JPH032009B2 - - Google Patents

Info

Publication number
JPH032009B2
JPH032009B2 JP60223158A JP22315885A JPH032009B2 JP H032009 B2 JPH032009 B2 JP H032009B2 JP 60223158 A JP60223158 A JP 60223158A JP 22315885 A JP22315885 A JP 22315885A JP H032009 B2 JPH032009 B2 JP H032009B2
Authority
JP
Japan
Prior art keywords
solid particles
impact
powder
particles
surface modification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60223158A
Other languages
Japanese (ja)
Other versions
JPS6283029A (en
Inventor
Yoriki Nara
Masumi Koishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nara Machinery Co Ltd
Original Assignee
Nara Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nara Machinery Co Ltd filed Critical Nara Machinery Co Ltd
Priority to JP60223158A priority Critical patent/JPS6283029A/en
Priority to EP86112228A priority patent/EP0224659B1/en
Priority to DE8686112228T priority patent/DE3687219T2/en
Priority to CN 86106765 priority patent/CN1007127B/en
Publication of JPS6283029A publication Critical patent/JPS6283029A/en
Priority to US07/183,297 priority patent/US4915987A/en
Publication of JPH032009B2 publication Critical patent/JPH032009B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、核となる粒子(以下母粒子という)
の表面にあらかじめ微粒子(以下子粒子という)
を付着させておくか、又は付着させずにおき、該
子粒子を母粒子の表面に埋設又は固着させて、母
粒子の表面改質を行なう方法に関する。 従来、一般に固体粒子の固結防止、変色変質防
止、分散性の向上、流動性の改善、触媒効果の向
上、消化・吸収の制御、磁気特性の向上、耐光性
の向上などを目的として各種の表面改質が、物理
吸着法、化学吸着法、真空蒸着法、静電付着法、
溶解物質の被覆法、特殊スプレードライング法な
どの方法で行われて来た。これらのうち、特に固
体粒子の表面を固体粒子で、即ち、粉体の表面を
粉体で表面改質する場合は、公知の各種ミキサー
型やボールミル型の撹拌機を使つて長時間(数時
間〜数十時間)撹拌し、撹拌に伴つて生ずる静電
現象やメカノケミカル現象を応用して改質を行つ
て来たが、母粒子に対する子粒子の密着性が十分
でなく、そのため改質後の粉体を次工程で混合,
混練,分散,ペースト化等の加工をする場合、子
粒子が簡単に脱落したり、成分偏析を生じたりし
てその操作条件を著しく制限するばかりでなく、
加工後の生産品の品質にバラツキが生じる最大の
原因となつていた。 さらにまた、上記の各種ミキサー、ボールミル
等を使用した粉体一粉体系の表面改質にあつて
は、一般に母粒子表面に対する子粒子の定着力が
弱いため、所望の表面改質を得るためには数時間
乃至数十時間を要し、そのため装置が大型とな
り、加工効率が極めて悪いなどの問題があつた。 本発明は前記事情に鑑みてなされたもので、従
来技術の問題点を解消し、第1図に示す如く、母
粒子の表面全域にわたつて子粒子を機能的手段に
より、必要に応じて補助的手段として熱的手段を
用いて強制的に埋設または固着させて強固に固定
化し、極めて短時間(数秒〜数分間)のうちに均
一な安定した粉体粒子の表面改質を行ない、それ
によつて機能性複合材料(ハイブリツドパウダ
ー)を得ることができる方法を提供するもので、
その要旨は、衝撃室内に、衝撃ピンを周設した回
転盤を配置すると共に、該衝撃ピンの最外周軌道
面に沿い、かつそれに対して一定の空間を置いて
衝突リングを配置し、前記衝撃ピンの回転によつ
て発生した気流を、前記衝撃室と、前記衝突リン
グの一部から前記回転盤の中心部付近に開口する
循環回路とに誘導・循環させ、該気流と共に粒径
100〜0.1μmの固体粒子の、該固体粒子よりも小
さな粒径10〜0.01μmの他の微小固体粒子とから
構成される粉体粒子群の全量を、繰り返し前記衝
撃室と前記循環回路とを通過させ、前記衝撃ピン
と、前記衝突リングとの間で前記固体粒子を粉砕
しない範囲の機械的打撃により、該固体粒子の表
面に前記他の微小固体粒子を付着させながら、ま
たは、付着させた後、該他の微小固体粒子を埋設
又は固着させることを特徴とする固体粒子の表面
改質方法。 本発明の方法で表面処理できる代表的母粒子粉
体としては、一般にその粒径が0.1μm〜100μm程
度であるところの二酸化チタン、酸化鉄などの顔
料、エポキンパウダー、ナイロンパウダー、ポリ
エチレンパウダー、ポリスチレンパウダーなどの
合成高分子材料、及びデンプン、セルロース、シ
ルクパウダーなどの天然材料、また、代表的子粒
子粉体としては、一般に粒径が0.01μm〜10μm程
度であるところのシリカコロイド粒子、アルミナ
コロイド粒子、二酸化チタンパウダー、亜鉛華パ
ウダー、酸化鉄パウダー、雲母パウダー、炭酸カ
ルシウムパウダー、硫酸バリウムなどの天然,合
成材料または各種合成顔料などである。しかし、
これら材料に限定されることなく、各種化学工
業、電気、磁気材料工業、化粧品、塗料、印刷イ
ンキ、及びトナー、色材、繊維、医薬、食品、ゴ
ム、プラスチツクス、窯業などの工業界で使用さ
れている各種材料の各組合わせ成分に適用するこ
とができる。 なお、一般に母粒子として大粒径で硬度の小さ
なもの、子粒子として小粒径で硬度の大なものを
用いるが、材料粒子の大きさの組合わせによつて
は、母粒子と小粒子が逆になることもある。即
ち、より硬い母粒子の表面に、より軟らかい小粒
子を固着・固定化させることもできる。 以下、本発明の実施例について図面を参照しな
がら詳細に説明する。 第2図及び第3図は衝撃式打撃手段として粉体
衝撃装置を用いた例を示す。同図において、1は
本発明方法を実施するために使用する粉体衝撃装
置のケーシング、2はその後カバー、3はその前
カバー、4はケーシング1内にあつて高速回転す
る回転盤、5は回転盤4の外周に所定間隔を置い
て放射状に周設された複数の衝撃ピンであり、こ
れは一般にハンマー型またはプレート型のもので
ある。6は回転盤4をケーシング1内に回転可能
に軸支持する回転軸、8は衝撃ピン5の最外周軌
道面に添い、かつそれに対して一定の空間を置い
て周設された衝突リングであり、これは、各種形
状の凹凸型または円周平板型のものを用いる。9
は衝突リングの一部を切欠いて設けた改質粉体排
出用の開閉弁、10は開閉弁9の弁軸、11は弁
軸10を介して開閉弁9を操作するアクチユエー
ター、13は一端が衝突リング8の内壁の一部に
開口し、他端が回転盤4の中心部付近の前カバー
3に開口して閉回路を形成する循環回路、14は
原料ホツパー、15は原料ホツパー14と循環回
路13とを連絡する原料供給用のシユート、16
は原料計量フイーダー、17は原料貯槽である。
18は回転盤4の外周と衝突リング8との間に設
けられた衝撃室、19は循環回路13への循環口
を夫々示す。20は改質粉体排出シユート、21
はサイクロン、22はロータリーバルブ、23は
バツグフイルター、24はロータリーバルブ、2
5は排風機、31は本発明の方法を実施するため
に使用する粉体衝撃装置の運転を制御する時限制
御装置、32はあらかじめ母粒子の表面に子粒子
を付着させる必要のある場合に使用する各種ミキ
サー電動乳鉢等公知のプレプロセツサーを夫夫示
す。 上記装置を用いて、本発明の粉体表面改質の方
法を実施する場合、次の要領で操作する。 まず、改質粉体排出用の開閉弁9を閉鎖した状
態としておき、必要に応じて不活性ガスを装置内
に導入しながら、駆動手段(図示せず)によつて
回転軸6を駆動し、改質処理すべき物質の性質に
より母粒子が破砕しない5m/sec〜160m/sec
の範囲の周速度で回転盤4を回転させる。この際
回転盤4外周の衝撃ピン5の回転に伴つて急激な
空気・不活性ガスの気流が生じ、この気流の遠心
力に基づくフアン効果によつて衝撃室18に開口
する循環回路13の循環口19から循環回路13
を巡つて回転盤4の中心部に戻る気流の循環流
れ、即ち完全な自己循環の流れが形成される。し
かもこの際発生する単位時間当りの循環風量は、
衝撃室と循環系の全容積に較べて著しく多量であ
るため、短時間のうちに莫大な回数の空気流循環
サイクルが形成されることになる。 次に一定量の母粒子の表面に例えば静電現象を
利用して子粒子を付着させた被処理粉体を、計量
フイーダー16より原料ホツパー14に短時間で
投入する。プレプロセツサー32を使用する必要
のない場合は、母粒子、子粒子を夫々別々に計量
して原料ホツパー14に投入する。被処理粉体は
原料ホツパー14に投入する。被処理粉体は原料
ホツパー14からシユート15を通り衝撃室18
に入る。衝撃室18へ送入された粉体粒子群は、
ここで高速回転する回転盤4の多数の衝撃ピン5
によつて瞬間的な打撃作用を受け、さらに周辺の
衝突リング8に衝突して母粒子表面の子粒子が選
択的に強度の圧縮作用を受ける。そして同時に前
記循環ガスの流れに同伴して被処理粉体は循環回
路13を循環して再び衝撃室18へ戻り、再度打
撃作用を受ける。 この様な衝撃作業が短時間のうちに連続して何
回も繰り返され、子粒子は母粒子の表面へ埋設ま
たは強固に固着される。そしてこの一連の衝撃作
業、即ち母粒子表面に対する子粒子の埋設または
固着固定化作業は、母粒子の全表面が均一に、し
かも強固に固定化されるまで継続させるが、衝撃
室と循環系の全容積に較べて多量のガス(空気及
び不活性ガス)が系内を循環するため、ガスと同
伴して循環する被処理粉体(母粒子と子粒子)は
極めて短時間のうち莫大な衝撃回数を受けること
になる。一回分の処理量にもよるが、この表面固
定化に要する時間は被処理粉体の供給時間を含め
ても一端に数秒乃至数分の極めて短時間内で終了
する。 第1図1〜2は、母粒子aに子粒子b又は子粒
子bおよび異種の子粒子cを予め静電気により付
着させた状態を示すが、上記固定化作業を受ける
ことによつて、同図3〜5に示すように、母粒子
aは破砕されずに、その表面に子粒子bが埋設、
固着され、さらに、子粒子bと子粒子cの供給順
序を変えることによつて、同図6〜8に示すよう
に母粒子aに互いに異なる子粒子b,cを単層又
は復層に固着させることができる。 以上の固定化作業が終了した後、改質粉体排出
用の開閉弁9を鎖線で示す位置に移動させて開
き、固定化処理された粉体を排出する。この固定
化処理された粉体は、それ自身に作用している遠
心力(処理粉体に遠心力が作用しているところで
あれば排出弁9の位置は別のところでも良い。)
と、排風機25の吸引力によつて短時間(数秒
間)で衝撃室18及び循環回路13から排出さ
れ、シユート20を通つてサイクロン21及びバ
ツグフイルター23などの粉末補集装置に誘導さ
れた後補集され、ロータリーバルブ22,24を
介して系外に排出される。 固定化処理された粉体排出後、開閉弁9は直ち
に閉鎖され、再び計量フイーダー16から、次回
以降の一定量の被処理粉体が衝撃室に供給されて
同様な工程を経て固定化処理された粉体が次々と
生産される。なお、これら一連の回分固定化処理
操作は、関連機器の動作時間に関連して、予め時
限設定された時限制御装置31によつて制御され
継続される。 また、固定化処理操作中、熱的処理を補助的に
併用する必要のある場合(例えば母粒子と子粒子
の硬度の差をより大きくする必要のある場合な
ど)は、衝突リング8や循環回路13をジヤツケ
ツト構造とし、各種の熱媒や冷媒を通して被処理
粉体の固定化処理に都合のよい温度条件を設定す
ることができる。 また、本発明の方法を実施するために使用する
粉体衝撃装置においては、前記回転盤4に補助羽
根を装着し、循環流に更に強制力を与えることも
できる。すなわち、循環風量を増大させれば単位
時間内の循環回数が増加し、従つて粉体粒子の衝
突回数も増加するので、固定化処理時間を短縮す
ることができる。 次に本発明の方法を実施するために使用する粉
体衝撃装置において行なう粉体表面の改質(固定
化)作業においては、被処理粉体の固定化中にお
ける酸化劣化を防止したり、発火や爆発を防止す
る目的で窒素ガスなどの各種の不活性ガスを使用
する場合を説明する。 第4図は本発明に係る粉体衝撃装置において、
この不活性ガスを使用する実施例を示す。なおこ
の実施例の説明に際し、前記実施例と同一部材に
ついては同一符号を付し、説明を省略する。第4
図において、26は原料ホツパー14の下部に設
けた原料供給弁、12は原料供給用のシユート1
5に開口する不活性ガスの供給弁、28は不活性
ガス供給源、29は不活性ガスの供給路を示す。
尚、この実施例では循環回路13をケーシング1
内に収納した態様を示す。 運転開始に際して、まず、原料供給弁26を閉
じ、開閉弁9を開いたあと、不活性ガスの供給弁
27を開き衝撃室18及び循環回路13内に不活
性ガスを充満させておく。この固定化作業開始に
先立つて行なう衝撃室及び循環回路内への不活性
ガスの置換は、通常数分以内で終了する。 次に開閉弁9と供給弁27とを同時に閉じたあ
と、直ちに原料供給弁26を開いて、予め計量さ
れた被処理粉体をシユート15を通じて衝撃室1
8に供給する。なお供給後、供給弁26は直ちに
閉の状態に戻し、その信号を受けて計量フイーダ
ー16は原料ホツパー14に次回の被処理粉体を
計量し供給しておく。 以後、不活性ガスと共に前記実施例の場合と同
様に被処理粉体の衝撃を行ない、被処理粉体は循
環回路13内を循環しながら不活性ガスとの十分
な接触を保ちつつ固定化処理される。次に開閉弁
9と供給弁27とを開くと固定化処理された粉体
は、衝撃室18及び循環回路13からシユート2
0へ排出され、同時に衝撃室18及び循環回路1
3は新しい不活性ガスで置換される。排出された
固定化粉体は前記実施例と同様に処理される。 以後は開閉弁9及び供給弁27を閉じて原料供
給弁26を開とすれば、次回分の固定化処理操作
が進行する。なお、不活性ガスの供給、停止を含
むこれら一連の回分固定化操作は、前記実施例と
同様に時限制御装置31によつて制御され継続さ
れる。 上述の如く、本願発明に係る固体(粉体)粒子
の表面改質の方法の特長は、衝撃式打撃手段とし
ての粉体衝撃装置の微小粉体粒子に体する強力な
衝撃力と、母粒子と子粒子のもつ硬度の差に着目
し、かつ一定の形状を有する母粒子の全表面に対
する衝撃力付与のための衝撃力の大きさそれ自体
および衝撃回数を任意に調節できることにある。 また、第1図に示す如く本発明の方法によれ
ば、各種材料の母粒子に対する子粒子の固定化は
単なる一成分粒子による単粒子層の固定化処理に
とどまらず、二成分以上の子粒子の固定化、さら
には一成分以上の子粒子による複数層に固定化処
理することができる。 また、本発明の方法によれば、各母粒子に対す
る固定化子粒子の場合(比率)がそれ程厳密でな
くともよい場合(即ち、全体としての成分比率が
一定であればよい場合)は、各種ミキサー、電動
乳鉢などのプレプロセツサーを使用せず、別々の
計量された母粒子粉対と子粒子体を直接衝撃室に
供給して母粒子表面に対する子粒子の固定化処理
を行なうことができる。 以上のように、本願発明に係る固体粒子の表面
改質方法によれば、各種粉体材料の組合わせから
成る母粒子に対して子粒子を埋設または強固の固
着・固定化させる表面の改質処理を行ない、均一
で安定した特性を有する機能性複合・混成粉体材
料(コンポジツトまたはハイブリツドパウダー)
を極めて短時間で効率よく生産することができ
る。 実施例 1 回転盤に周設された8枚のプレート型衝撃ピン
の外径が235mm、循環回路の直径が54.9mmである
第2図の粉体衝撃装置を使用した。母粒子として
平均粒径dp50=50μmの球状ナイロン12の表面に
平均粒径dp50=0.3μmの二酸化チタン子粒子をあ
らかじめミキサーで付着させたオーダードミクス
チヤーを夫々下表に示す処理条件で固定化処理し
た結果、何れも二酸化チタン(子粒子)がナイロ
ン12(母粒子,核粒子)の表面に埋設または強固
に固着して固定化され、均一安定したナイロン12
の二酸化チタンによる表面改質粉体を得た。 なお、前記実施例(T−3)で得られた固定化
改質後の粉体の走査型電子顕微鏡を第5図に示
す。
The present invention focuses on core particles (hereinafter referred to as base particles).
Microparticles (hereinafter referred to as child particles) are placed on the surface of
The method relates to a method of modifying the surface of a base particle by attaching or not attaching the child particles to the surface of the base particle and embedding or fixing the child particles on the surface of the base particle. Conventionally, various treatments have been used to prevent caking of solid particles, prevent discoloration, improve dispersibility, improve fluidity, improve catalytic effect, control digestion and absorption, improve magnetic properties, and improve light resistance. Surface modification can be performed using physical adsorption method, chemical adsorption method, vacuum evaporation method, electrostatic deposition method,
Methods such as coating with dissolved substances and special spray drying methods have been used. Of these, especially when the surface of solid particles is modified with solid particles, that is, the surface of powder with powder, it is necessary to modify the surface of solid particles with powder for a long period of time (several hours) using various known mixer type or ball mill type stirrers. Up to several tens of hours), modification has been carried out by applying electrostatic and mechanochemical phenomena that occur with stirring, but the adhesion of the child particles to the mother particles was not sufficient, and as a result, after modification. powder is mixed in the next process,
When processing such as kneading, dispersing, and pasting, child particles may easily fall off or component segregation may occur, which not only severely limits the operating conditions, but also
This was the biggest cause of variations in the quality of processed products. Furthermore, in surface modification of powder-one-powder systems using the various mixers, ball mills, etc. mentioned above, the fixing force of child particles to the mother particle surface is generally weak, so it is difficult to obtain the desired surface modification. This requires several hours to several tens of hours, which results in large-sized equipment and problems such as extremely poor processing efficiency. The present invention has been made in view of the above-mentioned circumstances, and solves the problems of the prior art, and as shown in FIG. As a practical means, thermal means are used to forcibly embed or fix the powder particles firmly, resulting in uniform and stable surface modification of the powder particles in an extremely short period of time (several seconds to several minutes). This method provides a method for obtaining functional composite materials (hybrid powders).
The gist is that a rotary disk with an impact pin arranged around it is placed in the impact chamber, and a collision ring is placed along the outermost orbital surface of the impact pin with a certain space therebetween, and The airflow generated by the rotation of the pin is guided and circulated through the impact chamber and a circulation circuit that opens from a part of the collision ring near the center of the rotary disk, and the particle size is adjusted along with the airflow.
The entire amount of a powder particle group consisting of solid particles of 100 to 0.1 μm and other fine solid particles of 10 to 0.01 μm smaller than the solid particles is repeatedly passed through the shock chamber and the circulation circuit. While or after adhering the other microscopic solid particles to the surface of the solid particles by passing through the impact pin and the impact ring within a range that does not crush the solid particles. , a method for surface modification of solid particles, characterized by embedding or fixing the other fine solid particles. Typical base particle powders that can be surface-treated by the method of the present invention include pigments such as titanium dioxide and iron oxide, whose particle size is generally about 0.1 μm to 100 μm, Epoquin powder, nylon powder, polyethylene powder, Synthetic polymer materials such as polystyrene powder, and natural materials such as starch, cellulose, and silk powder. Typical child particle powders include silica colloidal particles and alumina, which generally have a particle size of about 0.01 μm to 10 μm. Natural or synthetic materials such as colloidal particles, titanium dioxide powder, zinc white powder, iron oxide powder, mica powder, calcium carbonate powder, barium sulfate, or various synthetic pigments. but,
Used in industries such as, but not limited to, the chemical industry, electricity, magnetic materials industry, cosmetics, paints, printing inks, toners, coloring materials, textiles, pharmaceuticals, foods, rubber, plastics, and ceramics. It can be applied to each combination of components of various materials. Generally, large particle size and small hardness are used as the mother particle, and small particle size and large hardness are used as the child particles, but depending on the combination of material particle sizes, the mother particle and the small particle may Sometimes it's the other way around. That is, softer small particles can also be fixed and immobilized on the surface of harder base particles. Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIGS. 2 and 3 show an example in which a powder impact device is used as the impact type striking means. In the figure, 1 is a casing of a powder impacting device used to carry out the method of the present invention, 2 is a rear cover, 3 is a front cover, 4 is a rotary disk that rotates at high speed inside the casing 1, and 5 is a A plurality of impact pins are provided radially around the outer periphery of the rotary disk 4 at predetermined intervals, and are generally hammer-shaped or plate-shaped. Reference numeral 6 designates a rotating shaft that rotatably supports the rotary disk 4 within the casing 1, and 8 designates a collision ring that is disposed along the outermost circumferential track surface of the impact pin 5 and with a certain space therebetween. , this uses various shapes of concave and convex type or circumferential flat plate type. 9
1 is an on-off valve for discharging modified powder provided by cutting out a part of the collision ring; 10 is a valve shaft of the on-off valve 9; 11 is an actuator that operates the on-off valve 9 via the valve shaft 10; A circulation circuit having one end opened in a part of the inner wall of the collision ring 8 and the other end opened in the front cover 3 near the center of the rotary disk 4 to form a closed circuit, 14 is a raw material hopper, 15 is a raw material hopper 14 and a raw material supply chute 16 that connects the circulation circuit 13 and the circulation circuit 13.
1 is a raw material measuring feeder, and 17 is a raw material storage tank.
Reference numeral 18 indicates a shock chamber provided between the outer periphery of the rotary disk 4 and the collision ring 8, and reference numeral 19 indicates a circulation port to the circulation circuit 13. 20 is a modified powder discharge chute, 21
is a cyclone, 22 is a rotary valve, 23 is a bag filter, 24 is a rotary valve, 2
5 is an exhaust fan, 31 is a time control device for controlling the operation of the powder impact device used to carry out the method of the present invention, and 32 is used when it is necessary to attach child particles to the surface of the mother particles in advance. Various types of mixers, electric mortars, and other known preprocessors are shown below. When carrying out the powder surface modification method of the present invention using the above apparatus, the following procedure is performed. First, the on-off valve 9 for discharging the reformed powder is kept in a closed state, and the rotating shaft 6 is driven by a driving means (not shown) while introducing inert gas into the apparatus as necessary. , 5m/sec to 160m/sec so that the base particles are not crushed depending on the properties of the substance to be modified.
The rotary disk 4 is rotated at a circumferential speed within the range of . At this time, as the impact pin 5 on the outer periphery of the rotating disk 4 rotates, a rapid airflow of air/inert gas is generated, and the circulation circuit 13 opens into the impact chamber 18 due to the fan effect based on the centrifugal force of this airflow. Circulation circuit 13 from port 19
A circulating flow of air returning to the center of the rotary disk 4, that is, a completely self-circulating flow is formed. Moreover, the amount of circulating air per unit time that occurs at this time is
Due to the significant volume compared to the total volume of the shock chamber and circulation system, a huge number of airflow circulation cycles are formed in a short period of time. Next, a predetermined amount of powder to be treated, in which child particles are attached to the surface of the mother particles using, for example, an electrostatic phenomenon, is fed into the raw material hopper 14 from the metering feeder 16 in a short time. If it is not necessary to use the preprocessor 32, the mother particles and child particles are weighed separately and placed into the raw material hopper 14. The powder to be processed is put into the raw material hopper 14. The powder to be processed passes from the raw material hopper 14 through the chute 15 to the shock chamber 18.
to go into. The powder particles sent into the shock chamber 18 are
Here, a large number of impact pins 5 of a rotary disk 4 rotating at high speed
The child particles on the surface of the mother particle are subjected to an instantaneous impact action, and further collide with the surrounding collision ring 8, whereby the child particles on the surface of the mother particle are selectively subjected to a strong compression action. At the same time, the powder to be treated is circulated through the circulation circuit 13 along with the flow of the circulating gas, returns to the impact chamber 18, and is again subjected to the impact action. This impact operation is repeated many times in a short period of time, and the child particles are embedded or firmly fixed to the surface of the mother particle. This series of impact operations, that is, embedding or fixation of child particles on the surface of the mother particle, is continued until the entire surface of the mother particle is uniformly and firmly immobilized. Since a large amount of gas (air and inert gas) circulates within the system compared to the total volume, the powder to be processed (mother particles and child particles) that circulates with the gas receives a huge impact in a very short period of time. You will receive the number of times. Although it depends on the amount of treatment per batch, the time required for this surface fixation, even including the time for supplying the powder to be treated, is completed within an extremely short time of several seconds to several minutes. 1 to 2 show a state in which a child particle b or a child particle b and a child particle c of a different type are attached to a mother particle a in advance by static electricity. As shown in 3 to 5, the mother particle a is not crushed and the child particles b are buried on its surface.
Furthermore, by changing the supply order of child particles b and child particles c, different child particles b and c are fixed to the mother particle a in a single layer or in multiple layers, as shown in FIGS. 6 to 8. can be done. After the above immobilization work is completed, the on-off valve 9 for discharging the modified powder is moved to the position shown by the chain line and opened, and the powder subjected to the immobilization process is discharged. This fixed powder is affected by the centrifugal force acting on itself (the discharge valve 9 may be located at a different location as long as the centrifugal force is acting on the treated powder).
Then, the powder is discharged from the shock chamber 18 and the circulation circuit 13 in a short time (several seconds) by the suction force of the exhaust fan 25, and is guided through the chute 20 to a powder collection device such as a cyclone 21 and a bag filter 23. It is then collected and discharged to the outside of the system via rotary valves 22 and 24. After discharging the immobilized powder, the on-off valve 9 is immediately closed, and a certain amount of powder to be treated from the next time onwards is supplied from the metering feeder 16 to the shock chamber, where it is immobilized through the same process. powder is produced one after another. Note that these series of batch fixing processing operations are controlled and continued by a time limit control device 31 whose time limit is set in advance in relation to the operating time of related equipment. In addition, during the immobilization treatment operation, if it is necessary to use supplementary thermal treatment (for example, when it is necessary to increase the difference in hardness between the mother particles and child particles), the collision ring 8 or the circulation circuit 13 has a jacket structure, and temperature conditions convenient for fixing the powder to be treated can be set through various heating mediums and coolants. In addition, in the powder impact device used to carry out the method of the present invention, auxiliary blades may be attached to the rotary disk 4 to further apply force to the circulating flow. That is, if the circulating air volume is increased, the number of times of circulation within a unit time increases, and therefore the number of collisions of powder particles also increases, so that the immobilization processing time can be shortened. Next, in the modification (immobilization) work of the powder surface performed in the powder impact device used to carry out the method of the present invention, it is necessary to prevent oxidative deterioration during the immobilization of the powder to be treated and to prevent ignition. Explain the use of various inert gases such as nitrogen gas to prevent explosions. FIG. 4 shows a powder impact device according to the present invention,
An example using this inert gas will be shown. In the description of this embodiment, the same members as in the previous embodiment are designated by the same reference numerals, and the explanation thereof will be omitted. Fourth
In the figure, 26 is a raw material supply valve provided at the bottom of the raw material hopper 14, and 12 is a chute 1 for supplying raw materials.
5 is an inert gas supply valve opened, 28 is an inert gas supply source, and 29 is an inert gas supply path.
In this embodiment, the circulation circuit 13 is connected to the casing 1.
Shows how it is stored inside. When starting the operation, first, the raw material supply valve 26 is closed, the on-off valve 9 is opened, and then the inert gas supply valve 27 is opened to fill the shock chamber 18 and circulation circuit 13 with inert gas. The substitution of inert gas into the shock chamber and circulation circuit prior to the start of this immobilization work is usually completed within a few minutes. Next, after closing the on-off valve 9 and the supply valve 27 at the same time, the raw material supply valve 26 is immediately opened, and the pre-measured powder to be processed is passed through the chute 15 into the shock chamber 1.
Supply to 8. After supplying, the supply valve 26 is immediately returned to the closed state, and upon receiving this signal, the weighing feeder 16 measures and supplies the next powder to be processed to the raw material hopper 14. Thereafter, the powder to be treated is subjected to impact with an inert gas in the same manner as in the above embodiment, and the powder to be treated is fixed while circulating in the circulation circuit 13 while maintaining sufficient contact with the inert gas. be done. Next, when the on-off valve 9 and the supply valve 27 are opened, the immobilized powder is transferred from the shock chamber 18 and the circulation circuit 13 to the chute 2.
0 and at the same time shock chamber 18 and circulation circuit 1.
3 is replaced with fresh inert gas. The discharged fixed powder is treated in the same manner as in the previous example. Thereafter, by closing the on-off valve 9 and the supply valve 27 and opening the raw material supply valve 26, the next immobilization treatment operation will proceed. Note that this series of batch fixing operations including supply and stop of the inert gas are controlled and continued by the time control device 31 as in the previous embodiment. As mentioned above, the features of the method for surface modification of solid (powder) particles according to the present invention are the strong impact force exerted on the fine powder particles of the powder impact device as an impact type impact means, and the By focusing on the difference in hardness between mother particles and child particles, it is possible to arbitrarily adjust the magnitude of the impact force itself and the number of times of impact for applying impact force to the entire surface of a mother particle having a certain shape. Furthermore, according to the method of the present invention, as shown in FIG. can be immobilized, or further immobilized into multiple layers of child particles of one or more components. Furthermore, according to the method of the present invention, if the ratio of immobilized particles to each base particle does not need to be so strict (that is, if the overall component ratio is constant), various Without using a preprocessor such as a mixer or an electric mortar, the child particles can be immobilized on the surface of the mother particles by directly supplying the separately measured mother particle powder pair and the child particles to the impact chamber. As described above, according to the method for surface modification of solid particles according to the present invention, the surface modification allows child particles to be embedded or firmly fixed/fixed to the mother particles made of a combination of various powder materials. Functional composite/hybrid powder materials (composites or hybrid powders) that are processed and have uniform and stable properties.
can be produced efficiently in an extremely short time. Example 1 The powder impact device shown in FIG. 2 was used, in which the outer diameter of eight plate-type impact pins disposed around a rotary disk was 235 mm, and the diameter of the circulation circuit was 54.9 mm. As base particles, titanium dioxide particles with an average particle diameter of dp50 = 0.3 μm were attached to the surface of spherical nylon 12 with an average particle diameter of dp50 = 50 μm in advance using a mixer, and the ordered mixture was fixed under the treatment conditions shown in the table below. As a result of the treatment, titanium dioxide (child particles) is embedded or firmly fixed on the surface of nylon 12 (mother particle, core particle), resulting in a uniform and stable nylon 12.
A surface-modified powder with titanium dioxide was obtained. Incidentally, a scanning electron microscope image of the immobilized and modified powder obtained in Example (T-3) is shown in FIG.

【表】 び循環回路の内容積から算出した。
[Table] Calculated from the internal volume of the circulation circuit.

【図面の簡単な説明】[Brief explanation of drawings]

第1図1〜8は本発明に係る方法で処理される
各種改質前粉体と改質固定化後の粉体の態様を示
す概念的な説明図、第2図は、本発明の方法を実
施するために使用する粉体衝撃装置の一実施例
を、その前後装置とともに系統的に示した概念的
な説明図、第3図は第2図の側断面説明図、第4
図は同じく不活性ガスを用いる場合の他の実施例
の説明図であり、第5図は表面改質後の粉体の走
査型電子顕微鏡写真を示し、同図1は6000倍、同
図2は2000倍、同図3は4000倍のものを示す。 a……母粒子、b,c……子粒子、1……衝撃
式粉砕機。
1 to 8 are conceptual explanatory diagrams showing the aspects of various pre-modified powders and modified and fixed powders treated by the method according to the present invention, and FIG. A conceptual explanatory diagram systematically showing an example of a powder impact device used to carry out the process, along with its front and rear devices.
The figure is an explanatory diagram of another example in which an inert gas is used, and Fig. 5 shows a scanning electron micrograph of the powder after surface modification. shows a magnification of 2000 times, and Figure 3 shows a magnification of 4000 times. a... Mother particle, b, c... Child particle, 1... Impact type crusher.

Claims (1)

【特許請求の範囲】 1 衝撃室内に、衝撃ピンを周設した回転盤を配
置すると共に、該衝撃ピンの最外周軌道面に沿
い、かつそれに対して一定の空間を置いて衝突リ
ングを配置し、前記衝撃ピンの回転によつて発生
した気流を、前記衝撃室と、前記衝突リングの一
部から前記回転盤の中心部付近に開口する循環回
路とに誘導・循環させ、該気流と共に粒径100〜
0.1μmの固体粒子と、該固体粒子よりも小さな粒
径10〜0.01μmの他の微小固体粒子とから構成さ
れる粉体粒子群の全量を、繰り返し前記衝撃室と
前記循環回路とを通過させ、前記衝撃ピンと、前
記衝突リングとの間で前記固体粒子を粉砕しない
範囲の機械的打撃により、該固体粒子の表面に前
記他の微小固体粒子を付着させながら、または、
付着させた後、該他の微小固体粒子を埋設又は固
着させることを特徴とする固体粒子の表面改質方
法。 2 予め固体粒子と他の微小固体粒子とを混合
し、該固体粒子の表面に該他の微小固体粒子を付
着させておくことを特徴とする特許請求の範囲第
1項に記載の固体粒子の表面改質方法。 3 補助手段として加熱し、粒子相互を融着させ
ることを特徴とする特許請求の範囲第1又は第2
項に記載の固体粒子の表面改質方法。 4 不活性ガスふん囲気下で上記埋設又は固着工
程を行なうことを特徴とする特許請求の範囲第1
項〜第3項のいずれかに記載の固体粒子の表面改
質方法。
[Scope of Claims] 1. A rotary disk surrounding an impact pin is arranged in an impact chamber, and a collision ring is arranged along the outermost orbital surface of the impact pin and with a certain space therebetween. , the airflow generated by the rotation of the impact pin is guided and circulated through the impact chamber and a circulation circuit that opens from a part of the impact ring near the center of the rotary disk, and the particle size is adjusted along with the airflow. 100~
The entire amount of the powder particle group consisting of solid particles of 0.1 μm and other fine solid particles with a particle size of 10 to 0.01 μm smaller than the solid particles is repeatedly passed through the shock chamber and the circulation circuit. , while adhering the other fine solid particles to the surface of the solid particles by mechanical impact in a range that does not crush the solid particles between the impact pin and the collision ring, or
1. A method for surface modification of solid particles, which comprises embedding or fixing other fine solid particles after adhesion. 2. Solid particles according to claim 1, characterized in that the solid particles and other fine solid particles are mixed in advance and the other fine solid particles are attached to the surface of the solid particles. Surface modification method. 3. Claim 1 or 2, characterized in that the particles are fused together by heating as an auxiliary means.
The method for surface modification of solid particles described in Section 1. 4 Claim 1, characterized in that the above-mentioned burying or fixing step is performed under an inert gas atmosphere.
A method for surface modification of solid particles according to any one of items 1 to 3.
JP60223158A 1985-05-07 1985-10-07 Method and apparatus for surface modification of solid particle Granted JPS6283029A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP60223158A JPS6283029A (en) 1985-10-07 1985-10-07 Method and apparatus for surface modification of solid particle
EP86112228A EP0224659B1 (en) 1985-10-07 1986-09-04 Method of improving quality of surface of solid particles and apparatus thereof
DE8686112228T DE3687219T2 (en) 1985-10-07 1986-09-04 METHOD FOR IMPROVING THE SURFACE QUALITY OF SOLID PARTICLES AND DEVICE THEREFOR.
CN 86106765 CN1007127B (en) 1985-05-07 1986-10-06 Method for improving quality of surface of solid particles and apparatus
US07/183,297 US4915987A (en) 1985-10-07 1988-04-11 Method of improving quality of surface of solid particles and apparatus thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60223158A JPS6283029A (en) 1985-10-07 1985-10-07 Method and apparatus for surface modification of solid particle

Publications (2)

Publication Number Publication Date
JPS6283029A JPS6283029A (en) 1987-04-16
JPH032009B2 true JPH032009B2 (en) 1991-01-14

Family

ID=16793698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60223158A Granted JPS6283029A (en) 1985-05-07 1985-10-07 Method and apparatus for surface modification of solid particle

Country Status (1)

Country Link
JP (1) JPS6283029A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11323773A (en) * 1997-12-02 1999-11-26 Ain Kosan Kk Photocatalyst pulp composition, photocatalyst pulp foam using the composition, photocatalyst pulp molding using the composition and photocatalyst pulp foam molding using the foam and production of the photocatalyst pulp composition, foam, molding and foam molding
JP2006143532A (en) * 2004-11-19 2006-06-08 Shimizu Corp Method of improving dispersibility of carbon nanotube
WO2012014785A1 (en) * 2010-07-28 2012-02-02 株式会社奈良機械製作所 Powder processing apparatus
JP2012516235A (en) * 2009-01-29 2012-07-19 ビー・エイ・エス・エフ、コーポレーション Mechanically fused materials for pollution reduction in mobile and stationary sources

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6177550A (en) * 1984-09-25 1986-04-21 Mazda Motor Corp Brake system of car
JPS62140636A (en) * 1985-12-13 1987-06-24 Nara Kikai Seisakusho:Kk Method and device for reforming surface of solid grain
JPS62209541A (en) * 1986-03-11 1987-09-14 Toyo Ink Mfg Co Ltd Electrophotographic toner
JPH0775665B2 (en) * 1986-10-27 1995-08-16 日本合成ゴム株式会社 Method for producing microencapsulated fine particles
JP2916772B2 (en) * 1988-02-01 1999-07-05 キヤノン株式会社 Positively chargeable magnetic toner
JP2594610B2 (en) * 1988-04-07 1997-03-26 ミノルタ株式会社 toner
JPH0241210A (en) * 1988-08-01 1990-02-09 Calp Corp High function composite material and molded piece thereof
JPH02194828A (en) * 1989-01-20 1990-08-01 Nippon Spindle Mfg Co Ltd Surface improvement of powder and its apparatus
JPH02261536A (en) * 1989-03-31 1990-10-24 Kurimoto Ltd Device for reforming powder surface
JPH084738B2 (en) * 1989-08-04 1996-01-24 エルブィエムアー リシェルシェ Method for producing powder by spraying using at least two kinds of particles
JPH0822377B2 (en) * 1990-03-02 1996-03-06 株式会社サンギ Column packing material
JPH0751288B2 (en) * 1991-12-25 1995-06-05 株式会社奈良機械製作所 Particle composite method
JP2688871B2 (en) * 1992-04-02 1997-12-10 株式会社巴川製紙所 Positively chargeable color toner
JP3328783B2 (en) * 1992-05-25 2002-09-30 ホソカワミクロン株式会社 Method for producing composite particles, and composite particles obtained by the method
JP3884826B2 (en) * 1996-07-30 2007-02-21 キヤノン株式会社 Solid particle surface treatment apparatus, solid particle surface treatment method, and toner production method
JP4930120B2 (en) * 2006-03-28 2012-05-16 ブラザー工業株式会社 Film forming apparatus and film forming method
DE102006025848A1 (en) * 2006-03-29 2007-10-04 Byk-Chemie Gmbh Production of composite particles for use e.g. in coating materials, involves pulverising particle agglomerates in carrier gas in presence of organic matrix particles and dispersing the fine particles in the matrix particles
JP4848540B2 (en) * 2007-02-16 2011-12-28 Dowaエコシステム株式会社 Metal powder for decomposing organohalogen compounds, method for producing the same, and method for purifying soil and the like using the same
JP4660580B2 (en) * 2008-09-11 2011-03-30 シャープ株式会社 Toner manufacturing method, toner, developer, developing device, and image forming apparatus
EP2462199B1 (en) * 2009-08-04 2015-05-20 L'Oréal Composite pigment and method for preparation thereof
RU2657518C2 (en) 2011-03-18 2018-06-14 Шефер Кальк Гмбх Унд Ко. Кг Microstructured composite particles
JP5603298B2 (en) * 2011-07-06 2014-10-08 株式会社Nbcメッシュテック Antiviral agent
JP2013026014A (en) * 2011-07-21 2013-02-04 Honda Motor Co Ltd Catalyst for fuel cell and manufacturing method of catalyst for fuel cell
JP2013209338A (en) * 2012-03-30 2013-10-10 Nbc Meshtec Inc Bactericide
CN104718257A (en) * 2012-07-02 2015-06-17 纳幕尔杜邦公司 Process for manufacturing coated filler particles
DE102013213645A1 (en) 2013-07-12 2015-01-15 Siemens Aktiengesellschaft Highly filled matrix-bonded anisotropic high-performance permanent magnets and method for their production
CA3035803A1 (en) * 2016-09-08 2018-03-15 Karl Leibinger Medizintechnik Gmbh & Co. Kg Method for producing an implant using a calcium carbonate-containing composite powder comprising microstructured particles
EP3509733B1 (en) 2016-09-08 2020-07-22 Schaefer Kalk GmbH & Co. KG Composite powder with microstructured particles
MY193329A (en) 2016-09-08 2022-10-05 Schaefer Kalk Gmbh & Co Kg Inhibiting calcium carbonate additive
ES2853273T3 (en) 2016-09-08 2021-09-15 Karl Leibinger Medizintechnik Gmbh & Co Kg Implant containing inhibitory calcium carbonate
WO2018046238A1 (en) 2016-09-08 2018-03-15 Karl Leibinger Medizintechnik Gmbh & Co. Kg Implant comprising a calcium salt-containing composite powder having microstructred particles
WO2018046571A1 (en) 2016-09-08 2018-03-15 Schaefer Kalk Gmbh & Co. Kg Composite powder containing calcium carbonate and having microstructured particles having inhibiting calcium carbonate
CA3035937A1 (en) 2016-09-08 2018-03-15 Schaefer Kalk Gmbh & Co. Kg Composite powder containing calcium carbonate and having microstructured particles
CA3035622A1 (en) 2016-09-08 2018-03-15 Karl Leibinger Medizintechnik Gmbh & Co. Kg Method for producing an implant comprising calcium carbonate-containing composite powder having microstructured particles having inhibiting calcium carbonate
WO2018211626A1 (en) * 2017-05-17 2018-11-22 株式会社アドマテックス Composite particle material, and production method therefor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5037631A (en) * 1973-08-06 1975-04-08
JPS5256060A (en) * 1975-11-04 1977-05-09 Nippon Kokuen Kogyo Kk Method to manufacture ferroussgraphite composite powder for powder metallurgy
JPS5318650A (en) * 1976-08-04 1978-02-21 Mitsui Aluminium Kogyo Kk Granules for molding building materials made by bonding gypsum dihydrate and high polymer and method of manufacture
JPS60129144A (en) * 1983-12-16 1985-07-10 株式会社奈良機械製作所 Finely pulverizing machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5037631A (en) * 1973-08-06 1975-04-08
JPS5256060A (en) * 1975-11-04 1977-05-09 Nippon Kokuen Kogyo Kk Method to manufacture ferroussgraphite composite powder for powder metallurgy
JPS5318650A (en) * 1976-08-04 1978-02-21 Mitsui Aluminium Kogyo Kk Granules for molding building materials made by bonding gypsum dihydrate and high polymer and method of manufacture
JPS60129144A (en) * 1983-12-16 1985-07-10 株式会社奈良機械製作所 Finely pulverizing machine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11323773A (en) * 1997-12-02 1999-11-26 Ain Kosan Kk Photocatalyst pulp composition, photocatalyst pulp foam using the composition, photocatalyst pulp molding using the composition and photocatalyst pulp foam molding using the foam and production of the photocatalyst pulp composition, foam, molding and foam molding
JP2006143532A (en) * 2004-11-19 2006-06-08 Shimizu Corp Method of improving dispersibility of carbon nanotube
JP4596134B2 (en) * 2004-11-19 2010-12-08 清水建設株式会社 Method for improving dispersibility of carbon nanotubes
JP2012516235A (en) * 2009-01-29 2012-07-19 ビー・エイ・エス・エフ、コーポレーション Mechanically fused materials for pollution reduction in mobile and stationary sources
WO2012014785A1 (en) * 2010-07-28 2012-02-02 株式会社奈良機械製作所 Powder processing apparatus
JP2012030153A (en) * 2010-07-28 2012-02-16 Nara Kikai Seisakusho:Kk Powder processing apparatus

Also Published As

Publication number Publication date
JPS6283029A (en) 1987-04-16

Similar Documents

Publication Publication Date Title
JPH032009B2 (en)
EP0224659B1 (en) Method of improving quality of surface of solid particles and apparatus thereof
US5279463A (en) Methods and apparatus for treating materials in liquids
EP0241930B1 (en) Particulate material treating apparatus
JPH0510970B2 (en)
EP0555947A1 (en) Method for surface treatment of solid Particles and apparatus therefor
JP2000501981A (en) Apparatus and method for treating particulate material
JPH0376177B2 (en)
JPH0510971B2 (en)
JPH0461687B2 (en)
JPH0751288B2 (en) Particle composite method
JP2006143532A (en) Method of improving dispersibility of carbon nanotube
JPH043250B2 (en)
JPH0615171B2 (en) Drying device for raw materials of plastic powder
JPH0816795B2 (en) Toner manufacturing method and apparatus
KR100665042B1 (en) Polymer macroparticle of which surface is modified by mesoparticle and nanoparticle, nanoparticle-polymer composite using the same, and preparation thereof
JPH05168895A (en) Method for modifying surface of solid grain
KR900001366B1 (en) Surface treating method of the solid particles and apparatus there for
RU2047362C1 (en) Method and device for treating solid particle surface
WO2000050174A1 (en) Particle-shaped material treatment device
US6635207B1 (en) Process for recycling of powder coating waste
JPH0655053A (en) Powder treating device
JPH0275336A (en) Composite heat sensitive powder
JPH08131818A (en) Powder treating device
JPH0463124A (en) Method for binding solid grains with each other

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term