JPH03208107A - Reference level generation circuit - Google Patents

Reference level generation circuit

Info

Publication number
JPH03208107A
JPH03208107A JP382190A JP382190A JPH03208107A JP H03208107 A JPH03208107 A JP H03208107A JP 382190 A JP382190 A JP 382190A JP 382190 A JP382190 A JP 382190A JP H03208107 A JPH03208107 A JP H03208107A
Authority
JP
Japan
Prior art keywords
voltage
diode
power source
reference level
resistance element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP382190A
Other languages
Japanese (ja)
Inventor
Yoshiji Oota
佳似 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP382190A priority Critical patent/JPH03208107A/en
Publication of JPH03208107A publication Critical patent/JPH03208107A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Electrical Variables (AREA)

Abstract

PURPOSE:To raise an internal voltage in correspondence with an external voltage when it becomes higher than a prescribed value by connecting in series a first resistance element, a first diode element and a second resistance element between a power source and a ground and connecting a second diode element to the first resistance element in parallel. CONSTITUTION:The first resistance element R1, the first diode element D1 and the second resistance element R2 are connected in series between the power source Vcc and ground GND. The voltage of the connection point of the elements R1 and D1 becomes more than the threshold V1 of the element D1 and is held constant until the diode D1 is turned on even if the power source Vcc is changed. The element R1 is connected to the second diode element D2 whose threshold V2 is V2>V1 in parallel, and the output voltage is held constant until the voltage of the power source Vcc comes to V1+V2. When the voltage of the power source Vcc rises more than that, the output voltage also changes in accordance with the rise. Consequently, a reference level generation circuit where the internal voltage rises in accordance with the external voltage when it becomes higher than the prescribed value, and an aging test can be conducted can be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はリファレンスレベル発生回路に関し、特に外部
電源電圧を降圧するための半導体装置の降圧回路に有用
なリファレンスレベル発生1[に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a reference level generation circuit, and more particularly to a reference level generation circuit 1 [useful for a step-down circuit of a semiconductor device for stepping down an external power supply voltage.

(従来の技術) TTLやCMOS等の論理レベルとしては、通isvの
電源電圧が用いられている。ところが、近年の半導体装
置は、高密度化が著しいため、この5■で供給される外
部電源を装置内部で降圧する必要が生じている。
(Prior Art) A common ISV power supply voltage is used as the logic level of TTL, CMOS, etc. However, as semiconductor devices in recent years have become extremely dense, it has become necessary to reduce the voltage of the external power supply supplied by this 5-inch voltage inside the device.

例えば、ダイナミック型半導体記憶装置では、16Mビ
ット以上の容量のものは、装置内部の降圧回路で3.3
vに降圧してから、内部回路に電源として供給するよう
になっている。
For example, in a dynamic semiconductor memory device with a capacity of 16M bits or more, the step-down circuit inside the device
After the voltage is stepped down to V, it is supplied as power to the internal circuits.

(発明が解決しようとする課題) しかしながら、従来の半導体装置の降圧回路は、内部回
路に供給する電源電圧を許容動作電圧の範囲でほぼ一定
値に保つように設計されている。従って、このような半
導体装置では、外部電源の電圧が変動しても、内部電圧
は一定値に保たれることになる。
(Problems to be Solved by the Invention) However, conventional voltage step-down circuits for semiconductor devices are designed to maintain the power supply voltage supplied to the internal circuit at a substantially constant value within the range of allowable operating voltages. Therefore, in such a semiconductor device, even if the voltage of the external power supply fluctuates, the internal voltage is maintained at a constant value.

このため、従来の半導体装置では、二一ジングテストを
行うために外部から高電圧を印加しても、内部電圧が一
定のままに保たれ、二一ジングテストにならないという
問題点があった。
For this reason, conventional semiconductor devices have had the problem that even when a high voltage is applied from the outside to perform a double jing test, the internal voltage remains constant and the double jing test does not occur.

本発明は、上記事情に鑑み、外部電圧が所定以上の高電
圧になると、この電圧に応じて内部電圧も上昇するよう
なリファレンスレベル発生回路を提供することにより、
半導体装置のエージングテストを可能にすることを目的
としている。
In view of the above circumstances, the present invention provides a reference level generation circuit in which when the external voltage becomes a high voltage higher than a predetermined voltage, the internal voltage also increases in accordance with this voltage.
The purpose is to enable aging testing of semiconductor devices.

(課題を解決するための手段) 本発明のリファレンスレベル発生回路では、第1il源
と第2′F4源との間に、第1抵抗素子、第lダイオー
ド素子及び第2抵抗素子がこの順に直列に接続されてお
り、該第1抵抗素子と第1ダイオード素子との接続点か
ら出力が分岐され、該第1抵抗素子に並列に第2ダイオ
ード素子が接続されており、そのことにより上紀百的が
達成される。
(Means for Solving the Problems) In the reference level generation circuit of the present invention, the first resistive element, the first diode element, and the second resistive element are connected in series in this order between the first ill source and the second F4 source. The output is branched from the connection point between the first resistance element and the first diode element, and the second diode element is connected in parallel to the first resistance element. The target is achieved.

(作用) 第1電源は、通常■CCやVDD等の外部電源であり、
第2′F4源は、GNDとすることができる。また、リ
ファレンスレベル発生回路の出力は、降圧回路のリファ
レンスレベルとなり、この電圧に応じた電源電圧が半導
体装置の内部回路に供給されることになる。
(Function) The first power source is usually an external power source such as CC or VDD,
The 2'F4 source can be GND. Further, the output of the reference level generation circuit becomes the reference level of the voltage step-down circuit, and a power supply voltage corresponding to this voltage is supplied to the internal circuit of the semiconductor device.

第1ダイオード素子は、第1電源と第211源との間の
電位差がその閾値電圧以上の場合には、出力電圧が一定
電圧に維持されるように働く。ただし、第2抵抗素子に
流れる電流により、実際には、ここでの電圧降下の上昇
分だけ出力電圧は上昇する。
The first diode element serves to maintain the output voltage at a constant voltage when the potential difference between the first power source and the 211th source is greater than or equal to its threshold voltage. However, due to the current flowing through the second resistance element, the output voltage actually increases by the amount of the voltage drop here.

ところが、第1電源と第2電源との間の電位差が上記出
力の一定電圧と第2ダイオード素子の閾値との和以上に
なると、この第2ダイオード素子が第111gと出力と
の間を定電圧に維持しようとする。従って、電位差をさ
らに大きくすれば、出力電圧は、これよりも第2ダイオ
ード素子の閾値電圧だけ低い電圧となって、一定のオフ
セットを保ちながら同様に上昇することになる。
However, when the potential difference between the first power source and the second power source exceeds the sum of the constant voltage of the output and the threshold of the second diode element, this second diode element generates a constant voltage between the 111g and the output. try to maintain it. Therefore, if the potential difference is further increased, the output voltage becomes a voltage lower than this by the threshold voltage of the second diode element, and similarly increases while maintaining a constant offset.

コノ結果、上記構戊のリファレンスレベル発生回路の出
力を降圧回路に供給すれば、通常の使用状態の場合には
、ほぼ一定の電圧を半導体装置の内部回路に供給するこ
とになるが、二一ジングテストのために外部からさらに
高電圧を印加することにより、それに応じた電圧を発生
することができるようになる。
As a result, if the output of the reference level generation circuit with the above structure is supplied to the step-down circuit, a nearly constant voltage will be supplied to the internal circuit of the semiconductor device under normal usage conditions. By applying a higher voltage from the outside for the purpose of testing, it becomes possible to generate a corresponding voltage.

(実施例) 本発明を実施例に基づいて以下に説明する。(Example) The present invention will be explained below based on examples.

第工図は本発明のリファレンスレベル発生回路の一例を
示す回路図、第2図はこのリファレンスレベル発生回路
の入出力電圧特性を示す図である。
1 is a circuit diagram showing an example of a reference level generating circuit of the present invention, and FIG. 2 is a diagram showing input/output voltage characteristics of this reference level generating circuit.

本実施例におけるリファレンスレベル発生回路は、第1
図に示すように、外部からの電源vCCと接地電源GN
Dの間に、抵抗Rl,  ダイオードDI,及び抵抗R
2をこの順に直列に接続している。抵抗R】と抵抗R2
は、電流が流れると、この電流値に比例した電圧降下が
生じる抵抗素子である。また、ダイオードD1は、CM
OS構造により形成された複数のダイオードを順方向に
直列接続したものであり、これらのダイオードの順方向
電圧降下(約0.6V)の和である閾値電圧■1以上の
電圧を印加すると、電流を流して端子間電圧をその閾値
電圧VIに維持しようとするダイオード素子である。
The reference level generation circuit in this embodiment has a first
As shown in the figure, external power supply vCC and ground power supply GN
Between D, a resistor Rl, a diode DI, and a resistor R
2 are connected in series in this order. resistance R] and resistance R2
is a resistance element in which when a current flows, a voltage drop occurs in proportion to the current value. Moreover, the diode D1 is CM
Multiple diodes formed by the OS structure are connected in series in the forward direction, and the threshold voltage, which is the sum of the forward voltage drops (approximately 0.6 V) of these diodes, is the sum of the forward voltage drops (approximately 0.6 V). It is a diode element that attempts to maintain the voltage between its terminals at its threshold voltage VI by flowing the voltage VI.

上記抵抗RlとダイオードDlとの接続点からは、出力
が分岐されている。この出力は降圧回路のリファレンス
レベルとして供給され、この電圧に応じた電源電圧が半
導体装置の内部回路に供給されることになる。
An output is branched from the connection point between the resistor Rl and the diode Dl. This output is supplied as a reference level to the step-down circuit, and a power supply voltage corresponding to this voltage is supplied to the internal circuit of the semiconductor device.

また、上記抵抗R1と並列に、ダイオードD2が接続さ
れている。このダイオードD2も、複数のダイオードを
順方向に直列接続したものであり、これらのダイオード
素子の順方向電圧降下の和である閾値電圧■2以上の電
圧を印加すると、電流を流して端子間電圧をその閾値電
圧v2に維持しようとするダイオード素子である。
Further, a diode D2 is connected in parallel with the resistor R1. This diode D2 is also made by connecting multiple diodes in series in the forward direction, and when a voltage higher than the threshold voltage 2, which is the sum of the forward voltage drops of these diode elements, is applied, current flows and the voltage between the terminals increases. It is a diode element that attempts to maintain V2 at its threshold voltage v2.

上記構成のリファレンスレベル発生回路の動作を第2図
に基づいて説明する。
The operation of the reference level generating circuit having the above configuration will be explained based on FIG. 2.

電源VCCと接地電源GND間の電源電圧を徐々に上昇
させると、ダイオードDIの閾値電圧vlまでは、この
ダイオードD1がOFFとなるため、出力電圧もこれに
比例して上昇することになる。
When the power supply voltage between the power supply VCC and the ground power supply GND is gradually increased, the diode D1 is turned off until the threshold voltage vl of the diode DI is reached, so the output voltage also increases in proportion to this.

しかし、電源電圧が閾値電圧v1を超えると、ダイオー
ドD1がONとなって電流を流し、出力電圧をこの閾値
電圧Vlに維持しようとする。ただし、実際には、この
電流による抵抗R2での電圧降下分だけ出力電圧は上昇
することになる。もっとも・この抵抗R2での電圧降下
は、電源電圧と閾値電圧v1との差を抵抗Rlとで分圧
した値となる。従って、この抵抗R2の抵抗値を抵抗R
1よりも十分に小さく設定すれば(例えば10分の1程
度)、出力電圧の上昇も僅かなものとなり、実用上はほ
とんど問題は生じない。この状態での電源電圧と出力電
圧との差は、抵抗R1での電圧降下として現れることに
なる。なお、第2図では、この状態における抵抗R2で
の電圧降下の最大値をΔVとして示している。
However, when the power supply voltage exceeds the threshold voltage V1, the diode D1 turns on and current flows to try to maintain the output voltage at this threshold voltage V1. However, in reality, the output voltage increases by the voltage drop across the resistor R2 due to this current. However, the voltage drop across this resistor R2 is a value obtained by dividing the difference between the power supply voltage and the threshold voltage v1 by the resistor Rl. Therefore, the resistance value of this resistor R2 is the resistor R
If it is set sufficiently smaller than 1 (for example, about 1/10), the increase in output voltage will be slight, and practically no problem will occur. The difference between the power supply voltage and the output voltage in this state appears as a voltage drop across the resistor R1. In addition, in FIG. 2, the maximum value of the voltage drop across the resistor R2 in this state is shown as ΔV.

そして、電源電圧を更に上昇させて、電源電圧と出力電
圧との差がダイオードD2の閾値電圧v2を超えるよう
にすると、このダイオードD2がONとなって電流を流
し、電源vCCと出力との間を閾値電圧v2の定電圧に
維持しようとする。すると、抵抗R1での電圧降下も一
定となるので、抵抗R2での電圧降下が電源電圧から閾
値電圧v1と閾値電圧■2とを差し引いた値となる。こ
のため、出力電圧は、この抵抗R2での電圧降下に応じ
て変化するようになり、電#電圧に対して閾値電圧v2
だけ低い値を維持しながらこれに追従して上昇すること
になる。
Then, when the power supply voltage is further increased so that the difference between the power supply voltage and the output voltage exceeds the threshold voltage v2 of the diode D2, this diode D2 is turned on and current flows between the power supply vCC and the output. is maintained at a constant voltage of threshold voltage v2. Then, since the voltage drop across the resistor R1 is also constant, the voltage drop across the resistor R2 becomes the value obtained by subtracting the threshold voltage v1 and the threshold voltage 2 from the power supply voltage. Therefore, the output voltage changes according to the voltage drop across this resistor R2, and the threshold voltage v2
will follow this trend and increase while maintaining a low value.

この結果、本実施例におけるリファレンスレベル発生回
路は、電源電圧が閾値電圧v1からこの閾値電圧■1と
閾値電圧■2との和までの間にある場合には、ほぼ一定
の出力電圧を発生することができるが、エージングテス
トのために電源電圧を更ζこ上昇させれば、これに応じ
た出力電圧を供給することができるようになる。
As a result, the reference level generation circuit in this embodiment generates an almost constant output voltage when the power supply voltage is between the threshold voltage v1 and the sum of the threshold voltages 1 and 2. However, if the power supply voltage is further increased for the aging test, it becomes possible to supply an output voltage corresponding to this increase.

例えば、ダイオードD1の閾値電圧v1を3.3V,ダ
イオードD2の閾値電圧v2を2.6V,抵抗Rlを2
00kΩ、抵抗R2を20kΩとすると、このリファレ
ンスレベル発生回路は、電源vCCによるII源電圧が
3.3■から5.9vまでの間は、約3.3Vの定電圧
を降圧回路に供給することになり、電源電圧を6v以上
にすると、これに応じた電圧を供給して二一ジングテス
トを可能にすることができる。
For example, the threshold voltage v1 of the diode D1 is 3.3V, the threshold voltage v2 of the diode D2 is 2.6V, and the resistor Rl is 2.
00kΩ and resistor R2 is 20kΩ, this reference level generation circuit supplies a constant voltage of approximately 3.3V to the step-down circuit when the II source voltage from the power supply vCC is from 3.3V to 5.9V. If the power supply voltage is set to 6 V or higher, a voltage corresponding to this voltage can be supplied to enable a 2-volt test.

尚、上述の実施例では、各ダイオードはCMOS構造に
より形成されているが、他の構造によって形成されてい
てもよい。
In the above-described embodiment, each diode is formed of a CMOS structure, but may be formed of another structure.

(発明の効果) 以上の説明から明らかなように、本発明のリファレンス
レベル発生回路は、外部電圧が所定以上に上昇すると、
それに応じて内部回路に供給する電圧も上昇させること
ができるので、半導体装置の二一ジングテストが可能に
なるという効果を奏する。
(Effects of the Invention) As is clear from the above explanation, the reference level generation circuit of the present invention, when the external voltage rises above a predetermined level,
Since the voltage supplied to the internal circuit can be increased accordingly, the effect is that it becomes possible to carry out a double digitizing test of the semiconductor device.

4.   の.単な言日 第1図は本発明の一実施例に係るリファレンスレベル発
生回路を示す回路図、第2図はこのリファレンスレベル
発生回路の入出力電圧特性を示す図である。
4. of. 1 is a circuit diagram showing a reference level generation circuit according to an embodiment of the present invention, and FIG. 2 is a diagram showing input/output voltage characteristics of this reference level generation circuit.

VCC・・・電源(第11ii源)、GND・・・接地
電源(第2′Wl源)、D1・・・ダイオード(第1ダ
イオード素子)、D2・・・ダイオード(第2ダイオー
ド素子)、R1・・・抵抗(第1抵抗素子)、R2・・
・抵抗(第2抵抗素子)。
VCC...power supply (11ii source), GND...ground power supply (2nd Wl source), D1...diode (first diode element), D2...diode (second diode element), R1 ...Resistance (first resistance element), R2...
-Resistance (second resistance element).

以上that's all

Claims (1)

【特許請求の範囲】[Claims] 1、第1電源と第2電源との間に、第1抵抗素子、第1
ダイオード素子及び第2抵抗素子がこの順に直列に接続
されており、該第1抵抗素子と第1ダイオード素子との
接続点から出力が分岐され、該第1抵抗素子に並列に第
2ダイオード素子が接続されているリファレンスレベル
発生回路。
1. Between the first power source and the second power source, a first resistive element, a first
A diode element and a second resistance element are connected in series in this order, an output is branched from a connection point between the first resistance element and the first diode element, and a second diode element is connected in parallel to the first resistance element. Connected reference level generation circuit.
JP382190A 1990-01-10 1990-01-10 Reference level generation circuit Pending JPH03208107A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP382190A JPH03208107A (en) 1990-01-10 1990-01-10 Reference level generation circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP382190A JPH03208107A (en) 1990-01-10 1990-01-10 Reference level generation circuit

Publications (1)

Publication Number Publication Date
JPH03208107A true JPH03208107A (en) 1991-09-11

Family

ID=11567861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP382190A Pending JPH03208107A (en) 1990-01-10 1990-01-10 Reference level generation circuit

Country Status (1)

Country Link
JP (1) JPH03208107A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030035805A (en) * 2001-10-26 2003-05-09 미쓰비시덴키 가부시키가이샤 Semiconductor memory device allowing high density structure or high performance
JP2017184584A (en) * 2016-03-31 2017-10-05 株式会社豊田自動織機 Control device for dc motor, and industrial vehicle

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03171309A (en) * 1989-11-30 1991-07-24 Toshiba Corp Reference potential generating circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03171309A (en) * 1989-11-30 1991-07-24 Toshiba Corp Reference potential generating circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030035805A (en) * 2001-10-26 2003-05-09 미쓰비시덴키 가부시키가이샤 Semiconductor memory device allowing high density structure or high performance
JP2017184584A (en) * 2016-03-31 2017-10-05 株式会社豊田自動織機 Control device for dc motor, and industrial vehicle

Similar Documents

Publication Publication Date Title
US6642757B2 (en) Semiconductor memory device having a power-on reset circuit
KR100248846B1 (en) An integrated circuit with improved on-chip power supply control
US6351179B1 (en) Semiconductor integrated circuit having active mode and standby mode converters
KR900004725B1 (en) Power voltage regulator circuit
US4833341A (en) Semiconductor device with power supply voltage converter circuit
JP4648346B2 (en) Adjustable transistor body bias network
EP0321226A1 (en) Intermediate potential generation circuit for generating a potential intermediate between a power source potential and ground potential
US6768689B2 (en) Semiconductor memory device
US9454165B2 (en) Semiconductor device and current control method that controls amount of current used for voltage generation based on connection state of external capacitor
TWI301976B (en) Internal voltage generating circuit in semiconductor memory device
JP3994098B2 (en) Method and circuit for testing a regulated power supply in an integrated circuit
JP2003223787A (en) Internal power voltage generating circuit
US6806691B2 (en) Regulator circuit for independent adjustment of pumps in multiple modes of operation
US20070236840A1 (en) Power-On Reset Circuit
KR100221799B1 (en) Mode circuit and mode device
JPH03205683A (en) Semiconductor integrated circuit device
US20120229183A1 (en) Power-on reset circuit and electronic device having the same
KR100818655B1 (en) Power-up signal Generator
JPH03208107A (en) Reference level generation circuit
KR20070079111A (en) Circuit for generating reference voltage in semiconductor memory apparatus
JPH0246588A (en) Intermediate level generating circuit
CN109428479A (en) Power supply ready indicator circuit
JP4080696B2 (en) Semiconductor integrated circuit
US8030958B2 (en) System for providing a reference voltage to a semiconductor integrated circuit
KR20050021033A (en) Negative drop voltage generator for use in semiconductor memory device and control method for generating negative drop voltage