JPH0320437A - High density phase boron nitride-phase sintered compact and composite sintered compact - Google Patents

High density phase boron nitride-phase sintered compact and composite sintered compact

Info

Publication number
JPH0320437A
JPH0320437A JP1153215A JP15321589A JPH0320437A JP H0320437 A JPH0320437 A JP H0320437A JP 1153215 A JP1153215 A JP 1153215A JP 15321589 A JP15321589 A JP 15321589A JP H0320437 A JPH0320437 A JP H0320437A
Authority
JP
Japan
Prior art keywords
phase
sintered body
boron nitride
density
sintered compact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1153215A
Other languages
Japanese (ja)
Other versions
JP2805339B2 (en
Inventor
Yoshiyuki Uchiumi
義之 内海
Ryo Yamaya
山家 菱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tungaloy Corp
Original Assignee
Toshiba Tungaloy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Tungaloy Co Ltd filed Critical Toshiba Tungaloy Co Ltd
Priority to JP1153215A priority Critical patent/JP2805339B2/en
Publication of JPH0320437A publication Critical patent/JPH0320437A/en
Application granted granted Critical
Publication of JP2805339B2 publication Critical patent/JP2805339B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain a high density phase BN-base sintered compact excellent in wear resistance and chipping resistance by combining the rigid phase of BN with a binding phase having a specific composition consisting of metal carbides, nitrides, oxides, and borides and W or Mo with specific ratio. CONSTITUTION:A sintered compact is constituted of 20-90wt.% rigid phase of cubic and/or wurtzite BN and the balance binding phase with inevitable impurities. The above binding phase is constituted of 50-75% first binding phase consisting of one or more kinds among the carbides and nitrides of Ti, Zr, and Hf and mutual solid solutions thereof, 0.5-5% second binding phase consisting of one or more kinds among the carbides of W and Mo and mutual solid solutions thereof, 1-10% third binding phase consisting of one or more kinds among the borides of Ti, Zr, Hf, W, Mo, and Al and mutual solid solutions thereof, 1-40% fourth binding phase consisting of one or more kinds among the nitrides of Al, the oxides of Al, Zr, and Hf, and mutual solid solutions thereof, and 0.5-5% fifth binding phase consisting of one or more kinds among W, Mo, and alloys thereof. By this method, the high density phase BN-base sintered compact remarkably improved in wear resistance and chipping resistance can be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は,ドリル.エンドミル,フライスエ具又は旋削
工具などに用いる切削工具用材料もしくはスリッター.
ダイスなどに用いる酎摩耗工具用材料として適する高密
度相窒化ホウ素基焼結体及びその焼結体を超硬合金の基
材の表面に接合してなる複合焼結体に関するものである
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a drill. Cutting tool materials or slitters used for end mills, milling tools, turning tools, etc.
The present invention relates to a high-density phase boron nitride-based sintered body suitable as a material for hard-wearing tools used in dies, etc., and a composite sintered body formed by bonding the sintered body to the surface of a cemented carbide base material.

(従来の技術) 立方品窒化ホウ素やウルツ鉱型窒化ホウ素のような高密
度相窒化ホウ素は,ダイヤモンドに次いで高硬度であり
、しかも鉄との親和性が高いダイヤモンドと異なり、鉄
との親和性が低いという工具材料としてのすぐれた長所
を有している.このことから高密度相窒化ホウ素に結合
相を加えて焼結した高密度相窒化ホウ素基焼結体は、鉄
系材料、特に従来の工具材料では加工が困難とされてい
る高硬度鋼や耐熱合金などの難削材料を切削加工するた
めの工具材料として注目されている。
(Prior art) Dense phase boron nitride, such as cubic boron nitride and wurtzite boron nitride, has the second highest hardness after diamond, and unlike diamond, which has a high affinity for iron, it has a low affinity for iron. It has an excellent advantage as a tool material in that it has a low Therefore, high-density boron nitride-based sintered bodies made by adding a binder phase to high-density boron nitride can be used with iron-based materials, especially high-hardness steels and heat-resistant steels that are difficult to machine with conventional tool materials. It is attracting attention as a tool material for cutting difficult-to-cut materials such as alloys.

この高密度相窒化ホウ素基焼結体の諸特性は、この焼結
体中に含有している結合相の種類により強く影響を受け
る傾向にある.この高密度相窒化ホウ素基焼結体におけ
る結合相に関しての提案が多数されており、その代表的
なものに特開昭56−9279号公報及び特開昭55−
 113859号公報がある.また,高密度相窒化ホウ
素基焼結体は,高価であることから超硬合金の基Hの表
面に必要最小限度の所定形状でなる高密度相窒化ホウ素
基焼結体を接合した複合焼結体として用いられる場合が
一般的である.この複合焼結体に関しての提案の代表的
なものに,特開昭62− 260005号公報がある。
The various properties of this high-density phase boron nitride-based sintered body tend to be strongly influenced by the type of binder phase contained in this sintered body. Many proposals regarding the binder phase in this high-density phase boron nitride-based sintered body have been made, the representative ones being JP-A-56-9279 and JP-A-55-9279.
There is a publication No. 113859. In addition, since high-density phase boron nitride-based sintered bodies are expensive, composite sintered bodies in which a high-density phase boron nitride-based sintered body with a predetermined minimum required shape is bonded to the surface of a cemented carbide base H are used. It is generally used as a body. A typical proposal regarding this composite sintered body is JP-A-62-260005.

(発明が解決しようとする問題点) 特開昭56− 9279号公報には,高密度相窒化ホウ
素粉末30〜80vog%と,残部の結合相がW粉末及
びWC粉末の1種以上3〜IOwt%AJ2粉末及びT
iと^氾の金属間化合物粉末の1種以上5〜20wt%
TiN−(Xは原子比で0.9以下)粉末残部の割合で
混合.焼結して、結合相中のW又はWの硼化物結晶の大
部分が1μm以下の微細粒子よりなる切削工具用焼結体
が開示されている.この同公報の切削工具用焼結体は、
Goなどの鉄族金属の結合相で結合してなる従来の高密
度相窒化ホウ素基焼結体の有している問題、例えば軟化
による耐摩耗性の低下や被削材金属との溶着のし易さと
いう問題を解決したすぐれたものであるけれども、耐摩
耗性及び耐欠損性がまだ満足されず、特に高密度相窒化
ホウ素の含有量の多い焼結体にして、これを超硬合金の
基材に接合してなる複合焼結体にする場合には接合強度
が低く、欠損し易いという問題がある. 特開昭55一目3859号公報には、高密度相窒化ホウ
素30〜80voJ%と残り結合相とからなり、該結合
相が ■窒化チタンもしくは窒化チタン30wL%以上
〜I00wL%未満と、OwL%を超え、70wt%以
下の窒化チタン以外の周期律表4a, 5a, 6a族
金属の窒化物.炭化物.炭窒化物.硼化物の1種又は2
種以上、 ■さらにAAとT1もしくはTi以外の周期
律表4a.’5a.6a族金属の間に生じる金属間化合
物、 AJ2とSi, Cu, Mg, Ni. Mn
. Znの間に生じる合金、Ifの窒化物、Ifの硼化
物の1種又は2種以上、■と■からなり,結合相中のA
フの含有量が収量で!O%を超え、40%未満であり,
且つ結合相の結合粒子の大部分が1μm以下の微細粒子
よりなる切削工具用焼結体が開示されている.この同公
報の切削工具用焼結体は、窒化チタンとAfiを含む化
合物を主体とした結合相を用いることにより,従来の焼
結体に比べて耐摩耗性及び靭件のすぐれたものであるけ
れども、 ^氾とTiのような金属間化合物の存在した
焼結体であるために、特に耐摩耗性に劣るという問題が
ある.特開昭62− 260005号公報には、平均粒
径が10μm以fの高密度相窒化ホウ素を80voJ2
%を超え95voJ!%以下含有し,残部の結合相がT
i, Zr. llfの炭化物.窒化物,炭窒化物の1
種もしくは混合物あるいは相互固溶体化合物及び,lの
化合物より成り,結合相中の^2の含有量が5〜30w
t%であって、且つ結合相の結合粒子の大部分が1μm
以下の微細粒子よりなり、さらに該結合相中にCu及び
鉄族金属元素を!〜20wL%、両者の比率で172〜
5含有する焼結体と,高密度相窒化ホウ素の含有率が7
0voJi%未満で残部がTi. Zr. Hfの炭化
物.窒化物.炭窒化物のl種もしくはこれらの混合物又
は相互固溶体を主体としたものとこれに^氾又はSiを
0. Iwt%以上含有する厚み2mm以下の中間接合
相を介して、超硬合金基材に接合した工具用複合焼結体
が開示されている.この同公報の複合焼結体は,高密度
相窒化ホウ素を多量に含有してなる焼結体を超硬合金の
基材の表面に直接接合する場合に、接合強度が低いとい
う問題に対して、焼結体と基材との間に高密度相窒化ホ
ウ素の含有量の少い焼結体を中間接合相として介在させ
ることにより解決したすぐれたものであるけれども、焼
結体自体の耐摩耗性が劣るという問題がある. 本発明は、上述のような問題点を解決したもので、具体
的には,高密度相窒化ホウ素とこの高密度相窒化ホウ素
に最適な結合相とを組合わせることにより゜耐摩耗性及
び耐欠損性を顕著に向上させた高密度相窒化ホウ素基焼
結体及びその焼結体を超硬合金の基材の表面に接合して
なる複合焼結体の提供を目的とするものである6 (問題点を解決するための手段) 本発明者らは、従来の高密度相窒化ホウ素基焼結体を切
削工具用部材として用いて浸炭焼入れ鋼を切削すると短
寿命で満足できるものでないということから、高密度相
窒化ホウ素基焼結体の工具寿命向上を図るための検討を
行っていた所,第重に工具の寿命は,焼結体中の高密度
相窒化ホウ素の硬質相の含有量及び粒径により影響が及
ぼされるけれども,焼結体中の結合相を選定し、それを
組合わせる方が工員寿命へはるかに大きな影響を及ぼす
こと、特に焼結時において,反応焼結を行わせることに
より焼結体中の結合相を組合わせることが工具寿命への
効果及び工具寿命への安定化に影響を及ぼすという知見
を得たものである. 第2に工具寿命を向上させるための最適な結合相として
は、周期律表48族金属の炭窒化物と周期律表6a族、
特に11. Moの炭化物と■. Moの金属とを含有
している場合が耐摩耗性及び耐欠損性の両方をバランス
よく向上させ,高密度相窒化ホウ素基焼結体の寿命を向
上させ得るという知見を得たものである.この第1及び
第2の知見に基づいて本発明を完成するに至ったもので
ある。
(Problems to be Solved by the Invention) JP-A No. 56-9279 discloses that the high-density phase boron nitride powder is 30 to 80 vog%, and the remaining binder phase is 3 to IOwt of one or more of W powder and WC powder. %AJ2 powder and T
5 to 20 wt% of one or more types of intermetallic compound powders of i and ^flood
TiN- (X is 0.9 or less in atomic ratio) mixed in the proportion of powder remaining. A sintered body for a cutting tool is disclosed in which most of the W or W boride crystals in the binder phase are fine particles of 1 μm or less. The sintered body for cutting tools of this publication is
Problems associated with conventional high-density phase boron nitride-based sintered bodies that are bonded with a binder phase of iron group metals such as Go, such as a decrease in wear resistance due to softening and difficulty in welding to the workpiece metal. Although this is an excellent product that solves the problem of ease of use, wear resistance and chipping resistance are still unsatisfactory. When making a composite sintered body by bonding it to a base material, there is a problem that the bonding strength is low and it is easy to break. Japanese Unexamined Patent Application Publication No. 55 Ichimoku No. 3859 discloses that the high-density phase consists of 30 to 80 voJ% of boron nitride and the remaining bonding phase, and the bonding phase is: (1) titanium nitride or titanium nitride 30wL% or more to less than I00wL%, and OwL%. Nitrides of metals from groups 4a, 5a, and 6a of the periodic table other than titanium nitride in an amount exceeding 70 wt%. carbide. Carbonitride. One or two borides
Species or higher, ■Furthermore, periodic table 4a other than AA and T1 or Ti. '5a. Intermetallic compounds that occur between group 6a metals, AJ2 and Si, Cu, Mg, Ni. Mn
.. It consists of an alloy formed between Zn, one or more of If nitride, If boride, ■ and ■, and A in the binder phase.
The content of fu is determined by the yield! more than 0% and less than 40%,
Further, a sintered body for a cutting tool is disclosed in which most of the binding particles of the binding phase are fine particles of 1 μm or less. The sintered body for cutting tools disclosed in this publication has superior wear resistance and toughness compared to conventional sintered bodies by using a binder phase mainly composed of a compound containing titanium nitride and Afi. However, since it is a sintered body containing intermetallic compounds such as Ti and Ti, it has a problem of poor wear resistance. JP-A No. 62-260005 discloses that high-density phase boron nitride with an average particle size of 10 μm or more is used at 80voJ2.
95voJ over %! % or less, with the remainder of the binder phase being T.
i, Zr. llf carbide. Nitride, carbonitride 1
It consists of a species or a mixture or a mutual solid solution compound and a compound of l, and the content of ^2 in the binder phase is 5 to 30w
t%, and most of the binder particles of the binder phase are 1 μm
It consists of the following fine particles, and further contains Cu and iron group metal elements in the binder phase! ~20wL%, the ratio of both is 172~
The sintered body containing 5 and the content of high density phase boron nitride is 7
Less than 0voJi% and the remainder is Ti. Zr. Carbide of Hf. Nitride. Carbonitride, a mixture thereof, or a mutual solid solution as the main component, and this with 0.0% of carbonitride or Si. A composite sintered body for a tool is disclosed which is bonded to a cemented carbide base material via an intermediate bonding phase having a thickness of 2 mm or less and containing Iwt% or more. The composite sintered body disclosed in this publication solves the problem of low bonding strength when directly bonding a sintered body containing a large amount of high-density phase boron nitride to the surface of a cemented carbide base material. Although this problem was solved by interposing a sintered body with a low content of high-density boron nitride between the sintered body and the base material as an intermediate bonding phase, the wear resistance of the sintered body itself There is a problem of inferiority. The present invention solves the above-mentioned problems. Specifically, by combining high-density phase boron nitride and a binder phase optimal for this high-density phase boron nitride, wear resistance and resistance are improved. The object of the present invention is to provide a high-density phase boron nitride-based sintered body with significantly improved defectivity and a composite sintered body formed by bonding the sintered body to the surface of a cemented carbide base material6. (Means for Solving the Problem) The present inventors have discovered that when carburized and hardened steel is cut using a conventional high-density phase boron nitride-based sintered body as a cutting tool member, the tool life is short and unsatisfactory. Therefore, we were conducting a study to improve the tool life of high-density boron nitride-based sintered bodies, and found that tool life depends primarily on the content of the hard phase of high-density boron nitride in the sintered body. Although it is influenced by the binder phase and particle size, selecting the binder phase in the sintered body and combining it has a much greater influence on the life of the worker, especially during sintering. As a result, we obtained the knowledge that combining the binder phases in the sintered body has an effect on tool life and stabilization of tool life. Second, the most suitable binder phases for improving tool life are carbonitrides of metals from group 48 of the periodic table, metals from group 6a of the periodic table,
Especially 11. Mo carbide and ■. We have obtained the knowledge that when Mo metal is contained, both wear resistance and chipping resistance can be improved in a well-balanced manner, and the life of high-density phase boron nitride-based sintered bodies can be extended. The present invention was completed based on these first and second findings.

すなわち、本発明の高密度相窒化ホウ素基焼結体は、立
方晶窒化ホウ素及び/又はウルツ鉱型窒化ホウ素の硬質
相20〜90wt%と、残りが結合相と不可避不純物と
からなる焼結体であって,該結合相がTi. Zr. 
Iffの炭化物,窒化物及びこれらの相互固溶体の中の
少なくともl種の第1結合相5〜75wt%と, !,
 Moの炭化物及びこれらの相互固溶体の中の少なくと
もI種の第2結合相0.5〜5wt%と、Ti, Zr
. tlr. If. Mo.^Lのホウ化物及びこれ
らの相互固溶体の中の少なくともtSの第3結合相1〜
lOwt%と、Aフの窒化物,  An, Zr,1{
fの酸化物及びこれらの相互固溶体の中の少なくとも1
種の第4結合相1〜40wt%と,胃.&IO及びこれ
らの合金の中の少なくとも1P1の第5結合相0.5〜
5wt%(以上,焼結体全体に対する比率)とでなるこ
とを特徴とするものである.本発明の高密度相窒化ホウ
素基焼結体における硬質相は、平均粒径が10μm以下
と従来から用いられている粒径のものでも、その効果を
発揮することができるけれども、製造管理上の問題及び
その焼結体の効果を安定に発揮させるために、特に平均
粒径5μm以下であることが好ましいものである.この
硬質相が9(lwt%を超えて多くなると緻密な焼結体
を得るのが困難になり、逆に20wL%未満になると耐
欠損性の低下となる。このために、硬質相量は20〜9
0wt%と定めたものである.本発明の高密度相窒化ホ
ウ素基焼結体における結合相は,反応焼結により形成さ
れる58類の結合相からなり、特に硬質相を形成するた
めに用いる立方品窒化ホウ素(CBN)粉末やウルツ鉱
型窒化ホウ素(IIBN)粉末と他の出発物質との反応
焼結及び他の出発物質相互間の反応焼結によって,形成
されるために.5a類の結合相からなっているものであ
る.この5種類の結合相の内、第1結合相が5wt%未
満になると耐熱性及び耐溶着性が低下し、逆に75wt
%を超えて多くなると相対的に他の結合相が少なく、硬
質相が多くなって耐欠損性の低下となる.第2結合相が
0、Swt%未満になると耐熱性の低下となり、逆に5
wt%を超えて多くなると多量のWやMoのホウ化物の
析出により、耐欠損性の低下となる.第3結合相がlw
t%未満になると高温時の耐摩耗性の低下となり、逆に
10Wシ%を超えて多くなると耐欠損性の低下となる。
That is, the high-density phase boron nitride-based sintered body of the present invention is a sintered body consisting of 20 to 90 wt% of a hard phase of cubic boron nitride and/or wurtzite boron nitride, and the remainder is a binder phase and unavoidable impurities. wherein the bonded phase is Ti. Zr.
5 to 75 wt % of a first binder phase of at least l types of carbides, nitrides, and mutual solid solutions thereof of Iff; ,
0.5 to 5 wt% of a second binder phase of at least I species in a carbide of Mo and a mutual solid solution thereof, and Ti, Zr.
.. tlr. If. Mo. ^L borides and a third bonded phase 1 to at least tS in their mutual solid solution
lOwt% and A nitride, An, Zr, 1{
at least one of the oxides of f and their mutual solid solution
1 to 40 wt % of a fourth binder phase of seeds and stomach. &IO and a fifth binder phase of at least 1P1 in these alloys 0.5~
5wt% (the above is the ratio to the entire sintered body). Although the hard phase in the high-density phase boron nitride-based sintered body of the present invention can exhibit its effect even if it has an average grain size of 10 μm or less, which has been conventionally used, In order to stably exhibit the effects of the problem and the sintered body, it is particularly preferable that the average particle size is 5 μm or less. If the amount of this hard phase exceeds 9 (lwt%), it becomes difficult to obtain a dense sintered body, and conversely, if it becomes less than 20 wL%, the fracture resistance will decrease. ~9
It is set as 0wt%. The binder phase in the high-density boron nitride-based sintered body of the present invention consists of 58 kinds of binder phases formed by reaction sintering, and in particular, the cubic boron nitride (CBN) powder used to form the hard phase. To be formed by reaction sintering of wurtzite boron nitride (IIBN) powder with other starting materials and with each other. It consists of a bonded phase of class 5a. Among these five types of binder phases, if the first binder phase is less than 5wt%, the heat resistance and welding resistance will decrease;
When the amount exceeds %, the amount of other binder phases becomes relatively small and the hard phase increases, resulting in a decrease in fracture resistance. If the second binder phase is less than 0.Swt%, the heat resistance will decrease;
If the amount exceeds wt%, a large amount of W and Mo borides will precipitate, resulting in a decrease in fracture resistance. The third bonded phase is lw
When the content is less than t%, the wear resistance at high temperatures decreases, and conversely, when the content exceeds 10W%, the fracture resistance decreases.

第4結合相が1冑t%未満になると耐酸化性の低下とな
り、逆に40wL%を超えて多くなると耐欠損性の低下
となる.第5結合相が0.5wt%未満になると高温時
の強度の低下となり、5wt%を超えて多くなると耐摩
耗性の低下となる。これらの5種類の結合相の含有皿、
特に後述するような複合の反応焼結によって形成される
結合相を微量にバランスよく調整することにより,焼結
体の諸特性がバランスよくすぐれたものになっている. 本発明の高密度相窒化ホウ素基焼結体は、従来の焼結体
と同様に高圧高温焼結によって得ることができるけれど
も,特に、結合相を形成するための出発物質相互間の複
合の反応、及びこの結合相を形成するための出発物質と
硬質相を形成するための出発物質との反応により本発明
の焼結体を作製するのが製造上及び得られる焼結体の諸
特性上好ましいことであ、る。
When the amount of the fourth binder phase is less than 1% by weight, the oxidation resistance decreases, and conversely, when the amount exceeds 40wL%, the fracture resistance decreases. If the content of the fifth binder phase is less than 0.5 wt%, the strength at high temperatures will decrease, and if it exceeds 5 wt%, the wear resistance will decrease. A dish containing these five types of bonded phases,
In particular, by adjusting the amount of the binder phase formed by composite reaction sintering as described below in a well-balanced manner, the various properties of the sintered body are made to be well-balanced and excellent. Although the high-density phase boron nitride-based sintered body of the present invention can be obtained by high-pressure, high-temperature sintering like conventional sintered bodies, in particular, the complex reaction between the starting materials to form the binder phase It is preferable in terms of production and various properties of the obtained sintered body to produce the sintered body of the present invention by reacting the starting material for forming the binder phase with the starting material for forming the hard phase. By the way, there is.

この本発明の高密度相窒化ホウ素基焼結体を従来の焼結
体と同様に、例えばIC−Co系超硬合金の基材の表面
に接合した複合焼結体として用いることは強度及び経済
上から好ましいことである。この焼結体と超硬合金とを
接合する場合は,従来と同様に例えば八g鑞を介在して
接合する方法,又は高圧高温焼結時に焼結体と超硬合金
を直接接合する方法でもよいけれども、後者の場合には
,特に本発明の焼結体中に含有している第2結合相と第
5結合相が超硬合金の基材との密着性を高めるので好ま
しいことである。また,本発明の高密度相窒化ホウ素基
焼結体の内,特に高密度相窒化ホウ素の含有量の多い組
成成分でなる場合は、焼結体と基材との間に、高密度相
窒化ホウ素の含有量の少ない焼結体を中間層として介在
させることが好ましいことである.この中間層は、基材
の成分と高密度相窒化ホウ素基焼結体の成分との両方の
共通成分,すなわち,例えば炭化タングステンを含有し
ていることが特に好ましく、さらに好ましいのはIwt
%以下の微量のCo及び/又はNiをも含有してなる場
合である.この中間層の厚さは、焼結体と基材との接合
に寄与するための厚さであればよ<、製造の容易性を加
味して例えばlO〜100μm程度の厚さで充分である
Similar to conventional sintered bodies, the high-density phase boron nitride-based sintered body of the present invention can be used as a composite sintered body bonded to the surface of an IC-Co cemented carbide base material, for example, for strength and economy. This is preferable from above. When joining this sintered body and cemented carbide, it is possible to use the conventional method of joining, for example, with an 8g solder, or to directly join the sintered body and cemented carbide during high-pressure, high-temperature sintering. However, in the latter case, it is particularly preferable because the second binder phase and the fifth binder phase contained in the sintered body of the present invention improve the adhesion to the cemented carbide base material. In addition, among the high-density phase boron nitride-based sintered bodies of the present invention, when the composition has a composition with a particularly high content of high-density phase boron nitride, there is a high-density phase boron nitride-based sintered body between the sintered body and the base material. It is preferable to interpose a sintered body with a low boron content as an intermediate layer. This intermediate layer particularly preferably contains a common component of both the base material component and the high-density phase boron nitride-based sintered body, ie, for example, tungsten carbide, more preferably Iwt.
% or less of Co and/or Ni. The thickness of this intermediate layer may be as long as it contributes to the bonding between the sintered body and the base material. Considering ease of manufacture, for example, a thickness of about 10 to 100 μm is sufficient. .

(作用) 本発明の高密度相窒化ホウ素基焼結体は、第1結合相が
耐熱性及び耐溶着性を高める作用をし,第2結合相が第
1結合相の耐熱性を高めるための促進作用となり、第3
結合相が高温における耐摩耗性及び耐欠損性を高める作
用をし,第4結合相が耐酸化性及び耐溶着性を高める作
用をし、第5結合相が高温での強度を高める作用をして
いるものである。また、本発明の高密度相窒化ホウ素基
焼結体を超硬合金の基材に接合して複合焼結体にする場
合は,第2結合相と第5結合相の両方が基材との接合強
度を高める作用をしているものである. (実施例) 平均粒径2μmのCIIN粒と、平均粒径IALm以下
のTiC, Ti(C,Nl. TiN. llrc.
 ZrN. IIIc, Mo*Cの各種市販の粉末と
、他にlとTi, TiN.A4Nを組合わせて作製し
たTiAjt ,  TiAJ2 ++,TiJQN,
 TiAI2Nの金属間化合物を出発物質として用いて
配合し、この配合粉末とボールとヘキサンとをポリアセ
タールで内張リしたステンレス製容器に入れて混合粉砕
後、乾燥及び篩別して混合粉末を得た。この混合粉末を
形押し成形後,1×10−’Toor,  800℃の
条件で真空熱処理し,次いで超高圧高温装置にセットし
,圧力6 GPa,温度1600℃,保持時間15分の
条件で焼結し、CBN焼結体を作製した.こうして得た
CBN焼結体をXla回折9Xiマイクロアナリシスに
より調べて,各試料の焼結体組成を第l表に示した。
(Function) In the high-density phase boron nitride-based sintered body of the present invention, the first binding phase acts to increase heat resistance and welding resistance, and the second binding phase acts to increase the heat resistance of the first binding phase. It becomes a promoting effect, and the third
The binder phase acts to increase wear resistance and chipping resistance at high temperatures, the fourth binder phase acts to increase oxidation resistance and welding resistance, and the fifth binder phase acts to increase strength at high temperatures. It is something that Furthermore, when the high-density phase boron nitride-based sintered body of the present invention is bonded to a cemented carbide base material to form a composite sintered body, both the second bonding phase and the fifth bonding phase are bonded to the base material. This has the effect of increasing joint strength. (Example) CIIN grains with an average grain size of 2 μm and TiC, Ti(C,Nl.TiN.llrc.
ZrN. Various commercially available powders of IIIc, Mo*C, and other powders such as Ti, Ti, TiN. TiAjt, TiAJ2++, TiJQN, prepared by combining A4N,
An intermetallic compound of TiAI2N was used as a starting material and blended, and the blended powder, balls, and hexane were placed in a stainless steel container lined with polyacetal, mixed, ground, dried, and sieved to obtain a mixed powder. After this mixed powder was pressed, it was vacuum heat-treated at 1 x 10-'Toor and 800°C, and then placed in an ultra-high pressure and high temperature device, and baked at a pressure of 6 GPa, a temperature of 1600°C, and a holding time of 15 minutes. A CBN sintered body was produced. The CBN sintered bodies thus obtained were examined by Xla diffraction 9Xi microanalysis, and the sintered body compositions of each sample are shown in Table 1.

第1表に示した本発明品1〜6と本発明を外れた比較品
1〜6の他に、市販のCBN焼結体を比較品7.8(比
較品7は、50wt%CBN −30wt%TiN−I
Owt%^AN−5wt%TiBz−5wt%WC.比
較品8は、85wt%CBN − lOwt% AI2
N −5wt%Co組成)として加えて,下記(A)及
び+81の条件でもって切削試験を行い、その結果を第
2表に併記した.この第2表の切削試験に用いた各試料
は、肛−!0%Co超硬合金を基材に直接接合してなる
複合焼結体の構造にして試験を行い、この内、本発明品
1〜3は基材と焼結体との間に、それぞれ60冒t%C
BN  −30wt%TiC  −  9.5wt%W
C−0.5wt%Co, 50wt%CON −40w
t%TiC − 9、5wt96WC − 0. 5w
t%Co, 40wL%CBN −50wL%TiC 
− 9.5wt%WC一0. 5wt%Coの中間層を
介在して複合焼結体とした. {^} (81 切削試験条件 被削材 切削速度 切込み量 送  り チップ形状 ホルダー 評  価 切削試験条件 被削材 切削速度 切込み量 送  り ?耐摩耗性) SCM 415浸炭材 {11■C 59〜61}の外
周乾式切削 100 m/min 0.25mm O. l mm/rev SNGN 12040B CSBNR 2020 平均逃げ面摩耗量 Va=0.2mm になる迄の切削時間 (耐欠損性) SCM 435浸炭材 (olle 59〜61)直径
50φmII1の外周に幅8mm.深さ5++n+の9
0@の角溝を艮手方向に等間隔に2本入れたもので外 周断続切削 10ロ n+/Ilin 0.25mm IO分迄は0.l5mm/rev. 10分後は0.1
75  mm/rev チップ形状 TNGN 160408 [0.IX (
 −25 @)X0.02R  ネーニング1 ホルダー 評  価 CTGNR  2020 欠損する迄の時間(各試料IO回 行い、その平均値で表示〉 以下余白 (発明の効果) 以上の結果から、本発明の高密度相窒化ホウ素基焼結体
は,本発明から外れた組成成分の焼結体及び市販の焼結
体でなる、それぞれの比較の高密度相窒化ホウ素基焼結
体に比べて耐摩耗性の切削試験において、約2〜8倍、
耐欠損性の切削試験において、約2.5〜9倍も向上す
るという顕著な効果がある。
In addition to the inventive products 1 to 6 shown in Table 1 and comparative products 1 to 6 that differ from the present invention, commercially available CBN sintered bodies were used as comparative product 7.8 (comparative product 7 is 50wt% CBN-30wt %TiN-I
Owt%^AN-5wt%TiBz-5wt%WC. Comparative product 8 is 85wt% CBN-lOwt% AI2
In addition, cutting tests were conducted under the following conditions (A) and +81, and the results are also listed in Table 2. Each sample used in the cutting test in Table 2 is anal-! Tests were conducted using a composite sintered body structure made by directly bonding 0% Co cemented carbide to a base material. blasphemy%C
BN-30wt%TiC-9.5wt%W
C-0.5wt%Co, 50wt%CON -40w
t%TiC-9, 5wt96WC-0. 5w
t%Co, 40wL%CBN -50wL%TiC
-9.5wt%WC-0. A composite sintered body was made with an intermediate layer of 5 wt% Co interposed. {^} (81 Cutting test conditions Work material Cutting speed Depth of cut Feed Chip shape Holder evaluation Cutting test conditions Work material Cutting speed Depth of cut Feed? Wear resistance) SCM 415 carburized material {11■C 59~61 } outer periphery dry cutting 100 m/min 0.25 mm O. l mm/rev SNGN 12040B CSBNR 2020 Cutting time until average flank wear amount Va=0.2mm (fracture resistance) SCM 435 carburized material (OLLE 59-61) 8mm wide on the outer periphery of diameter 50φmII1. 9 with depth 5++n+
Two square grooves of 0 @ are placed at equal intervals in the direction of the handle, and the outer circumference is interrupted by 10 mm. n+/Ilin 0.25 mm 0. l5mm/rev. 0.1 after 10 minutes
75 mm/rev Chip shape TNGN 160408 [0. IX (
-25 @) The boron nitride-based sintered body was tested for wear resistance compared to the comparative high-density boron nitride-based sintered body, which is a sintered body with a composition different from that of the present invention and a commercially available sintered body. In, about 2 to 8 times,
In the cutting test for fracture resistance, there is a remarkable effect of improving the fracture resistance by about 2.5 to 9 times.

Claims (3)

【特許請求の範囲】[Claims] (1)立方晶窒化ホウ素及び/又はウルツ鉱型窒化ホウ
素の硬質相20〜90wt%と、残り結合相と不可避不
純物とからなる焼結体において、該結合相がTi,Zr
,Hfの炭化物,窒化物及びこれらの相互固溶体の中の
少なくとも1種の第1結合相5〜75wt%と、W,M
oの炭化物及びこれらの相互固溶体の中の少なくとも1
種の第2結合相0.5〜5wt%と、Ti,Zr,Hf
,W,Mo,Alのホウ化物及びこれらの相互固溶体の
中の少なくとも1種の第3結合相1〜10wt%と、A
lの窒化物,Al,Zr,Hfの酸化物及びこれらの相
互固溶体の中の少なくとも1種の第4結合相1〜40w
t%と、W,Mo及びこれらの合金の中の少なくとも1
種の第5結合相0.5〜5wt%(以上、焼結体全体に
対する比率)とでなることを特徴とする高密度相窒化ホ
ウ素基焼結体。
(1) A sintered body consisting of 20 to 90 wt% of a hard phase of cubic boron nitride and/or wurtzite boron nitride, and the remaining binder phase and unavoidable impurities, where the binder phase is Ti, Zr
, Hf carbide, nitride, and a mutual solid solution of these, 5 to 75 wt% of the first binder phase;
o carbides and at least one of these mutual solid solutions
0.5 to 5 wt% of the second binder phase of the species, and Ti, Zr, Hf
, W, Mo, Al, and at least one third binder phase among borides and mutual solid solutions thereof;
1 to 40w of at least one fourth binder phase among nitrides of l, oxides of Al, Zr, and Hf, and mutual solid solutions thereof;
t% and at least one of W, Mo and alloys thereof
A high-density phase boron nitride-based sintered body comprising 0.5 to 5 wt% of a fifth binder phase (the above is the ratio to the entire sintered body).
(2)特許請求の範囲第1項記載の高密度相窒化ホウ素
基焼結体を超硬合金の基材の表面に接合してなることを
特徴とする複合焼結体。
(2) A composite sintered body, characterized in that the high-density phase boron nitride-based sintered body according to claim 1 is bonded to the surface of a cemented carbide base material.
(3)上記高密度相窒化ホウ素基焼結体と上記基材との
間に該高密度相窒化ホウ素基焼結体に比べて高密度相窒
化ホウ素の含有量の少ない窒化ホウ素基焼結体を中間層
としてて介在させてなることを特徴とする複合焼結体。
(3) A boron nitride-based sintered body having a lower content of high-density-phase boron nitride than the high-density phase boron nitride-based sintered body between the high-density phase boron nitride-based sintered body and the base material. 1. A composite sintered body characterized by comprising: intervening as an intermediate layer.
JP1153215A 1989-06-15 1989-06-15 High density phase boron nitride based sintered body and composite sintered body Expired - Lifetime JP2805339B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1153215A JP2805339B2 (en) 1989-06-15 1989-06-15 High density phase boron nitride based sintered body and composite sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1153215A JP2805339B2 (en) 1989-06-15 1989-06-15 High density phase boron nitride based sintered body and composite sintered body

Publications (2)

Publication Number Publication Date
JPH0320437A true JPH0320437A (en) 1991-01-29
JP2805339B2 JP2805339B2 (en) 1998-09-30

Family

ID=15557566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1153215A Expired - Lifetime JP2805339B2 (en) 1989-06-15 1989-06-15 High density phase boron nitride based sintered body and composite sintered body

Country Status (1)

Country Link
JP (1) JP2805339B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012105710A1 (en) * 2011-02-04 2012-08-09 株式会社タンガロイ cBN SINTERED MATERIAL TOOL AND COATED cBN SINTERED MATERIAL TOOL
US20160236988A1 (en) * 2013-10-22 2016-08-18 Tungaloy Corporation Cubic boron nitride sintered body and coated cubic boron nitride sintered body

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012105710A1 (en) * 2011-02-04 2012-08-09 株式会社タンガロイ cBN SINTERED MATERIAL TOOL AND COATED cBN SINTERED MATERIAL TOOL
US20160236988A1 (en) * 2013-10-22 2016-08-18 Tungaloy Corporation Cubic boron nitride sintered body and coated cubic boron nitride sintered body
US9950962B2 (en) * 2013-10-22 2018-04-24 Tungaloy Corporation Cubic boron nitride sintered body and coated cubic boron nitride sintered body

Also Published As

Publication number Publication date
JP2805339B2 (en) 1998-09-30

Similar Documents

Publication Publication Date Title
JP5680567B2 (en) Sintered body
US8679208B2 (en) Cubic boron nitride compact
JPS62228449A (en) Sintered compact for high hardness tool and its production
US20080226897A1 (en) Cubic Boron Nitride Compacts
JP4065666B2 (en) High crater resistance High strength sintered body
JP5157056B2 (en) Cubic boron nitride sintered body, coated cubic boron nitride sintered body, and cutting tool for hardened steel comprising the same
JPS6053721B2 (en) Composite sintered parts for cutting tools
JPS6043461A (en) Boron nitride-base sintered body having high-density phase and its manufacture
JPH0320437A (en) High density phase boron nitride-phase sintered compact and composite sintered compact
JPS6310201B2 (en)
JPS644989B2 (en)
JPS58164750A (en) Material sintered under superhigh pressure for cutting tool
JPH03131573A (en) Sintered boron nitrode base having high-density phase and composite sintered material produced by using the same
JP2502362B2 (en) High hardness sintered body for tools
JPS61179848A (en) High hardness sintered body for cutting
JPS61179847A (en) High hardness sintered body for cutting
JPH02236253A (en) High hardness sintered body for tool
JPS602378B2 (en) Cubic boron nitride-based ultra-high pressure sintered material for cutting tools
JPH075384B2 (en) Cubic boron nitride based sintered body
JPS6347763B2 (en)
JPS6014826B2 (en) High hardness sintered body for cutting
JPS58113349A (en) Cubic system boron nitride-base material to be sintered under superhigh pressure for wear resistant cutting tool
JPH01115873A (en) Sintered form containing boron nitride of cubic system
JPS6134130A (en) Manufacture of high strength cermet having superior chipping resistance
JPH0830239B2 (en) Sintered body for high hardness tool and manufacturing method thereof