JPH0320047A - Semicondcutor device - Google Patents

Semicondcutor device

Info

Publication number
JPH0320047A
JPH0320047A JP15546689A JP15546689A JPH0320047A JP H0320047 A JPH0320047 A JP H0320047A JP 15546689 A JP15546689 A JP 15546689A JP 15546689 A JP15546689 A JP 15546689A JP H0320047 A JPH0320047 A JP H0320047A
Authority
JP
Japan
Prior art keywords
gate
drain
source
region
ion implantation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15546689A
Other languages
Japanese (ja)
Inventor
Kimio Kanda
神田 君夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP15546689A priority Critical patent/JPH0320047A/en
Publication of JPH0320047A publication Critical patent/JPH0320047A/en
Pending legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To increase surge resistance without altering various characteristics by providing diodes between the gate and the source, between the gate and the drain of a junction field effect transistor. CONSTITUTION:With a thermal oxide film 2 as a mask an ion implantation is selectively performed, and diffused to form a high concentration P-type separating region 8. Further, a gate forming part is etched with photoresist as a mask, with the film 2 as a mask an ion implantation is selectively achieved, and a gate high concentration P-type impurity region 5 and a floating gate region 9 are formed. That is, an ion implantation is selectively conducted between a gate and a source (a drain), thereby forming a floating gate region 9. Thus, a surge resistance is increased as compared with prior one.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、半導体装置に関し、更に詳しくは接合型電界
効果トランジスタ(以下、JPETと略す)に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a semiconductor device, and more particularly to a junction field effect transistor (hereinafter abbreviated as JPET).

従来の技術 近年,低周波増幅回路やアナログスイッチング回路では
、ノイズ低減のためJF冨τが利用されている。
2. Description of the Related Art In recent years, JF τ has been used for noise reduction in low frequency amplifier circuits and analog switching circuits.

第3図は,従来のJPETの断面を示すものである。1
はソース・ドレイン電極22は熱酸化膜(Sin2) 
, aijc 11 8法ニヨル酸化膜(Sin2) 
,alriソース・ドレイン高濃度N型不純物領域、6
はゲート高濃度P型不純物領域、6ぱP型バックゲート
基板、7はN型チャネル領域,8は高濃度P型分離領域
である。
FIG. 3 shows a cross section of a conventional JPET. 1
The source/drain electrode 22 is a thermal oxide film (Sin2)
, aijc 11 8 method nitrogen oxide film (Sin2)
, alri source/drain high concentration N-type impurity region, 6
6 is a gate high concentration P type impurity region, 6 is a P type back gate substrate, 7 is an N type channel region, and 8 is a high concentration P type isolation region.

発明が解決しようとする課題 上記従来の構成では,ゲート・ソース(ドレイン)間の
距離L。(L.,)が小さくなったとき、静電破壊耐圧
(以下、サージ耐圧と略す)も小さくなシ,素子の取υ
扱い上のトラブルや装着した電子装置の品質トラブルが
生じる。
Problems to be Solved by the Invention In the above conventional configuration, the distance L between the gate and source (drain). When (L.,) becomes smaller, the electrostatic breakdown voltage (hereinafter abbreviated as surge voltage) also becomes smaller, and the element
This may cause handling problems or quality problems with the electronic devices installed.

サージ耐圧を大きくするには従来、次の方法があった。Conventionally, the following methods have been used to increase surge resistance.

■ L(}#(LGD)を大きくして、ゲート・ソース
(ドレイン)間のシリース抵抗(以下、r8 と称す)
を大きくする。しかし,チップサイズ,素子の大きさが
大きくなってしまう。
■ Increase L(}#(LGD) to increase the series resistance between the gate and source (drain) (hereinafter referred to as r8)
Make it bigger. However, the chip size and element size become large.

■ 外付抵抗としてポリシリコン抵抗や,拡散抵抗を用
いることによクサージ耐圧を大きくする。
■ Increase the quasage breakdown voltage by using a polysilicon resistor or a diffused resistor as an external resistor.

一方、拡散工程数が多く複雑になると共に、抵抗部分の
面積が加わり、チップ面積が大きくなる。
On the other hand, the number of diffusion steps is large, making it complicated, and the area of the resistor portion is added, increasing the chip area.

■ チャネル領域の比抵抗を大きくすることによクサー
ジ耐圧を大きくする。しかし、JFICTの諸特性(カ
ットオフ電圧,ゲート・ソース(ドレイン)耐圧等)を
変えないようにするためには、チップサイズ金大きくし
なければならないO 従来の方法では以上のような欠点を有していた。
■ Increase the quasage breakdown voltage by increasing the specific resistance of the channel region. However, in order not to change the various characteristics of JFICT (cutoff voltage, gate-source (drain) breakdown voltage, etc.), the chip size must be increased. Was.

本発明の目的は、上記従来の問題点を解決するもので、
チップサイズ,諸特性を変えずにサージ耐圧の大きなJ
FETを提供するものである。
The purpose of the present invention is to solve the above conventional problems,
J with large surge withstand voltage without changing chip size and various characteristics
FET is provided.

課題を解決するための手段 この目的を達成するために本発明のJ F E TFi
、ゲート・ソース(ドレイン)間に、ゲート形成時に選
択的にイオン注入処理を施して、フローティングゲート
を形成したものである。
Means for Solving the Problems To achieve this object, the J F E TFi of the invention
, a floating gate is formed between the gate and source (drain) by selectively performing ion implantation treatment during gate formation.

作用 この発明によってJFKTのr8が大きくなるため,サ
ージ耐圧は大きくなる。
Effect: Since the present invention increases r8 of the JFKT, the surge withstand voltage increases.

実施例 第1図は本発明の一実施例にかけるJFETの要部断面
図である。このJFICTで符号1〜8で表わした各部
の構成は、第3図に示した従来例の場合と同じであク、
これらに加えてゲート・ソース(ドレイン)間にフロー
ティングゲート領域9を形成することによジ、サージ耐
圧を大きくすることができる。
Embodiment FIG. 1 is a sectional view of a main part of a JFET according to an embodiment of the present invention. The configuration of each part represented by numerals 1 to 8 in this JFICT is the same as that of the conventional example shown in FIG.
In addition to these, by forming the floating gate region 9 between the gate and source (drain), surge and surge breakdown voltage can be increased.

第2図(a)〜(Clは上記実施例のJFKTの製造工
程を示す工程断面図である。1ず同図(11のように膜
厚約sooo人の熱酸化膜(S10。)2をマスクとし
てボロンイオン注入’i7X10  an  .601
CeVの条件で選択的に施して、02訃よびウェット0
2雰囲気中で拡散して,高濃度P型分離領域8fJ:形
成する。さらに同図(b)のように,所望ゲート形成部
分をフォトレジスIeマスクトシてエッチングし,熱酸
化膜2をマスクとしてボロンイオン注入’e5X10 
 an  .50KeVの条件で選択的に施し、ゲート
高濃度P型不純物領域6とフローティングゲート領域9
を形成する。そして最終的には,cvn法による酸化膜
(Sin2) 3Th約6000人蒸着し、これに選択
的に窓開けしたのが同図(Clであジ、このソース・ド
レインコンタクト窓にリンイオン注入i5X10  a
n  .50KeVで施した後、ソース・ドレイン電極
1を形成したものが第1図示の構造である。
Figures 2(a) to (Cl are process cross-sectional views showing the manufacturing process of JFKT in the above example. 1) As shown in Figure 2, a thermal oxide film (S10) 2 with a film thickness of approximately Boron ion implantation as a mask 'i7X10 an .601
Selectively applied under CeV conditions to achieve 0.02 death and wet 0.
2 to form a high concentration P-type isolation region 8fJ:. Further, as shown in the same figure (b), the desired gate formation area is etched using a photoresist Ie mask, and boron ions are implanted using the thermal oxide film 2 as a mask.
an. The gate high concentration P-type impurity region 6 and the floating gate region 9 are selectively applied under the condition of 50 KeV.
form. Finally, approximately 6,000 oxide films (Sin2) 3Th were deposited using the CVN method, and windows were selectively opened in this (as shown in the figure).
n. The structure shown in FIG. 1 is obtained by forming source/drain electrodes 1 after applying at 50 KeV.

以上のように本実施例によれば、ゲート・ソース(ドレ
イン)間に、選択的にイオン注入処理を施して、7ロー
ティング・ゲート領域を形成することによク、サージ耐
圧が従来よりも200V以上も大きくなった。
As described above, according to this embodiment, by selectively performing ion implantation between the gate and source (drain) to form seven loading gate regions, the surge withstand voltage is higher than that of the conventional one. The voltage increased by more than 200V.

発明の効果 本発明によれば、ゲート・ソース(ドレイン)間に、選
択的にイオン注入処理を処して,フローティング・ゲー
ト領域を形成することにょジ、チップサイズ,諸特性を
変えずにサージ耐圧を大きくできる。
Effects of the Invention According to the present invention, by selectively performing ion implantation between the gate and the source (drain) to form a floating gate region, the surge withstand voltage can be improved without changing the chip size or various characteristics. can be made larger.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例におけるJFETの要部断面
図、第2図(a)〜(C)は同実施例を製造する工程順
断面図、第3図は従来例装置の断面図である。 1・・・・・・ソース・ドレイン電極、2・・・・−・
熱酸化膜(Sin2)、3 −−−−−− C V D
 法K ヨル酸化膜(Sin2)、4・・・・・・ソー
ス・ドレイン高濃度N型不純物領域、6・・・・・・ゲ
ート高濃度P型不純物領域、6・・・・・・P型バック
ゲート基板、7・・・・・・N型チャネル領域、8・・
・・・・高濃度P型分離領域、9・山・・フローティン
グ・ゲート領域。
FIG. 1 is a sectional view of the main parts of a JFET according to an embodiment of the present invention, FIGS. 2(a) to (C) are sectional views in the order of steps for manufacturing the same embodiment, and FIG. 3 is a sectional view of a conventional device. It is. 1... Source/drain electrode, 2...-
Thermal oxide film (Sin2), 3 ------- C V D
Method K Dioxide film (Sin2), 4...Source/drain high concentration N type impurity region, 6...Gate high concentration P type impurity region, 6...P type Back gate substrate, 7...N-type channel region, 8...
...High concentration P-type isolation region, 9. Mountain...Floating gate region.

Claims (2)

【特許請求の範囲】[Claims] (1)接合型電界効果トランジスタのゲート・ソース間
、ゲート・ドレイン間にダイオードを設けた半導体装置
(1) A semiconductor device in which a diode is provided between the gate and source and between the gate and drain of a junction field effect transistor.
(2)ダイオードは、ゲート、ソース・ドレインと分離
された構造をしており、ゲートと同時にイオン注入処理
を選択的に行って形成されたフローティングゲート構造
を有した請求項1記載の半導体装置。
(2) The semiconductor device according to claim 1, wherein the diode has a structure in which the gate, source and drain are separated, and has a floating gate structure formed by selectively performing an ion implantation process at the same time as the gate.
JP15546689A 1989-06-16 1989-06-16 Semicondcutor device Pending JPH0320047A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15546689A JPH0320047A (en) 1989-06-16 1989-06-16 Semicondcutor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15546689A JPH0320047A (en) 1989-06-16 1989-06-16 Semicondcutor device

Publications (1)

Publication Number Publication Date
JPH0320047A true JPH0320047A (en) 1991-01-29

Family

ID=15606669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15546689A Pending JPH0320047A (en) 1989-06-16 1989-06-16 Semicondcutor device

Country Status (1)

Country Link
JP (1) JPH0320047A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009043923A (en) * 2007-08-08 2009-02-26 Sanyo Electric Co Ltd Semiconductor device, and manufacturing method of the same
JP2013509731A (en) * 2009-11-02 2013-03-14 アナログ デバイシス, インコーポレイテッド Junction field effect transistor and manufacturing method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54133081A (en) * 1978-04-06 1979-10-16 Matsushita Electric Ind Co Ltd Junction type field effect transistor
JPS6298674A (en) * 1985-10-25 1987-05-08 Hitachi Ltd Gallium arsenide semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54133081A (en) * 1978-04-06 1979-10-16 Matsushita Electric Ind Co Ltd Junction type field effect transistor
JPS6298674A (en) * 1985-10-25 1987-05-08 Hitachi Ltd Gallium arsenide semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009043923A (en) * 2007-08-08 2009-02-26 Sanyo Electric Co Ltd Semiconductor device, and manufacturing method of the same
JP2013509731A (en) * 2009-11-02 2013-03-14 アナログ デバイシス, インコーポレイテッド Junction field effect transistor and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JPH08250512A (en) Preparation of mos gate device
JPS59121976A (en) Semiconductor device
JPS6119164A (en) Supplementary integrated circuit and method of producing same
JPH0237777A (en) Vertical type field-effect transistor
US4053917A (en) Drain source protected MNOS transistor and method of manufacture
JPH0320047A (en) Semicondcutor device
JPH0595003A (en) Manufacture of symmetrical/asymmetrical mesfet
JP2605757B2 (en) Method for manufacturing semiconductor device
JPH0548109A (en) Vertical type mos transistor and its manufacture
JPH0493038A (en) Field-effect transistor
KR0135041B1 (en) Fabrication method of soi mosfet
JPS61207051A (en) Semiconductor device
JPH06244428A (en) Mos device and manufacture thereof
JPS61100975A (en) Junction type field-effect transistor
JPH0234938A (en) Semiconductor device
JPS60158669A (en) Semiconductor device
JPH01286367A (en) Vertical field effect transistor
JPH04180238A (en) Dmos semiconductor production method
JPH01189175A (en) Double-diffusion type field effect semiconductor device
JPS6054791B2 (en) Composite field effect transistor
JPS6086871A (en) Manufacture of field effect transistor
JPH0810766B2 (en) Static induction semiconductor device and manufacturing method thereof
JPH03151669A (en) Manufacture of semiconductor device
KR950026031A (en) Power semiconductor device and manufacturing method thereof
JPS634668A (en) Mos type semiconductor device