer component B, and split two-component composite hollow long fibers were melt-spun through a spinneret having 625 composite hollow spinning holes. During melt spinning, the melting temperature of polymer component A was 230°C, the single hole discharge rate was 0.20 g/min, the melting temperature of the bottom portion B of the polymerization pot was 285°C, and the single hole discharge rate was 0.20 g/min.
g/min [ratio (weight ratio) of component A and component B was 1:1]. After cooling the spun long fiber yarn, the surface temperature is 7.
It was taken up at a speed of 250 m/min by a group of heated straws heated at 5°C, and stretched at a magnification of 4.0 between this heated roller group and a heated roller group whose surface temperature was 90°C. The drawn fiber threads were passed through 25 air suckers with 25 filaments each and suctioned, and the fibers were forcibly charged with a charging device to open the fibers and deposited on the surface of a moving web conveyor to obtain a web.

得られた分割型2成分複合長繊維の横断面形状は、第3
図に示したようなものであった。繊維断面を1000倍
に拡大して撮影した断面写真より実測してL及びβを求
め、中空率(%)を算出したところ、中空率は33%で
あった。また、この複合中空長繊維は割繊しておらず,
ウエブは均一なものであった。
The cross-sectional shape of the obtained split type two-component composite long fiber is
It was as shown in the figure. L and β were actually measured from a cross-sectional photograph taken with the fiber cross section magnified 1000 times, and the hollowness ratio (%) was calculated, and the hollowness ratio was 33%. In addition, this composite hollow long fiber is not split,
The web was uniform.

1 次に、得られたウェブに加熱された表面平滑な1対のロ
ールを使用して割繊・熱接着処理を2回施して不織布を
得た。この処理条件は、加熱ロール対の表面温度を11
5℃、線圧力を200 kg/ c+n 七した。
1 Next, the resulting web was subjected to fiber splitting and thermal bonding twice using a pair of heated rolls with smooth surfaces to obtain a nonwoven fabric. This processing condition is such that the surface temperature of the heating roll pair is 11
The temperature was 5°C and the line pressure was 200 kg/c+n.

得られた不織布は、目付けが50g/m’、タテ方向の
引張強力が7.5 kg/ 3 cm、  ヨコ方向の
引張強力が5.4 kg/ 3 cmであった。不織布
の任意の10個所を選び、不織布の断面を10(1倍に
拡大して断面写真を撮影し9割繊割合を求めたところ、
90%であった。また9重合体成分Bのみから構成され
る割繊長繊維の繊度を求めたところ、0.11デニール
と極めて細いものであった。そして、この不織布は、繊
細な表面形態と緻密な構造を有するものであった。
The obtained nonwoven fabric had a basis weight of 50 g/m', a tensile strength in the vertical direction of 7.5 kg/3 cm, and a tensile strength in the horizontal direction of 5.4 kg/3 cm. Select 10 arbitrary locations on the nonwoven fabric, enlarge the cross section of the nonwoven fabric to 10 (1x), take a cross-sectional photo, and calculate the 90% fiber ratio.
It was 90%. Further, when the fineness of the split filament consisting only of 9-polymer component B was determined, it was found to be extremely fine at 0.11 denier. This nonwoven fabric had a delicate surface morphology and a dense structure.

比較例2 融点が132℃、メルトインデックス値が40g/10
分のポリエチレン重合体を重合体成分A、その溶融温度
を232℃とした以外は実施例2と同様にして9分割型
2成分複合中空長繊維を溶融紡出し。
Comparative Example 2 Melting point: 132°C, melt index value: 40g/10
A nine-split two-component composite hollow continuous fiber was melt-spun in the same manner as in Example 2, except that the polyethylene polymer was used as polymer component A and its melting temperature was 232°C.

22 冷却した後、加熱ローラ群により250m/分の速度で
引取り、延伸し、エアーサッカにフィラメントを通して
吸引し、帯電装置により強制的に帯電させて繊維を開繊
し、移動するウェブコンベア面上に堆積させ,ウエブを
得た。
22 After cooling, the filament is taken up and stretched at a speed of 250 m/min by a group of heating rollers, sucked through an air sucker, and forcibly charged by a charging device to open the fibers, and then placed on the surface of a moving web conveyor. A web was obtained.

延伸するに際し、延伸ローラ上で複合中空長繊維が剥離
割繊し、この割繊長繊維が延伸ローラに巻付くというト
ラブルが生じた。そして、得られたウェブは、均一性に
劣るものであった。
During stretching, a problem occurred in that the composite hollow continuous fibers were peeled off and split on the drawing roller, and the split long fibers were wound around the drawing roller. The obtained web had poor uniformity.

得られた分割型2成分複合中空長繊維の横断面形状は、
第5図に示したようなものであった。繊維断面を100
0倍に拡大して撮影した断面写真より実測してL及びβ
を求め、中空率(%)を算出したところ、中空率は75
%であった。また、この複合中空長繊維は一部割繊して
おり,ウエブは不均一なものであった。
The cross-sectional shape of the obtained split two-component composite hollow long fiber is as follows:
It was as shown in Figure 5. The fiber cross section is 100
L and β were actually measured from a cross-sectional photograph taken at 0x magnification.
When the hollow rate (%) was calculated, the hollow rate was 75.
%Met. Further, this composite hollow long fiber was partially split, and the web was non-uniform.

次に、実施例2と同様にして、得られたウェブに加熱さ
れた表面平滑な1対のロールを使用して割繊・熱接着処
理を2回施して不織布を得た。
Next, in the same manner as in Example 2, the resulting web was subjected to fiber splitting and thermal bonding twice using a pair of heated rolls with smooth surfaces to obtain a nonwoven fabric.

得られた不織布は、その割繊割合が98%と高く。The resulting nonwoven fabric has a high splitting ratio of 98%.

繊細な表面形態を有するものの、均一性が劣り。Although it has a delicate surface morphology, its uniformity is poor.

しかも目付は斑を有するものであった。Moreover, the basis weight was uneven.

実施例3 実施例2で得られた不織布に加熱された表面平滑なエン
ボスロールを使用してエンボス処理を施した。この処理
条件は、加熱エンボスロールの表面温度を120℃、圧
接面積率を15%、線圧力を50kg / cm と 
しブこ。
Example 3 The nonwoven fabric obtained in Example 2 was subjected to embossing treatment using a heated embossing roll with a smooth surface. The processing conditions were as follows: the surface temperature of the heated embossing roll was 120°C, the pressure area ratio was 15%, and the line pressure was 50 kg/cm.
Shibuko.

得られた不織布は、目付けが53 g / m’ 、タ
テ方向の引張強力が”、6kg/ 3 cm、  ヨコ
方向の引張強力が8.3 kg/ 3 cmで、繊細な
表面形態と緻密な構造を有するものであった。
The obtained nonwoven fabric has a basis weight of 53 g/m', a tensile strength in the vertical direction of 6 kg/3 cm, a tensile strength in the horizontal direction of 8.3 kg/3 cm, and has a delicate surface morphology and a dense structure. It had a

比較例3 実施例2で得られたウェブに加熱された表面平滑な1対
のロールを使用して割繊・熱接着処理を2回施した。こ
の処理条件は、加熱ロールの表面温度を115℃、線圧
力を10kg/cmとした。
Comparative Example 3 The web obtained in Example 2 was subjected to splitting and thermal bonding treatment twice using a pair of heated rolls with smooth surfaces. The processing conditions were such that the surface temperature of the heating roll was 115° C. and the linear pressure was 10 kg/cm.

得られた不織布は、その割繊割合が4.8%と極めて低
く、繊細な表面形態と緻密な構造を有しないものであっ
た。
The obtained nonwoven fabric had an extremely low splitting ratio of 4.8%, and did not have a delicate surface morphology and a dense structure.

実施例4 融点が225℃、相対粘度が2.58のナイロン6重合
体を重合体成分A、融点が258℃、固有粘度が0.7
0のポリエチレンテレフタレート重合体を重合体成分B
とし、複合中空紡糸孔を200孔有する紡糸口金を通し
て分割型2成分複合中空長繊維を溶融紡出した。溶融紡
糸に際し1重合体底分Aの溶融温度を265℃、単孔吐
出量を0.625g/分2重合体成分Bの溶融温度を2
85℃、単孔吐出量を0.625g/分〔成分Aと成分
Bの比(重量比)は1対1〕とした。紡出された長繊維
糸条を冷却した後、紡糸口金下150 cmの位置に配
設された8個のエアーサッカにフィラメント25本ずつ
通して吸引・延伸し、 3500m 7分の速度で引取
り、帯電装置により強制的に帯電させて繊維を開繊し、
移動するウェブコンベア面上に堆積させ,ウエブを得た
Example 4 A nylon hexapolymer with a melting point of 225°C and a relative viscosity of 2.58 was used as polymer component A, a melting point of 258°C and an intrinsic viscosity of 0.7.
0 polyethylene terephthalate polymer as polymer component B
Then, a split two-component composite hollow continuous fiber was melt-spun through a spinneret having 200 composite hollow spinning holes. During melt spinning, 1 the melting temperature of the polymer component A was 265°C, the single hole discharge rate was 0.625 g/min, 2 the melting temperature of the polymer component B was 2
The temperature was 85° C., and the single hole discharge rate was 0.625 g/min [the ratio (weight ratio) of component A to component B was 1:1]. After cooling the spun filament yarn, 25 filaments each are passed through eight air suckers placed 150 cm below the spinneret, drawn by suction, and taken over 3,500 m at a speed of 7 minutes. , the fibers are opened by forcibly charging them with a charging device,
A web was obtained by depositing it on the surface of a moving web conveyor.

得られた分割型2成分複合中空長繊維の横断面形状は、
第2図に示したように1重合体底分Aと。
The cross-sectional shape of the obtained split two-component composite hollow long fiber is as follows:
1 polymer bottom portion A as shown in FIG.

重合体成分Bからなる4個の放射楔形状横断面を有する
セグメントと、中空部とから構成されるも5 のであった。繊維断面を1000倍に拡大して撮影した
断面写真より実測してL及びlを求め、中空率(%)を
算出したところ、中空率は18%であった。
5 was composed of four segments having a radial wedge-shaped cross section made of polymer component B and a hollow portion. L and l were actually measured from a cross-sectional photograph taken with the fiber cross section magnified 1000 times, and the hollowness ratio (%) was calculated, and the hollowness ratio was 18%.

また、この複合中空長繊維は割繊しておらず,ウエブは
均一なものであった。
Moreover, this composite hollow long fiber was not split, and the web was uniform.

次に、実施例1と同様にして、得られたウェブに加熱さ
れた表面平滑なロール群を使用して割繊・熱接着処理を
施して不織布を得た。
Next, in the same manner as in Example 1, the resulting web was subjected to splitting and thermal bonding treatment using a group of heated rolls with smooth surfaces to obtain a nonwoven fabric.

得られた不織布は、目付けが50g/m’、タテ方向の
引張強力が12.0kg/ 3 cm、  ヨコ方向の
引張強力が7.9 kg/ 3 cmであった。不織布
の任意の10個所を選び、不織布の断面を100倍に拡
大して断面写真を撮影し1次いで、10枚の断面写真中
、複合中空長繊維から剥離している重合体成分Bのセグ
メント総数と存在する重合体成分Bのセグメント総数と
を求め1割繊割合を求めたところ、95%であった。ま
た、前記複合中空長繊維の分割により発現した重合体成
分Bのみから構成される割繊長繊維の繊度を求めたとこ
ろ、0.39デニールと極めて細いものであった。そし
て、この不織布は、繊細6 な表面形態と緻密な構造を有するものであった。
The obtained nonwoven fabric had a basis weight of 50 g/m', a tensile strength in the vertical direction of 12.0 kg/3 cm, and a tensile strength in the horizontal direction of 7.9 kg/3 cm. Select 10 arbitrary locations on the nonwoven fabric, enlarge the cross section of the nonwoven fabric 100 times, take cross-sectional photographs, and then calculate the total number of segments of polymer component B that have peeled off from the composite hollow filaments in the 10 cross-sectional photographs. and the total number of segments of polymer component B present, and the 10% fiber ratio was found to be 95%. In addition, when the fineness of the split filament consisting only of the polymer component B developed by splitting the composite hollow filament was determined, it was found to be extremely fine at 0.39 denier. This nonwoven fabric had a delicate surface morphology and a dense structure.

(発明の効果) 本発明の極細長繊維不織布は2分割型2成分複合中空長
繊維と、前記分割型211ii分複合中空長繊維の分割
により発現した単糸繊度が0.8デニール以下の割繊長
繊維とから構成されるものであり。
(Effects of the Invention) The ultrafine long fiber nonwoven fabric of the present invention consists of split type two-component composite hollow long fibers and split fibers with a single fiber fineness of 0.8 denier or less developed by splitting the split type 211ii composite hollow long fibers. It is composed of long fibers.

強力に優れ、極めて均一性が高く、シかも繊細な表面形
態と緻密な構造を有し、バッグや封筒用素材として好適
に使用することができる。そして。
It has excellent strength, extremely high uniformity, and a delicate surface morphology and dense structure, making it suitable for use as a material for bags and envelopes. and.

本発明の極細長繊維不織布の製造方法によれば。According to the method for producing an ultrafine long fiber nonwoven fabric of the present invention.

前記極細長繊維不織布を、従来のような複雑な生産工程
を必要とすることなく、低コストで効率よく生産するこ
とができる。
The ultrafine long fiber nonwoven fabric can be efficiently produced at low cost without requiring complicated production processes as in the past.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は1本発明における分割型2成分複合長繊維の構
造を説明するための横断面図、第2及び3図は9本発明
の極細長繊維不織布を得ることができる分割型2成分複
合中空長繊維の例を示す横断面図、第4及び5図は1本
発明の極細長繊維不織布を得ることができない分割型2
成分複合長繊維の例を示す横断面図である。 L二分割型2成分複合中空長繊維の繊維軸に垂直な横断
面における中空長繊維の直径、p:同横断面における重
合体成分Bと重合体成分Aとの接触長
Figure 1 is a cross-sectional view for explaining the structure of the split type two-component composite filament according to the present invention, and Figures 2 and 3 are nine. Cross-sectional views showing examples of hollow filaments, Figures 4 and 5 are 1. Divided type 2 in which the ultrafine filament nonwoven fabric of the present invention cannot be obtained.
FIG. 2 is a cross-sectional view showing an example of component composite long fibers. L Diameter of the hollow long fiber in a cross section perpendicular to the fiber axis of the two-split type two-component composite hollow long fiber, p: Contact length between polymer component B and polymer component A in the same cross section

Claims (5)

【特許請求の範囲】[Claims] (1)重合体成分Aと,前記重合体成分Aに対し非相溶
性の重合体成分Bからなる2個以上の放射楔形状横断面
を有するセグメントとから構成される分割型2成分複合
中空長繊維と,前記分割型2成分複合中空長繊維の分割
により発現した前記重合体成分Bのみから構成される単
糸繊度が0.8デニール以下の割繊長繊維とから構成さ
れる不織布であって,前記重合体成分Bの融点が重合体
成分Aの融点より30〜150℃高く,重合体成分Bの
みからなる割繊長繊維の割繊割合が少なくとも30%で
あり,かつ繊維間が重合体成分Aにより少なくとも部分
的に接着されていることを特徴とする極細長繊維不織布
(1) A split two-component composite hollow length consisting of a polymer component A and a segment having two or more radial wedge-shaped cross sections made of a polymer component B that is incompatible with the polymer component A. A nonwoven fabric composed of fibers and split filament long fibers having a single filament fineness of 0.8 denier or less and composed only of the polymer component B developed by splitting the splittable two-component composite hollow filament. , the melting point of the polymer component B is 30 to 150° C. higher than the melting point of the polymer component A, the splitting ratio of the splittable long fibers consisting only of the polymer component B is at least 30%, and An ultrafine long fiber nonwoven fabric characterized in that it is at least partially bonded by component A.
(2)分割型2成分複合中空長繊維の分割により発現し
た高融点の重合体成分Bのみから構成される割繊長繊維
が,単糸繊度が0.5デニール以下の極細長繊維である
請求項1記載の極細長繊維不織布。
(2) A claim that the split filament consisting only of high melting point polymer component B developed by splitting the splittable two-component composite hollow filament is an ultrafine filament with a single filament fineness of 0.5 denier or less. Item 1. The ultrafine long fiber nonwoven fabric according to item 1.
(3)分割型2成分複合中空長繊維が,中空率が2〜6
5%の中空長繊維である請求項1又は2記載の極細長繊
維不織布。
(3) The split type two-component composite hollow long fiber has a hollow ratio of 2 to 6.
The ultrafine long fiber nonwoven fabric according to claim 1 or 2, which contains 5% hollow long fibers.
(4)重合体成分Aと,前記重合体成分Aに対し非相溶
性かつ前記重合体成分Aの融点より30〜150℃高い
融点を有する重合体成分Bからなる2個以上の放射楔形
状横断面を有するセグメントとから構成される分割型2
成分複合中空長繊維を溶融複合紡出し,紡出された前記
分割型2成分複合中空長繊維をエアーサツカからなる引
取り手段により引取り,ウエブコンベア等の捕集面上に
堆積させてウエブとし,ウエブを2個以上のロールから
なる高線圧力のロール群で処理することによって前記高
融点の重合体成分Bからなる繊維を前記複合中空長繊維
から少なくとも一部剥離させて割繊長繊維とし,前記低
融点の重合体成分Aからなる繊維により繊維間を少なく
とも部分的に接着することを特徴とする極細長繊維不織
布の製造方法。
(4) Two or more radial wedge-shaped cross sections consisting of a polymer component A and a polymer component B that is incompatible with the polymer component A and has a melting point 30 to 150°C higher than the melting point of the polymer component A. Divided type 2 consisting of segments with surfaces
The component composite hollow long fibers are melted and composite-spun, the spun split-type two-component composite hollow long fibers are taken up by a taking means consisting of an air picker, and deposited on a collection surface such as a web conveyor to form a web, By treating the web with a group of rolls with high linear pressure consisting of two or more rolls, at least a portion of the fibers made of the polymer component B having a high melting point are exfoliated from the composite hollow long fibers to form split long fibers, A method for producing an ultrafine long fiber nonwoven fabric, characterized in that the fibers are at least partially adhered by the fibers made of the low melting point polymer component A.
(5)分割型2成分複合中空長繊維の分割により発現し
た高融点の重合体成分Bのみから構成される割繊長繊維
が,単糸繊度が0.5デニール以下の極細長繊維である
請求項4記載の極細長繊維不織布の製造方法。
(5) A claim that the split filament consisting only of high melting point polymer component B developed by splitting the splittable two-component composite hollow filament is an ultrafine filament with a single filament fineness of 0.5 denier or less. Item 4. The method for producing an ultrafine long fiber nonwoven fabric.
JP2009256A 1990-01-17 1990-01-17 Ultrafine filament nonwoven cloth and its production Pending JPH03213555A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009256A JPH03213555A (en) 1990-01-17 1990-01-17 Ultrafine filament nonwoven cloth and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009256A JPH03213555A (en) 1990-01-17 1990-01-17 Ultrafine filament nonwoven cloth and its production

Publications (1)

Publication Number Publication Date
JPH03213555A true JPH03213555A (en) 1991-09-18

Family

ID=11715339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009256A Pending JPH03213555A (en) 1990-01-17 1990-01-17 Ultrafine filament nonwoven cloth and its production

Country Status (1)

Country Link
JP (1) JPH03213555A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000303337A (en) * 1999-03-01 2000-10-31 Carl Freudenberg:Fa Non-woven fabric made from thermally binding filament or fiber
US6410139B1 (en) 1999-03-08 2002-06-25 Chisso Corporation Split type conjugate fiber, method for producing the same and fiber formed article using the same
US7732357B2 (en) 2000-09-15 2010-06-08 Ahlstrom Nonwovens Llc Disposable nonwoven wiping fabric and method of production

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000303337A (en) * 1999-03-01 2000-10-31 Carl Freudenberg:Fa Non-woven fabric made from thermally binding filament or fiber
US6410139B1 (en) 1999-03-08 2002-06-25 Chisso Corporation Split type conjugate fiber, method for producing the same and fiber formed article using the same
US6617023B2 (en) 1999-03-08 2003-09-09 Chisso Corporation Splittable multi-component fiber, method for producing it, and fibrous article comprising it
US7732357B2 (en) 2000-09-15 2010-06-08 Ahlstrom Nonwovens Llc Disposable nonwoven wiping fabric and method of production

Similar Documents

Publication Publication Date Title
KR101250683B1 (en) Composite fabric of island-in-sea type and process for producing the same
KR101758204B1 (en) Twisted Composite Yarn Based Nanofibers and Method for Manufacturing the Same
JPH1088460A (en) Nonwoven fabric of conjugated filament and its production
JPH06207324A (en) Biodegradable conjugate filament and nonwoven fabric made of the filament
JPH03213555A (en) Ultrafine filament nonwoven cloth and its production
JP3774114B2 (en) Split type composite fiber, method for producing the same, and ultrafine fiber nonwoven fabric using the same
JP7176850B2 (en) Sea-island composite fiber bundle
JPH0345768A (en) Melt blown nonwoven fabric and production thereof
JP2866131B2 (en) Method for producing ultrafine long-fiber nonwoven fabric
JPH03294557A (en) Superfine filament non-woven fabric
JPH03213553A (en) Ultrafine filament nonwoven cloth
JP3970624B2 (en) Differentiating sheet and manufacturing method thereof
JP4173072B2 (en) Method and apparatus for producing polylactic acid-based long fiber nonwoven fabric
JP2941012B2 (en) Method for producing ultrafine long-fiber nonwoven fabric
JPH03269154A (en) Production of bulky long-fiber nonwoven fabric
JPH0434058A (en) Production of nonwoven fabric of ultrafine short fiber
JPS607045B2 (en) Polygonal cross-section porous hollow fiber
JP4453179B2 (en) Split fiber and fiber molded body using the same
JPH07138863A (en) Polyester ultrafine fiber nonwoven web and its production
JP4316783B2 (en) Manufacturing method of long fiber nonwoven fabric
JP4352843B2 (en) Polylactic acid fiber and method for producing the same
JPH09273060A (en) Conjugate long fiber nonwoven fabric and its production
JPH04174753A (en) Nonwoven filament cloth
JPH06212550A (en) Ultra-fine polypropylene fiber nonwoven web and its production
JPH01111016A (en) Polyethylene composite fiber and production thereof