JPH03196976A - Abrasive cutting wheel and manufacture thereof - Google Patents

Abrasive cutting wheel and manufacture thereof

Info

Publication number
JPH03196976A
JPH03196976A JP1339689A JP33968989A JPH03196976A JP H03196976 A JPH03196976 A JP H03196976A JP 1339689 A JP1339689 A JP 1339689A JP 33968989 A JP33968989 A JP 33968989A JP H03196976 A JPH03196976 A JP H03196976A
Authority
JP
Japan
Prior art keywords
cutting wheel
cutting
fine grooves
burr
grinding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1339689A
Other languages
Japanese (ja)
Inventor
Torahiko Kanda
虎彦 神田
Yasuhiro Otsuka
泰弘 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1339689A priority Critical patent/JPH03196976A/en
Publication of JPH03196976A publication Critical patent/JPH03196976A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polishing Bodies And Polishing Tools (AREA)
  • Laser Beam Processing (AREA)

Abstract

PURPOSE:To reduce the extent of loading as well as to suppress any burr being produced in a cutting surface and chipping to occur with the burr sharply by forming a lot of radial fine grooves in at least one side part of an abrasive cutting wheel. CONSTITUTION:A lot of fine grooves 12 are formed in the side of a body 11 at width and interval of several times or so as large as the diameter of an abrasive grain 13 distributed to an abrasive cutting wheel 11 by means of energy beam irradiation. With this formation, a grinding fluid 25 is sufficiently supplied to all the abrasive grain 13 existing on a peripheral part working surface 22, thereby giving the deposition of chips 24 and a cooling effect. In addition, using these fine grooves 12 as a chip pocket, such a case that the chips 24 remains in space between the body 11 and a workpiece 20 is eliminated and, what is more, any burr or chipping to be produced by occurrence of the burr is sharply suppressed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、切断加工や溝入れ加工を行うための切断砥石
及びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a cutting wheel for cutting and grooving, and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

ストレート切断砥石を高速回転させてガラスやセラミッ
クス等の材料を切断加工あるいは溝入れ加工する場合、
切断砥石に目詰まり現象が生じ、切断面にむしれが発生
したり、むしれの発生に伴ってチッピングが生じ切断面
の表面粗さが低下する。
When cutting or grooving materials such as glass or ceramics by rotating a straight cutting wheel at high speed,
A clogging phenomenon occurs in the cutting wheel, which causes peeling on the cut surface, and chipping occurs along with the occurrence of peeling, reducing the surface roughness of the cut surface.

第4図は従来の切断砥石による切断加工を説明するため
の切断中の状態を示す斜視図である。ここで、切断面の
表面粗さを低下させる目詰まり現象を説明する。この現
象は、第4図に示すように、切断砥石の外周作業面22
において、側面部近傍に分布する砥粒(以後、側面部砥
粒と呼ぶ)23や、側面部砥粒23を固定しているボン
ド層19に加工屑24が溶着して、加工屑24の円滑な
排出および研削加工液25による研削点の冷却が困難に
なる現象である。すなわち、切断砥石の本体11の目詰
まりの制御が高精度に切断加工や溝入れ加工を行なう上
で極めて重要である。特に切断加工や溝入れ加工におい
ては、平面研削等と比べ、切断砥石が加工物に進入して
から離脱するまで、側面部砥粒23とガラス基板加工物
である20の接触する距離が長いため、前述した加工屑
24の排除や研削点の冷却が困難となり、目詰まり現象
が生じやすくなる。
FIG. 4 is a perspective view showing a state during cutting to explain cutting processing using a conventional cutting whetstone. Here, the clogging phenomenon that reduces the surface roughness of the cut surface will be explained. This phenomenon occurs on the outer peripheral working surface 22 of the cutting wheel, as shown in FIG.
In this process, the processed debris 24 is welded to the abrasive grains 23 distributed near the side surface (hereinafter referred to as side surface abrasive grains) and the bond layer 19 fixing the side surface abrasive grains 23, and the processed debris 24 is smoothed. This is a phenomenon in which it becomes difficult to discharge the grinding liquid 25 and cool the grinding point with the grinding liquid 25. That is, controlling the clogging of the main body 11 of the cutting wheel is extremely important for performing cutting and grooving with high precision. Particularly in cutting and grooving, compared to surface grinding etc., the contact distance between the side abrasive grains 23 and the glass substrate workpiece 20 from when the cutting wheel enters the workpiece to when it leaves the workpiece is longer. This makes it difficult to remove the machining debris 24 mentioned above and to cool the grinding point, making it more likely that clogging will occur.

第5図(a)は従来の一例を示す切断砥石の平面図、第
5図(b)は第5図(a)の切断砥石を加工する方法の
一例を説明するための側面図、第5図(c)は第5図(
a)の切断砥石を加工する方法の他の例を説明するため
の側面図である。このため従来、研削加工液を研削点に
十分に供給し、加工屑の円滑な排除や研削点の冷却を促
進し、切断砥石外周作業面の目詰まり現象を抑制するこ
とを目的とした切断砥石として、第5図(a)に示すよ
うな本体26にスリット状の満27を設けたスリット付
き切断砥石が知られている。このスリット付き切断砥石
の満27は、砥石の外周部から半径方向にスリット状に
形成されたものであり、満27の本数は砥粒径に関係な
く4木、8本、多くても高々32本というように切断砥
石を等分割する形に形成されていた。また、このスリッ
ト状の溝27の形成は、例えば第5図(b)に示すよう
に、ワイヤ放電加工法により、そのワイヤ電極28を通
すことにより加工したり、あるいは第5図(C)に示す
ように、スリット形成用の砥石2つを用いてスリット溝
を加工することによって形成していた。
FIG. 5(a) is a plan view of a conventional cutting wheel, FIG. 5(b) is a side view illustrating an example of a method for processing the cutting wheel of FIG. 5(a), Figure (c) is shown in Figure 5 (
FIG. 7 is a side view for explaining another example of the method of processing the cutting whetstone in a). For this reason, conventional cutting wheels have been designed to supply a sufficient amount of grinding fluid to the grinding point, promote smooth removal of machining debris and cooling of the grinding point, and suppress clogging of the working surface around the cutting wheel. As shown in FIG. 5(a), a cutting grindstone with slits is known in which a main body 26 is provided with slit-shaped grooves 27. The cutting grindstone with slits has slits formed in the radial direction from the outer periphery of the grindstone, and the number of slits in the cutting wheel is 4, 8, or at most 32, regardless of the abrasive grain size. It was shaped like a cutting wheel divided into equal parts, like a book. The slit-shaped groove 27 can be formed by passing the wire electrode 28 through it by wire electrical discharge machining, for example, as shown in FIG. 5(b), or by machining the wire electrode 28 as shown in FIG. As shown, the slit grooves were formed using two grindstones for forming slits.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら上述した従来のスリット付き切断砥石では
、スリット近傍に存在する側面部砥粒については、切り
屑の溶着防止や冷却効果を得られるが、スリットとスリ
ットの間隔が砥粒径に比べ非常に大きいため、各スリッ
ト間に分布する側面部砥粒側々については、加工屑の排
除や研削加工液の供給による冷却効果を十分に得ること
ができなかった。
However, with the above-mentioned conventional cutting wheel with slits, the side abrasive grains present near the slits can prevent chips from adhering and provide a cooling effect, but the spacing between the slits is very large compared to the abrasive grain diameter. Therefore, it was not possible to obtain a sufficient cooling effect on the sides of the side abrasive grains distributed between the slits by removing machining debris or supplying grinding liquid.

また、各スリット間に存在する各砥粒に対して、研削液
の十分な供給を行い、目詰まりの抑制をするためには、
スリット幅およびスリット間隔を砥粒径と同等のオーダ
の大きさまで減少し、全ての砥粒に対して研削液を十分
に供給し、加工屑の排除および研削点の冷却を行なうこ
とが必要となる。ところが、従来のスリット付き切断砥
石ては、スリット間隔やスリット幅を小さくしてスリッ
ト状の溝を切断砥石に多数形成すると、切断砥石の強度
が低下し、切断砥石の破損の原因となる。このため従来
、スリットの本数は多くても数十本(30本程度)程度
に形成されていた。
In addition, in order to supply sufficient grinding fluid to each abrasive grain existing between each slit and suppress clogging,
It is necessary to reduce the slit width and slit spacing to the same order of magnitude as the abrasive grain diameter, to supply sufficient grinding fluid to all abrasive grains, to remove machining debris, and to cool the grinding point. . However, in conventional cutting wheels with slits, if a large number of slit-like grooves are formed on the cutting wheel by reducing the slit interval and slit width, the strength of the cutting wheel decreases, causing damage to the cutting wheel. For this reason, conventionally, the number of slits has been formed at most several dozen (about 30).

すなわち、従来のスリット付きの切断砥石では、切断砥
石の外周作業面に存在する全ての側面部砥粒に対して、
研削加工液を十分に供給し、加工屑の目詰まりや研削点
の冷却を十分に行なうことがてきす、むしれやむしれに
伴い発生するチッピングにより切断面の表面粗さが低下
する欠点があった。
In other words, in the conventional cutting wheel with slits, for all the side grains existing on the outer working surface of the cutting wheel,
If sufficient grinding fluid is supplied to prevent clogging of machining debris and cooling of the grinding point, there is a drawback that the surface roughness of the cut surface may deteriorate due to peeling or chipping that occurs due to peeling. Ta.

本発明の目的は、このような欠点を解決し、切断面に発
生するむしれやチッピングを抑制して、表面粗さを低減
できる研削切断砥石を提供すること、およびこのような
切断砥石を生産性よく製造する方法を提供することにあ
る。
The purpose of the present invention is to provide a grinding cutting wheel that can solve these drawbacks, suppress peeling and chipping occurring on the cut surface, and reduce surface roughness, and to provide a grinding wheel that can reduce surface roughness. The objective is to provide a method of manufacturing with high efficiency.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の研削切断砥石は、砥粒と該砥粒を保持固定する
ボンドによって形成された切断砥石において、前記切断
砥石の少なくとも一側面部に多数の微細溝を有している
。また、本発明の研削切断砥石上に形成する微細溝は、
エネルギービームを照射することにより形成することを
特徴としている。
The grinding and cutting wheel of the present invention is a cutting wheel formed of abrasive grains and a bond that holds and fixes the abrasive grains, and has a large number of fine grooves on at least one side surface of the cutting wheel. Furthermore, the fine grooves formed on the grinding and cutting wheel of the present invention are
It is characterized by being formed by irradiating energy beams.

〔実施例〕〔Example〕

まず、本発明の作用について図面を用いて説明する。第
3図は本発明の切断砥石を用いて切断をしている状態を
示す砥石と加工物の部分断面図である。
First, the operation of the present invention will be explained using the drawings. FIG. 3 is a partial cross-sectional view of the grindstone and a workpiece, showing a state in which cutting is being performed using the cutting grindstone of the present invention.

この発明における切断動作では、従来と同様に前述の第
4図に示すように、切断砥石の本体11が加工物20に
進入する直前に、切断砥石の本体11とガラス板である
加工物20の間に研削加工液25が供給されながら切断
加工が行なわれる。
In the cutting operation in this invention, as in the conventional case, as shown in FIG. The cutting process is performed while the grinding liquid 25 is being supplied.

本発明の切断砥石を用いた研削切断においては、第3図
及び第4図に示すように、切断砥石の本体11の側面部
に多数の微細溝12が形成されているため、微細溝12
に研削加工液25を保持した状態で本体11は加工物2
0に進入する。切断砥石の外周作業面22に分布した砥
粒13による加工物20の除去加工が進むにつれ、研削
加工液25は徐々に個々の砥粒13の研削点に供給され
、加工屑24の溶着や研削温度の上昇を抑制することが
できる。このような効果は、第5図(a)において示し
た従来のスリット付き切断砥石26に設けられたスリッ
ト状の溝27にもある。
In grinding and cutting using the cutting wheel of the present invention, as shown in FIGS. 3 and 4, a large number of fine grooves 12 are formed on the side surface of the body 11 of the cutting wheel.
The main body 11 holds the workpiece 2 while holding the grinding liquid 25.
Enter 0. As the removal process of the workpiece 20 by the abrasive grains 13 distributed on the outer circumferential working surface 22 of the cutting wheel progresses, the grinding liquid 25 is gradually supplied to the grinding points of the individual abrasive grains 13, thereby preventing welding of the machining debris 24 and grinding. A rise in temperature can be suppressed. Such an effect is also present in the slit-shaped groove 27 provided in the conventional cutting grindstone 26 with slits shown in FIG. 5(a).

しかし本発明の切断砥石が従来のスリット付き切断砥石
26と大きく異なるのは、切断砥石11に分付した砥粒
13の直径の数倍程度の幅及び間隔で本体11の側面に
多数の微細溝12を形成できるため、外周部作業面22
に存在する全ての砥粒13に対して十分に研削加工液2
5を供給することができ、加工屑24の溶着ならびに冷
却効果を付与できる点にある。
However, the cutting wheel of the present invention differs greatly from the conventional cutting wheel with slits 26 in that it has a large number of fine grooves on the side surface of the main body 11 with a width and an interval of several times the diameter of the abrasive grains 13 distributed in the cutting wheel 11. 12, the outer peripheral work surface 22
Grinding fluid 2 is applied sufficiently to all the abrasive grains 13 present in
5 can be supplied, and the processing waste 24 can be welded and a cooling effect can be provided.

本発明の切断砥石では、切断砥石11の側面に微細溝1
2を砥粒径の数倍から数十倍の間隔で多形成することが
可能なため、微細溝12をチップポケットとして利用す
ることができる。すなわち第3図に示すように、微細溝
12に含まれた研削加工液25が外周作業面に存在する
個々の砥粒13に十分に供給され、砥粒13によって生
じた加工屑24を研削加工液25が微細溝12の中まで
運び込み、微細溝12の中に加工屑24を保持する。こ
のため、本体11と加工物20の間に加工屑が滞留する
ことが無くなり、むしれやむしれの発生によって生じる
チッピングを著しく抑制することが可能となる。すなわ
ち目詰まりを抑制することが可能となり、表面粗さを低
減することが可能となる。
In the cutting wheel of the present invention, the fine grooves 1 are formed on the side surface of the cutting wheel 11.
Since it is possible to form multiple grooves 2 at intervals ranging from several times to several tens of times the diameter of the abrasive grain, the fine grooves 12 can be used as chip pockets. That is, as shown in FIG. 3, the grinding fluid 25 contained in the micro grooves 12 is sufficiently supplied to each abrasive grain 13 present on the outer circumferential working surface, and the machining debris 24 generated by the abrasive grains 13 is ground away. The liquid 25 is carried into the fine grooves 12 and holds the machining waste 24 in the fine grooves 12. Therefore, processing debris will not remain between the main body 11 and the workpiece 20, and chipping caused by peeling or peeling can be significantly suppressed. That is, it becomes possible to suppress clogging and reduce surface roughness.

なお、本発明の切断砥石に形成する微細溝12は、スリ
ット状の溝(貫通溝)でないため、第5図(b)で示し
た従来のワイヤ放電加工法によるワイヤ電極28では、
形成することは不可能である。また、第5図(c)に示
す薄形砥石による研削加工方法で微細溝を形成する方法
も考えられるが、例えば、数μm径の砥粒を用いる場合
、数十μm幅の微細溝形成用の薄型切断砥石を製造する
ことは、強度の点から極めて困難であり、しかも研削加
工方法による微細溝形成では、微細溝形成用の薄型砥石
に急激な磨耗が発生し、生産性の点で問題がある。
Note that the fine grooves 12 formed in the cutting wheel of the present invention are not slit-shaped grooves (through grooves), so the wire electrode 28 formed by the conventional wire electric discharge machining method shown in FIG.
It is impossible to form. It is also possible to form fine grooves by the grinding method using a thin grindstone as shown in Fig. 5(c). It is extremely difficult to manufacture thin cutting wheels from the viewpoint of strength, and when forming microgrooves using the grinding method, rapid wear occurs on the thin grindstone for forming microgrooves, which poses problems in terms of productivity. There is.

本発明の切断砥石の製造方法では、炭酸ガスレーザ、ア
ルゴンレーザ、YAGレーザなどを用いた熱的なレーザ
加工法あるいは荷電ビームのような電子ビーム加工法に
より微細溝12を形成する。切断砥石としてレジンボン
ド砥石やビトリファイドボンド砥石を用いた場合、エネ
ルギービームを照射することによりボンドを容易に溶融
蒸発させ、砥粒を離脱させ除去することができ、照射後
も自然冷却により加工周辺のボンドが凝固し、精密に、
しかも切断砥石上に生産性よく微細溝を形成することが
できる。また、例えば、レーザビームによる加工の場合
は、そのレーザビームの照射条件を変化することにより
(レーザビームの焦点位置をずらし、切断砥石面上のレ
ーザビーム径を変化、レーザパワーの変化、レーザの走
査速度の変化により被加工物内の温度分布を変化)、あ
るいは用いるレーザの波長を変化(ビーム径を大幅に変
化)することで、溝幅および溝深さを数μmから数百μ
m幅に変化でき、任意の形状に微細溝を形成することが
できる。勿論、電子ビームの加工の場合も、ビーム径、
出力偏向によるビームの走査幅等が自由に変えられるの
で、任意の形状に微細溝を形成することが出来る。
In the method for manufacturing a cutting wheel of the present invention, the fine grooves 12 are formed by a thermal laser processing method using a carbon dioxide laser, an argon laser, a YAG laser, etc. or an electron beam processing method such as a charged beam. When using a resin bonded grindstone or a vitrified bonded grindstone as a cutting wheel, the bond can be easily melted and evaporated by irradiation with an energy beam, and the abrasive grains can be separated and removed. Even after irradiation, the area around the processing area can be cooled by natural cooling. The bond solidifies and becomes precise.
Moreover, fine grooves can be formed on the cutting wheel with high productivity. For example, in the case of processing using a laser beam, by changing the irradiation conditions of the laser beam (shifting the focal position of the laser beam, changing the laser beam diameter on the cutting wheel surface, changing the laser power, By changing the temperature distribution within the workpiece by changing the scanning speed) or by changing the wavelength of the laser used (significantly changing the beam diameter), the groove width and groove depth can be changed from several μm to several hundred μm.
The width can be changed to m, and fine grooves can be formed in any shape. Of course, in the case of electron beam processing, the beam diameter,
Since the scanning width of the beam due to output deflection can be freely changed, fine grooves can be formed in any shape.

ここで、切断砥石で用いる砥粒径は一般に数μm〜数十
μmのオーダのため、所望とする溝形状、すなわち砥粒
径の数倍の溝深さかつ砥粒径の数倍か数十倍の深さの微
細溝を容易に形成することが可能となる。なお、溝の間
隔は、レーザビームの走査位置を変えることで、任意に
変化させることができる。
Here, the diameter of the abrasive grains used in cutting wheels is generally on the order of several μm to several tens of μm, so the desired groove shape, that is, the groove depth several times the abrasive grain diameter and several times or several tens of times the abrasive grain diameter. It becomes possible to easily form fine grooves that are twice as deep. Note that the interval between the grooves can be arbitrarily changed by changing the scanning position of the laser beam.

以上のように本発明の切断砥石の製造方法で、レーザ光
を照射して加工する場合は、レーザの照射条件あるいは
、用いるレーザの波長を変化することで、微細溝の形状
を任意に変化できるため、用いる砥粒径が変化しても容
易に最適な形状の微細溝(砥粒径の数倍から数十倍の幅
および溝間隔、砥粒径の数倍程度の深さ)を形成するこ
とができる。なお、レーザの照射パワーを大とし、レー
ザビームの走査速度を大きくすることで、所望の形状の
微MB講を生産性よく形成することが可能となる。
As described above, when processing by irradiating a laser beam with the manufacturing method of the cutting wheel of the present invention, the shape of the micro grooves can be arbitrarily changed by changing the laser irradiation conditions or the wavelength of the laser used. Therefore, even if the abrasive grain diameter used changes, it is easy to form fine grooves with the optimal shape (width and groove spacing several times to several tens of times the abrasive grain diameter, and depth several times the abrasive grain diameter). be able to. Note that by increasing the laser irradiation power and increasing the scanning speed of the laser beam, it becomes possible to form a micro MB pattern of a desired shape with high productivity.

次に、本発明の実施例について図面を参照して説明する
。第1図(a)、(b)はそれぞれ本発明の第一の実施
例で用いた切断砥石の正面図及び側面拡大図を、第2図
は本発明の切断砥石の製造方法を説明するためのレーザ
加工装置の側面図を示す。
Next, embodiments of the present invention will be described with reference to the drawings. Figures 1 (a) and (b) are a front view and an enlarged side view of the cutting wheel used in the first embodiment of the present invention, respectively, and Figure 2 is for explaining the method for manufacturing the cutting wheel of the present invention. A side view of the laser processing device shown in FIG.

まず、例えば、第2図に示ずC02レーサ加工装置を用
いて、砥粒径約301t mのダイヤモンド砥粒を使用
した外径76mm、厚さ0.5romのレジンボンド切
断砥石の本体11の側面部に、第1図に示すような微細
溝12を形成した。この加工には、レーザパワーを3W
(パルス発信、発信時間100μs、DUTY=0.1
)のレーザビーム15をレーザヘット14より発生させ
、集光レンス16により約120μmに集光し、レーザ
の走査速度V=25m++n/s−溝間隔200μmと
し、第1図に示すように溝幅100μm、溝深さ50μ
mの微細溝12を放射状に片面で1194本形成し、微
細溝付き切Ur砥石を製作しな。ここでレーザビーム1
5の走査は、本体11をXYステチー17により移動す
ることにより行ない、1本の微細溝12の長さは5關と
した。なお、第1図に示す切断砥石を作成するのに要し
た時間は、約10分である。
First, for example, using a C02 laser machining device not shown in FIG. A fine groove 12 as shown in FIG. 1 was formed in the portion. For this processing, the laser power is 3W.
(Pulse transmission, transmission time 100 μs, DUTY = 0.1
) is generated from the laser head 14 and focused to about 120 μm by the condensing lens 16, the scanning speed of the laser is set to V = 25 m++n/s - the groove spacing is 200 μm, and the groove width is 100 μm as shown in FIG. Groove depth 50μ
1194 micro-grooves 12 of m diameter are formed radially on one side to produce a cutting Ur grindstone with micro-grooves. Here, laser beam 1
The scanning of No. 5 was performed by moving the main body 11 with the XY stitcher 17, and the length of each fine groove 12 was set to 5 steps. The time required to create the cutting wheel shown in FIG. 1 was approximately 10 minutes.

次に、従来例で説明しなと同じように、第4図に示す切
断装置に第1図の微細溝12を形成した切断砥石をエア
ースピンドル18に装着して、レーザ加工によって変質
したレジンホント層19やダイヤモンド砥粒13を除去
するドレッシングを行った。これにはガラス板を使用し
て予備切断を数分間行った。以上のドレッシングした後
に、ちなみに約5 mm厚のガラス基板である加工物2
0を切断砥石の回転数を3万rpm、加工物20を加工
物送り台21により速度V2=60mm/m:nで送り
切断してみた。
Next, in the same manner as described in the conventional example, the cutting wheel in which the fine grooves 12 of FIG. 1 are formed is attached to the air spindle 18 of the cutting device shown in FIG. Dressing was performed to remove the layer 19 and the diamond abrasive grains 13. For this purpose, a glass plate was used for pre-cutting for several minutes. After the above dressing, the workpiece 2, which is a glass substrate with a thickness of about 5 mm, was
The cutting grindstone was rotated at a rotation speed of 30,000 rpm, and the workpiece 20 was fed and cut using the workpiece feed table 21 at a speed of V2=60 mm/m:n.

その結果、本実施例の切断砥石を用いることによって切
断面に発生ずるむしれやチッピングを大幅に減少するこ
とが出来、切断面の表面粗さ約0.1μmか得られた。
As a result, by using the cutting grindstone of this example, it was possible to significantly reduce the sagging and chipping that occurred on the cut surface, and the surface roughness of the cut surface was approximately 0.1 μm.

なお比較のため従来のスリット付き切断砥石を用い、上
述と同様の切断条件のもとてガラス基板を切断したとこ
ろ、切断面の表面粗さは約0.3μmであった。以上の
ように本発明の切断砥石を用いることで、目詰まり減少
を著しく抑制でき、表面あらさを従来のスリット付き切
断砥石を用いた場合に比べ約3分の1に低減できること
を確認した。
For comparison, a glass substrate was cut using a conventional cutting wheel with slits under the same cutting conditions as described above, and the surface roughness of the cut surface was about 0.3 μm. As described above, it was confirmed that by using the cutting wheel of the present invention, the reduction in clogging can be significantly suppressed, and the surface roughness can be reduced to about one third compared to when using a conventional cutting wheel with slits.

ここで目詰まり抑制効果は、微細溝12を深くし、かつ
講の間隔を砥粒径と同等まで小さくする程有効であるか
、逆に溝幅および溝間隔を小さくする程、作用砥粒数の
過減少による切断砥石の急激激な磨耗等の問題が生しる
。また、微細溝の深さを必要以上に深くすると切断砥石
の強度は低下し、破損しないように加圧力を抑制するの
で、微細7異加工における生産性が低下する。さらに、
微細溝の形状を種りに変化させガラス基板の切断を行っ
たところ、微細溝12の深さは砥粒13の径の数倍程度
、溝幅および溝の間隔は砥粒径の数倍から十数倍程度と
することで十分な目詰まり抑制の効果が得られ、かつ切
断砥石の磨耗や強度低下等の問題は生じないことを実験
的に確認した。
Here, the clogging suppressing effect is more effective as the fine grooves 12 are made deeper and the groove spacing is made smaller to the same level as the abrasive grain diameter, or conversely, the smaller the groove width and the groove spacing, the more Problems such as rapid and severe wear of the cutting wheel arise due to an excessive decrease in the amount of the cutting wheel. Furthermore, if the depth of the fine grooves is increased more than necessary, the strength of the cutting wheel decreases, and since the pressing force is suppressed to prevent breakage, the productivity in fine 7 different machining decreases. moreover,
When cutting a glass substrate by changing the shape of the fine grooves, the depth of the fine grooves 12 was approximately several times the diameter of the abrasive grains 13, and the groove width and groove interval were several times the diameter of the abrasive grains. It was experimentally confirmed that a sufficient clogging suppression effect can be obtained by increasing the thickness by about ten times, and that problems such as abrasion of the cutting wheel and decrease in strength do not occur.

なお、本発明の第2の実施例として、ビトリファイドボ
ンド切断砥石を用いて、第1の実施例と同様の方法で切
断砥石11の側面部に1194本の微細溝12を形成し
た。この切断砥石を用いてガラス基板を切断したところ
、やはりむしれやチッピングは従来のスリット付き切断
砥石を用いた場合に比べ大幅に減少し、切断面粗さを従
来の切断砥石を用いた場合と比べて低減できることを確
認した。
As a second example of the present invention, a vitrified bond cutting wheel was used to form 1194 fine grooves 12 on the side surface of the cutting wheel 11 in the same manner as in the first example. When cutting a glass substrate using this cutting wheel, peeling and chipping were significantly reduced compared to when using a conventional cutting wheel with slits, and the roughness of the cut surface was lower than when using a conventional cutting wheel. It was confirmed that it was possible to reduce the

ここで、本発明の切断砥石を50ケ製造し、本発明の第
一の実施例と同様の条件でガラス基板の切断を行なった
ところ、切断砥石の破損は全く生じず、切断砥石11は
十分な強度を有することを確認した。
Here, when 50 cutting wheels of the present invention were manufactured and glass substrates were cut under the same conditions as in the first embodiment of the present invention, no damage occurred to the cutting wheels, and the cutting wheel 11 was sufficiently cut. It was confirmed that the material has high strength.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明は、砥石本体側面に放射状に
多数の微細溝を設けることによって、目詰まり減少を抑
制し、切断面に発生するむしれ、およびむしれに伴って
発生するチッピングを大幅に抑制することができるとと
もに切断面の表面粗さを低減することができる切断砥石
が得られるという効果がある。また本発明は、砥粒を結
合するボンドを溶融・蒸発させ、砥粒を離脱させるよう
に、エネルギービームを照射することにより加工するの
で、砥粒径の数倍から数十倍の幅および溝間隔、砥粒径
の数倍程度の深さの微細溝を容易にしかも生産性高く形
成できる切断砥石の製造方法が得られるという効果があ
る。
As described above, the present invention suppresses the reduction in clogging by providing a large number of radial fine grooves on the side surface of the grindstone body, and reduces the peeling that occurs on the cut surface and the chipping that occurs due to the peeling. This has the effect of providing a cutting wheel that can significantly suppress the roughness of the cut surface and reduce the surface roughness of the cut surface. In addition, in the present invention, processing is performed by irradiating an energy beam to melt and evaporate the bond that binds the abrasive grains, and to separate the abrasive grains. The present invention has the effect of providing a method for manufacturing a cutting whetstone that can easily form microgrooves with a spacing and depth several times the diameter of the abrasive grains with high productivity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)及び(b)は本発明の切断砥石を示す正面
図及び側面拡大図、第2図は本発明の切断砥石の製造方
法を説明するための側面図、第3図は本発明の切断砥石
を用いて切断している状態を示す砥石と加工物の部分断
面図、第4図は従来の切断砥石による切断加工を説明す
るための切断中の状態を示す斜視図、第5図(a)〜(
c)はそれぞれ、従来の一例を示す切断砥石の正面図、
第5図(a)の切断砥石を加工する方法の一例を説明す
るための側面図、および他の加工方法の例を説明するた
めの側面図である。 11・・・本体、12・・・微細溝、13・・・砥粒、
14・・・レーザヘッド、15・・・レーザビーム、1
6・・・集光レンズ、17・・・XYステチー、18・
・・エアースピンドル、19・・・レジンボンド層、2
0・・・加工物、21・・・加工物送り台、22・・・
外周作業面、23・・・側面部砥粒、24・・・加工屑
、25・・・研削加工液、26・・・本体、27・・・
溝、28・・・ワイヤ電極、29・・・砥石。
Figures 1 (a) and (b) are a front view and an enlarged side view showing the cutting wheel of the present invention, Figure 2 is a side view for explaining the method of manufacturing the cutting wheel of the present invention, and Figure 3 is the main FIG. 4 is a partial sectional view of a grindstone and a workpiece showing a state in which cutting is being performed using the cutting grindstone of the invention; FIG. Figures (a) to (
c) is a front view of a cutting wheel showing a conventional example;
FIG. 5A is a side view for explaining an example of a method of processing the cutting wheel of FIG. 5(a), and a side view for explaining an example of another processing method. 11... Main body, 12... Fine groove, 13... Abrasive grain,
14... Laser head, 15... Laser beam, 1
6... Condensing lens, 17... XY stitch, 18.
...Air spindle, 19...Resin bond layer, 2
0... Workpiece, 21... Workpiece feed stand, 22...
Outer circumferential working surface, 23... Side part abrasive grain, 24... Processing waste, 25... Grinding fluid, 26... Main body, 27...
Groove, 28... wire electrode, 29... grindstone.

Claims (1)

【特許請求の範囲】[Claims] 1、砥粒と該砥粒を保持固定するボンドによって形成さ
れた切断砥石において、前記切断砥石の少なくとも一側
面部に多数の放射状の微細溝を有することを特徴とする
切断砥石。2、前記微細溝は、エネルギービーム照射に
より形成することを特徴とする請求項1記載の切断砥石
の製造方法。
1. A cutting whetstone formed of abrasive grains and a bond for holding and fixing the abrasive grains, characterized in that the cutting whetstone has a large number of radial fine grooves on at least one side surface thereof. 2. The method for manufacturing a cutting wheel according to claim 1, wherein the fine grooves are formed by energy beam irradiation.
JP1339689A 1989-12-26 1989-12-26 Abrasive cutting wheel and manufacture thereof Pending JPH03196976A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1339689A JPH03196976A (en) 1989-12-26 1989-12-26 Abrasive cutting wheel and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1339689A JPH03196976A (en) 1989-12-26 1989-12-26 Abrasive cutting wheel and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH03196976A true JPH03196976A (en) 1991-08-28

Family

ID=18329867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1339689A Pending JPH03196976A (en) 1989-12-26 1989-12-26 Abrasive cutting wheel and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH03196976A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0780774A (en) * 1993-09-14 1995-03-28 Asahi Daiyamondo Kogyo Kk Inner circumferential type cutting grinding wheel
WO1998014307A1 (en) * 1996-09-30 1998-04-09 Osaka Diamond Industrial Co. Superabrasive tool and method of its manufacture
US6110030A (en) * 1998-03-23 2000-08-29 Hashimoto; Hiroshi Ultra fine groove chip and ultra fine groove tool
JP2009107075A (en) * 2007-10-30 2009-05-21 Noritake Co Ltd Method of manufacturing vitrified super abrasive grain grinding wheel
JP2017022425A (en) * 2013-08-26 2017-01-26 株式会社東京精密 Dicing device
JP2018078166A (en) * 2016-11-08 2018-05-17 株式会社ディスコ Manufacturing method for cutting blade
JP2019005878A (en) * 2017-06-28 2019-01-17 株式会社ディスコ Annular grind stone
CN110877307A (en) * 2019-07-17 2020-03-13 河南理工大学 Grinding wheel device for laser sintering
JP2020199556A (en) * 2019-06-05 2020-12-17 株式会社ディスコ Cutting blade manufacturing method and cutting blade
DE102021120519A1 (en) 2020-08-07 2022-02-10 Zecha Hartmetall-Werkzeugfabrikation Gmbh HONING TOOL AND METHOD OF MAKING THEM

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0780774A (en) * 1993-09-14 1995-03-28 Asahi Daiyamondo Kogyo Kk Inner circumferential type cutting grinding wheel
WO1998014307A1 (en) * 1996-09-30 1998-04-09 Osaka Diamond Industrial Co. Superabrasive tool and method of its manufacture
US6110030A (en) * 1998-03-23 2000-08-29 Hashimoto; Hiroshi Ultra fine groove chip and ultra fine groove tool
JP2009107075A (en) * 2007-10-30 2009-05-21 Noritake Co Ltd Method of manufacturing vitrified super abrasive grain grinding wheel
JP2017022425A (en) * 2013-08-26 2017-01-26 株式会社東京精密 Dicing device
JP2018078166A (en) * 2016-11-08 2018-05-17 株式会社ディスコ Manufacturing method for cutting blade
JP2019005878A (en) * 2017-06-28 2019-01-17 株式会社ディスコ Annular grind stone
JP2020199556A (en) * 2019-06-05 2020-12-17 株式会社ディスコ Cutting blade manufacturing method and cutting blade
CN110877307A (en) * 2019-07-17 2020-03-13 河南理工大学 Grinding wheel device for laser sintering
DE102021120519A1 (en) 2020-08-07 2022-02-10 Zecha Hartmetall-Werkzeugfabrikation Gmbh HONING TOOL AND METHOD OF MAKING THEM
WO2022028714A1 (en) 2020-08-07 2022-02-10 Zecha Hartmetall-Werkzeugfabrikation Gmbh Honing tool and method for producing same
DE202021004060U1 (en) 2020-08-07 2022-08-04 Zecha Hartmetall-Werkzeugfabrikation Gmbh honing tool

Similar Documents

Publication Publication Date Title
KR100609361B1 (en) Ultra fine groove chip and ultra fine groove tool
KR19990071674A (en) Super abrasive tool and its manufacturing method
US7175509B2 (en) Grinder and method of and apparatus for non-contact conditioning of tool
JPH03196976A (en) Abrasive cutting wheel and manufacture thereof
JP2006319292A (en) Working method and device for step at outer peripheral edge of laminating workpiece
JP5983364B2 (en) End mill
JP2010135537A (en) Method of processing wafer
US8709328B2 (en) Method for forming ventilation holes in an electrode plate
JP2679509B2 (en) Cutting wheel and cutting method
JP2002321155A (en) Non-contact tool adjusting method and apparatus therefor
JPS6288570A (en) Grinding wheel
JP2008229764A (en) Rotary tool and machining method
JP2002307210A (en) Single crystal diamond cutting tool and its manufacturing method
JP2004066435A (en) Honing tool and method of honing using the tool
JP2000052119A (en) Machining drill for deep hole
JP2007160505A (en) Method for manufacturing grindstone
JP2004160581A (en) Manufacturing method for diamond coated tool, and diamond coated tool
JP2004216483A (en) Ultraprecision machining tool
KR102098252B1 (en) Dressing tool of welding electrode, dressing apparatus and dressing method
WO2019064837A1 (en) Electrodeposition grindstone and manufacturing method therefor
JPH06312376A (en) Ultra-abrasive wheel embedded therein with striplike chips, for precise cutting
JP3077033B2 (en) Chip for disk cutter and method of processing the same
JP2893828B2 (en) Thin blade whetstone with hub and method of manufacturing the same
JP2010036296A (en) Single crystal diamond cutting tool and method for manufacturing same
Peng et al. Grinding and dressing tools for precision machines