JPH03195964A - Electrochemical gas sensor element - Google Patents

Electrochemical gas sensor element

Info

Publication number
JPH03195964A
JPH03195964A JP1337713A JP33771389A JPH03195964A JP H03195964 A JPH03195964 A JP H03195964A JP 1337713 A JP1337713 A JP 1337713A JP 33771389 A JP33771389 A JP 33771389A JP H03195964 A JPH03195964 A JP H03195964A
Authority
JP
Japan
Prior art keywords
solid electrolyte
electrolyte layer
gas
electrode
gas sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1337713A
Other languages
Japanese (ja)
Inventor
Takahiro Inoue
孝啓 井上
Ayumi Yasuda
歩 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP1337713A priority Critical patent/JPH03195964A/en
Publication of JPH03195964A publication Critical patent/JPH03195964A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

PURPOSE:To improve the response speed of an element and prevent an impedance from increasing due to a decrease in a thickness by using a solid electrolyte layer including high polymer and polysiloxane or its derivative which constitutes a solid electrolyte. CONSTITUTION:A material wherein polysiloxane or its derivative is blended with a high polymer electrolyte material is used for a solid electrolyte layer 50. A working electrode 20, a counter electrode 30 both composed of platinum and a reference electrode 40 composed of gold are formed on an insulating substrate 10 composed of a silicon substrate by sputtering. Then, an electrolyte layer 50 is formed by casting an electrolyte solution so as to cover all the electrodes 20, 30 and 40 but expose only terminal portions 22, 32 and 42. Subse quently, a voltage applied to between the working electrode 20 and the reference electrode 40 is kept at 0.45 V. Further, an atmosphere in a chamber 90 is re placed from the air only to the air containing 1,000 ppm CO gas and a change in an output current flowing between the working electrode 20 and the counter electrode 30 is measured. Thus, a sensitiveness to a gas can be improved and a highly accurate gas detection and determination can be performed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、電気化学式ガスセンサ素子に関し、詳しく
は、電気化学反応を利用して大気中のガス等を検出する
ガスセンサを構成するための素子に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an electrochemical gas sensor element, and more particularly, to an element for configuring a gas sensor that detects gas in the atmosphere using an electrochemical reaction. It is something.

〔従来の技術〕[Conventional technology]

電気化学反応を利用したガスセンサ素子は、基本的には
、複数の電極とその電極間のイオン伝導を媒介する電解
質から構成されている。環境中にガスが存在すると、こ
のガスが電極上で電気化学反応を起こすことによって電
極間に電流が流れるこの電流を測定して、ガスの存在を
検知するのである。
Gas sensor elements that utilize electrochemical reactions basically consist of a plurality of electrodes and an electrolyte that mediates ion conduction between the electrodes. When a gas is present in the environment, this gas causes an electrochemical reaction on the electrodes, causing a current to flow between the electrodes.The presence of the gas is detected by measuring this current.

電解質としては、従来、硫酸等の液体電解質が用いられ
ていたが、このような液体電解質を用いた場合、電解質
濃度の変化を防ぐことが困難であり、小型で、しかも長
期的に安定な素子を得るのが難しいといった欠点があっ
た。
Conventionally, liquid electrolytes such as sulfuric acid have been used as electrolytes, but when such liquid electrolytes are used, it is difficult to prevent changes in electrolyte concentration, and it is difficult to prevent small and long-term stable elements. The disadvantage was that it was difficult to obtain

そこで、液体電解質の代わりに、高分子固体電解質を用
いてイオン伝導を行わせるセンサの開発が進められてい
る。高分子固体電解質としては、スルホン化パーフルオ
ロカーボン等のプロトン伝導体が使用される。このよう
な高分子固体電解質を用いたガスセンサ素子は、素子の
小型化やメインテナンスフリー化の実現が期待されてい
る。
Therefore, the development of sensors that perform ion conduction using solid polymer electrolytes instead of liquid electrolytes is underway. As the solid polymer electrolyte, a proton conductor such as sulfonated perfluorocarbon is used. Gas sensor elements using such polymer solid electrolytes are expected to be miniaturized and maintenance-free.

さらに、本願発明者らは、絶縁基板の同一面上に、必要
な電極を並べて設けておき、その上を前記固体高分子電
解質で覆った、いわゆるプレーナ型構造のガスセンサ素
子を開発し、先に特願昭63−42841号等で特許出
願している。このような構造のガスセンサ素子は、半導
体や印刷配線回路の製造技術あるいは薄膜形成技術を適
用して製造することができ、素子の微細化や生産性の向
上を図ることができ、実用性に優れたものとなる〔課題
を解決するための手段〕 上記のように、高分子固体電解質層で各電極を覆った構
造のガスセンサ素子では、環境中のガス分子が高分子固
体電解質を透過して電極に到達しなければ、電気化学反
応が起こらず、ガスの検出ができない。したがっ“ζ、
素子の応答速度もしくはガス感度を向上させるには、高
分子固体電解質層の厚みが出来るだけ薄いほうが望まし
いことになる。ところが、高分子固体電解質層の厚みが
薄くなると、製造技術上、均一な層を作るのが困難にな
ったり、電解質層のインピーダンスが増大して、却って
素子感度が低下してしまうという問題があった。
Furthermore, the inventors of the present application have developed a gas sensor element with a so-called planar structure, in which the necessary electrodes are arranged side by side on the same surface of an insulating substrate, and the electrodes are covered with the solid polymer electrolyte. Patent applications have been filed under Japanese Patent Application No. 63-42841. Gas sensor elements with such a structure can be manufactured by applying semiconductor or printed wiring circuit manufacturing technology or thin film formation technology, making it possible to miniaturize the element and improve productivity, making it highly practical. [Means for solving the problem] As described above, in a gas sensor element having a structure in which each electrode is covered with a solid polymer electrolyte layer, gas molecules in the environment pass through the solid polymer electrolyte and are connected to the electrodes. If the electrochemical reaction does not occur, the gas cannot be detected. Therefore “ζ,
In order to improve the response speed or gas sensitivity of the device, it is desirable that the solid polymer electrolyte layer be as thin as possible. However, as the thickness of the solid polymer electrolyte layer becomes thinner, there are problems in that it becomes difficult to create a uniform layer due to manufacturing technology, and the impedance of the electrolyte layer increases, which actually reduces the sensitivity of the device. Ta.

そこで、この発明は、前記したような高分子固体電解質
層を用いたプレーナ型のガスセンサ素子において、固体
電解質層の材料自体のガス透過率を高めることによって
、素子の応答速度を向」ニさせると同時に、厚みの減少
によるインピーダンスの上昇を防ぎ、製造も容易で素子
感度の高い電気化学式ガスセンサ素子を提供することに
ある。
Therefore, the present invention aims to improve the response speed of the element by increasing the gas permeability of the material of the solid electrolyte layer itself in a planar gas sensor element using the solid polymer electrolyte layer as described above. At the same time, it is an object of the present invention to provide an electrochemical gas sensor element that prevents an increase in impedance due to a decrease in thickness, is easy to manufacture, and has high element sensitivity.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決する、この発明にかかる電気化学式ガス
センサ素子は、絶縁基板の同一面上に作用電極、対極お
よび参照電極が設けられ、各種およびその間を覆って固
体電解質層が設けられた電気化学式ガスセンサ素子にお
いて、固体電解Ifi、層が、固体電解質となる高分子
にポリシロキサンまたはその誘導体を含むものからなる
An electrochemical gas sensor element according to the present invention that solves the above problems is an electrochemical gas sensor in which a working electrode, a counter electrode, and a reference electrode are provided on the same surface of an insulating substrate, and a solid electrolyte layer is provided covering each electrode and between them. In the device, the solid electrolyte Ifi layer is made of a solid electrolyte containing polysiloxane or a derivative thereof as a polymer.

絶縁基板や各種の構造は、通常の電気化学式センサ素子
と同様のものでよい。固体電解質層を構成する固体電解
質としては、通常の電気化学式ガスセンサ素子に用いら
れているのと同様の高分子からなるプロトン伝導体が使
用される。具体的には、ポリスチレンスルホネートポリ
マー、スルホン化パーフルオロカーボン、カルボキシル
化パーフルオロカーボン等が挙げられる。このうち、ス
ルホン化パーフルオロカーボンは、溶媒に可溶であるた
め成膜性がよいこと、プロトン解離度が大きいのでブロ
ー・ン伝専性がよいこと等の点で好ましいものである。
The insulating substrate and various structures may be similar to those of ordinary electrochemical sensor elements. As the solid electrolyte constituting the solid electrolyte layer, a proton conductor made of a polymer similar to that used in ordinary electrochemical gas sensor elements is used. Specific examples include polystyrene sulfonate polymer, sulfonated perfluorocarbon, carboxylated perfluorocarbon, and the like. Among these, sulfonated perfluorocarbons are preferable because they are soluble in solvents, so they have good film-forming properties, and because they have a high degree of proton dissociation, they have good blow-on transfer property.

この発明では、固体電解質とし°ζ、上記のような高分
子にポリシロキサンまたはその誘導体を含むものを用い
る。ポリシロキサンは、いわゆるキロキサン結合を有す
る高分子化合物であり、下式%式% R,=メチル基、エチル基、フェニル基、ビニル基、フ
ルオロ基その他の無機および有機基 ポリシロキサンまたはその誘導体としては、前記固体電
解質を構成する高分子の溶媒、例えばアルコールに溶解
するものを用いる。
In this invention, the solid electrolyte used is one containing polysiloxane or a derivative thereof in the polymer as described above. Polysiloxane is a polymer compound having a so-called chiroxane bond, and has the following formula % R, = methyl group, ethyl group, phenyl group, vinyl group, fluoro group, and other inorganic and organic groups as polysiloxane or its derivatives. , a solvent for the polymer constituting the solid electrolyte, such as one that is soluble in alcohol, is used.

このような成分を含む高分子固体電解質を用い、各種お
よびその間を覆って固体電解質層を設けるには、通常d
電気化学式ガスセンサの製造と同様の手段が採用される
。例えば、固体電解質を構成する高分子およびポリシロ
キサンまたはその誘導体を、適当な溶媒に溶解して、い
わゆるキャスティングにより、所定の厚みを有する固体
電解質層を形成することができる。
In order to use a solid polymer electrolyte containing such components and to provide a solid electrolyte layer covering each type and between them, d is usually used.
Similar measures are adopted for manufacturing electrochemical gas sensors. For example, a solid electrolyte layer having a predetermined thickness can be formed by dissolving the polymer and polysiloxane or its derivatives constituting the solid electrolyte in a suitable solvent and by so-called casting.

固体電解質層の厚みは、通常の電気化学式ガスセンサと
同じ程度かより厚く形成することができる。すなわち、
この発明で用いる固体電解質層は、固体電解質層の厚み
が厚くても良好な応答速度が得られるのである。固体電
解質層の厚みが分厚い程、製造が容易になるとともにイ
ンピーダンスが低くなるので、このような条件を考慮し
て、固体電解質層の厚みを決定する。具体的には、使用
条件等によっても異なるが、通常、10〜50μm程度
が好ましい。
The thickness of the solid electrolyte layer can be formed to be approximately the same as or thicker than that of a normal electrochemical gas sensor. That is,
The solid electrolyte layer used in this invention can provide good response speed even if the solid electrolyte layer is thick. The thicker the solid electrolyte layer is, the easier it is to manufacture and the lower the impedance is, so the thickness of the solid electrolyte layer is determined in consideration of these conditions. Specifically, it is usually preferably about 10 to 50 μm, although it varies depending on usage conditions and the like.

〔作  用〕[For production]

ポリシロキサンまたはその誘導体は、ガス透過性に優れ
ているという性質を有している。したがって、このよう
なポリシロキサンまたはその誘導体が固体電解質を構成
する高分子に含まれていれば、固体電解質層のガス透過
性が向上する。固体電解質層のガス透過性が高ければ、
センサの応答速度が良好になりガス感度が向上する。ま
た、固体電解質層の厚みが増えてもセンサの応答速度が
低下しないので、固体電解質層の厚みを増やすことがで
きる。固体電解質層の厚みが増えれば、均一な膜を容易
に形成できるので製造が簡単になるとともに、インピー
ダンスが小さくなる。以上の結果、センサ素子の感度が
向上する。
Polysiloxane or its derivatives have excellent gas permeability. Therefore, if such polysiloxane or its derivative is contained in the polymer constituting the solid electrolyte, the gas permeability of the solid electrolyte layer will be improved. If the gas permeability of the solid electrolyte layer is high,
The response speed of the sensor is improved and the gas sensitivity is improved. Furthermore, since the response speed of the sensor does not decrease even if the thickness of the solid electrolyte layer increases, the thickness of the solid electrolyte layer can be increased. If the thickness of the solid electrolyte layer is increased, a uniform film can be easily formed, which simplifies manufacturing and reduces impedance. As a result of the above, the sensitivity of the sensor element is improved.

〔実 施 例〕〔Example〕

ついで、この発明の実施例について、図を参照しながら
以下に説明する。
Next, embodiments of the present invention will be described below with reference to the drawings.

第1図および第2図に示すように、絶縁基板10の表面
に、白金や金等からなる電極、すなわち短冊状の作用極
20、対極30および参照極40が並んで形成されてい
る。電極材料は、上記以外にも、金属または非金属から
なる通常の電極材料が使用できる。各種20・・・の形
状や配置は、通常の電気化学式ガスセンサと同様の各種
構造に変更することもできる。
As shown in FIGS. 1 and 2, electrodes made of platinum, gold, or the like, that is, strip-shaped working electrodes 20, counter electrodes 30, and reference electrodes 40 are formed side by side on the surface of an insulating substrate 10. As the electrode material, in addition to those mentioned above, ordinary electrode materials made of metal or nonmetal can be used. The shapes and arrangements of the various types 20 can also be changed to various structures similar to those of ordinary electrochemical gas sensors.

各種20・・・の上およびその間を覆って、固体電解質
層50が形成されている。固体電解質層50の材料は、
前記したように、スルホン化パーフルオロカーボン等の
高分子電解質材料に、ポリジメチルシロキサン等のシロ
キサンまたはその誘導体をブレンドしたものが用いられ
る。スルホン化パーフルオロカーボンを用いる場合、そ
の溶媒であるアルコールにスルホン化パーフルオロカー
ボンおよびポリジメチルシロキサン等を熔解した混合溶
液を製造し、この溶液を各種20・・・の上にキャステ
ィングする。
A solid electrolyte layer 50 is formed to cover the various types 20 and between them. The material of the solid electrolyte layer 50 is
As described above, a blend of a polymer electrolyte material such as a sulfonated perfluorocarbon and a siloxane such as polydimethylsiloxane or a derivative thereof is used. When using a sulfonated perfluorocarbon, a mixed solution is prepared by dissolving the sulfonated perfluorocarbon, polydimethylsiloxane, etc. in alcohol as a solvent, and this solution is cast on various types of 20....

固体電解質層50は、各種20・・・のほぼ全体を覆っ
ているが、各種20・・・の一部は固体電解質層50の
外まで延長されて、外部回路との接続用端子部22,3
2.42となっている。
The solid electrolyte layer 50 covers almost the entirety of each type 20..., but a part of each type 20... is extended to the outside of the solid electrolyte layer 50 to form a terminal portion 22 for connection with an external circuit, 3
It is 2.42.

つぎに、上記のような構造を有するガスセンサ素子の具
体的実施例について詳しく説明する。
Next, specific examples of the gas sensor element having the above structure will be described in detail.

実施例1 シリコン基板からなる絶縁基板10上に、白金からなる
作用極20.対極30、および1、金からなる参照極4
0を、それぞれスパツタリングで形成した。つぎに、こ
れらの電極20・・・全体を覆うとともに、端子部22
・・・のみは露出するようにして、電解質溶液をキャス
ティングし、固体電解質層50を形成した。電解質溶液
としては、スルホン化パーフルオロカーボン5重量%、
ポリジメチルシロキサン0.5重量%を含むDMF溶液
を用いた。
Example 1 A working electrode 20 made of platinum is placed on an insulating substrate 10 made of a silicon substrate. Counter electrode 30, and 1, reference electrode 4 made of gold
0 were formed by sputtering. Next, while covering the entirety of these electrodes 20..., the terminal portion 22
. . . was exposed, and an electrolyte solution was cast to form a solid electrolyte layer 50. As the electrolyte solution, 5% by weight of sulfonated perfluorocarbon,
A DMF solution containing 0.5% by weight of polydimethylsiloxane was used.

このようにして製造されたセンサ素子の性能を確認する
ために、COガスに対するガス感度を測定した。第3図
に試験装置を示している。測定用チェンバー90内に、
製造されたセンサ素子を置く。各種20・・・の端子部
22・・・はリード線91につなぎ、リード線91はポ
テンショスタット92に接続した。ポテンショスタット
92にはレコーダ93が接続されている。
In order to confirm the performance of the sensor element manufactured in this way, gas sensitivity to CO gas was measured. Figure 3 shows the test equipment. Inside the measurement chamber 90,
Place the manufactured sensor element. The terminal portions 22 of each type 20 were connected to a lead wire 91, and the lead wire 91 was connected to a potentiostat 92. A recorder 93 is connected to the potentiostat 92.

上記のような装置を用い、作用極20と参照極40の間
の印加電圧を0.45 Vに保った。チェンバー90内
の雰囲気を、空気のみの状態からCOガスを1000p
pa+含む空気に置き換え、作用極20と対極30の間
に流れる出力電流の変化を測定した。なお、比較のため
、固体電解質層50にポリジメチルシロキサンを含まな
い従来構造のガスセンサ素子も製造し、同様の測定を行
った。
Using the device as described above, the applied voltage between the working electrode 20 and the reference electrode 40 was maintained at 0.45 V. The atmosphere inside the chamber 90 was changed from air only to 1000p of CO gas.
The change in the output current flowing between the working electrode 20 and the counter electrode 30 was measured by replacing it with air containing pa+. For comparison, a gas sensor element with a conventional structure in which the solid electrolyte layer 50 does not contain polydimethylsiloxane was also manufactured, and the same measurements were performed.

第4図は、上記試験の結果を示している。時間軸の0点
が、COガスを含む雰囲気に置き換えた時点を示してい
る。出力電流の高さがCOガスに対する感度を示す。グ
ラフから明らかなように、この発明の実施例の場合、比
較例に比べてはるかに出力電流が大きく、したがってガ
ス感度が高いと言える。この結果から、固体電解質[5
0にポリシロキサンを含む、この発明のガスセンサ素子
は、従来のものに比べて、ガス感度を大幅に向上させ得
ることが実証された。
FIG. 4 shows the results of the above test. The zero point on the time axis indicates the point in time when the atmosphere was replaced with an atmosphere containing CO gas. The height of the output current indicates the sensitivity to CO gas. As is clear from the graph, in the case of the example of the present invention, the output current is much larger than that of the comparative example, and therefore it can be said that the gas sensitivity is high. From this result, solid electrolyte [5
It has been demonstrated that the gas sensor element of the present invention, which contains polysiloxane in zero, can significantly improve gas sensitivity compared to conventional ones.

〔発明の効果〕〔Effect of the invention〕

以上に述べたように、この発明にかかる電気化学式ガス
センサ素子は、固体電解質層に、ガス透過性に優れたポ
リシロキサンまたはその誘導体を含んでいることにより
、ガス感度を大幅に向上させることができる。ガス感度
が高ければ、高精度なガス検出および定量が可能になり
、ガスセンサの用途もしくは需要の拡大に大きく貢献す
ることができる。
As described above, the electrochemical gas sensor element according to the present invention can significantly improve gas sensitivity by including polysiloxane or its derivatives with excellent gas permeability in the solid electrolyte layer. . High gas sensitivity enables highly accurate gas detection and quantification, which can greatly contribute to expanding the applications and demand for gas sensors.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例を示す断面図、第2図は平面
図、第3図はガス感度の測定装置を示す概略構成図、第
4図は測定結果を示すグラフ図である。 10・・・絶縁基板 20.30.40・・・電極50
・・・固体電解質層 第 図 第2図 50 0
FIG. 1 is a sectional view showing an embodiment of the present invention, FIG. 2 is a plan view, FIG. 3 is a schematic configuration diagram showing a gas sensitivity measuring device, and FIG. 4 is a graph showing measurement results. 10... Insulating substrate 20.30.40... Electrode 50
...Solid electrolyte layer Fig. 2 50 0

Claims (1)

【特許請求の範囲】[Claims] 1 絶縁基板の同一面上に作用極、対極および参照電極
が設けられ、各極およびその間を覆って固体電解質層が
設けられた電気化学式ガスセンサ素子において、固体電
解質層が、固体電解質となる高分子にポリシロキサンま
たはその誘導体を含むものからなることを特徴とする電
気化学式ガスセンサ素子。
1. In an electrochemical gas sensor element in which a working electrode, a counter electrode, and a reference electrode are provided on the same surface of an insulating substrate, and a solid electrolyte layer is provided covering each electrode and between them, the solid electrolyte layer is made of a polymer that serves as the solid electrolyte. 1. An electrochemical gas sensor element comprising polysiloxane or a derivative thereof.
JP1337713A 1989-12-25 1989-12-25 Electrochemical gas sensor element Pending JPH03195964A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1337713A JPH03195964A (en) 1989-12-25 1989-12-25 Electrochemical gas sensor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1337713A JPH03195964A (en) 1989-12-25 1989-12-25 Electrochemical gas sensor element

Publications (1)

Publication Number Publication Date
JPH03195964A true JPH03195964A (en) 1991-08-27

Family

ID=18311266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1337713A Pending JPH03195964A (en) 1989-12-25 1989-12-25 Electrochemical gas sensor element

Country Status (1)

Country Link
JP (1) JPH03195964A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5387329A (en) * 1993-04-09 1995-02-07 Ciba Corning Diagnostics Corp. Extended use planar sensors

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5387329A (en) * 1993-04-09 1995-02-07 Ciba Corning Diagnostics Corp. Extended use planar sensors
US5401376A (en) * 1993-04-09 1995-03-28 Ciba Corning Diagnostics Corp. Electrochemical sensors
US5503719A (en) * 1993-04-09 1996-04-02 Ciba Corning Diagnostics Corp. Extended use planar sensors
US5518601A (en) * 1993-04-09 1996-05-21 Ciba Corning Diagnostics Corp. Extended use planar sensors
US5595646A (en) * 1993-04-09 1997-01-21 Ciba Corning Diagnostics Corp. Extended use planar sensors
US6068748A (en) * 1993-04-09 2000-05-30 Berger; Joseph Extended use planar sensors

Similar Documents

Publication Publication Date Title
CN102980931B (en) All-solid-state selective electrode based on functional ion liquid and preparation method of all-solid-state selective electrode
JPS63500742A (en) Ion-sensitive electrochemical sensor
Matsuo et al. Parylene-gate ISFET and chemical modification of its surface with crown ether compounds
Pan et al. Using polypyrrole as the contrast pH detector to fabricate a whole solid-state pH sensing device
JPH03195964A (en) Electrochemical gas sensor element
US7887683B2 (en) Electrochemical sensor compensated for relative humidity
KR100434430B1 (en) Micro reference electrode using metal oxides and manufacturing method thereof
JPS59176662A (en) Semiconductor sensor
JPH0520698B2 (en)
JPH03277961A (en) Electrochemical gas sensor
TW202107079A (en) Extended gate transistor for sensing applications
JP2022537280A (en) Metal ferrocyanide-doped carbon as a transducer for ion-selective electrodes
KR100449097B1 (en) method for making humidity sensor with 1,5-diaminonaphthalene polymer to which acetylene carbon black is doped and the sensor made by the method
JPS61266952A (en) Potassium ion sensor
JP2813424B2 (en) Electrochemical gas sensor device
WO1989009932A1 (en) Ion sensor
JP2004294127A (en) Humidity sensor
JP2005003544A (en) Carbon dioxide sensor and its manufacturing method
FI99054C (en) Capacitive humidity sensor
WO1988004424A1 (en) Ion-selective fet sensor
JPH04208849A (en) Electrochemical gas sensor
JP2761086B2 (en) Electrochemical gas sensor device
JPH06118045A (en) Humidity sensor
JPH02285242A (en) Humidity sensitive element
JPH03195963A (en) Electrochemical gas sensor element