JPH03195855A - Operation control device for air conditioner - Google Patents

Operation control device for air conditioner

Info

Publication number
JPH03195855A
JPH03195855A JP1337757A JP33775789A JPH03195855A JP H03195855 A JPH03195855 A JP H03195855A JP 1337757 A JP1337757 A JP 1337757A JP 33775789 A JP33775789 A JP 33775789A JP H03195855 A JPH03195855 A JP H03195855A
Authority
JP
Japan
Prior art keywords
low pressure
pressure
expansion valve
refrigerant
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1337757A
Other languages
Japanese (ja)
Inventor
Masaki Yamamoto
山本 政樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP1337757A priority Critical patent/JPH03195855A/en
Publication of JPH03195855A publication Critical patent/JPH03195855A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To prevent a reduced low pressure or a lack of gas and to enable a continuous operation to be carried out by a method wherein in the case a pressure difference in a major refrigerant circuit is low, a utilization side expansion valve is set once to a low degree of opening and then fully closed. CONSTITUTION:A volume control means 62 is provided for use in controlling an operating volume of a compressor 1 in response to an air conditioning load. In the event that a differential pressure between a high refrigerant pressure and a low refrigerant pressure in a major refrigerant circuit during a cooling operation is less than a predetermined value, a low pressure sensing means (Th7, P1) for outputting a low pressure signal is arranged for it. In addition, when a low pressure signal of the low pressure sensing means (Th7, P1) is outputted, one utilization side heat exchanger 13 may continue a heat exchanging operation in a cooling operation. When a full-closing command signal is outputted to the utilization side expansion valve 12 corresponding to the other utilization side heat exchanger 13 is outputted, the utilization side expansion valve 12 is set to a lower degree of opening that a degree of opening before outputting the full-closing command signal, thereafter fully closed by the full-closing control means 53b. Accordingly, it is possible to prevent a temporary reduction of a low refrigerant pressure, a low pressure cutting, to perform a continuous operation and further to perform a comfortable air conditioning.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、マルチ型空気調和装置の運転制御装置に関し
、特に、低外気温度時等における制御対策に係るもので
ある。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an operation control device for a multi-type air conditioner, and in particular, to control measures at low outside temperatures.

(従来の技術) 一般に、空気調和装置には、特開昭63−161342
号公報に開示されているように、圧縮機及び室外熱交換
器等を備えた1台の室外ユニットに対して室内熱交換器
及び室内電動膨張弁等を備えた複数台の室内ユニットが
接続されたマルチ型のものがある。更に、上記室内ユニ
ットには、室内温度を検出する室温センサが設けられて
おり、冷房運転時において、上記室温センサの検出室内
温度と目標温度との偏差に応じて上記室内電動膨張弁の
目標開度値を演算している。そして、上記室内電動膨張
弁の開度を目標開度値に可変制御し、冷房能力を冷房負
荷に対応させて、快適な空調を行うようにしている。
(Prior art) In general, air conditioners are
As disclosed in the publication, multiple indoor units equipped with an indoor heat exchanger, an indoor electric expansion valve, etc. are connected to one outdoor unit equipped with a compressor, an outdoor heat exchanger, etc. There are multi-type ones. Furthermore, the indoor unit is provided with a room temperature sensor that detects the indoor temperature, and during cooling operation, the target opening of the indoor electric expansion valve is determined according to the deviation between the indoor temperature detected by the room temperature sensor and the target temperature. Calculating the degree value. Then, the opening degree of the indoor electric expansion valve is variably controlled to a target opening value, and the cooling capacity is made to correspond to the cooling load, thereby providing comfortable air conditioning.

(発明が解決しようとする課題) 上述した空気調和装置において、例えば、第5図(a)
〜(C)に示すように、3台の室内ユニットのうち2台
がサーモオン状態よりサーモオフ或いは運転を停止した
場合、2つの室内電動膨張弁は全閉になるように制御し
ていた(第5図A。
(Problems to be Solved by the Invention) In the above-mentioned air conditioner, for example, as shown in FIG.
As shown in ~(C), when two of the three indoor units turn off the thermostat or stop operation from the thermoon state, the two indoor electric expansion valves were controlled to be fully closed (No. 5 Diagram A.

B参照)。一方、室外ユニットの圧縮機はサーモオンし
ている室内ユニットの台数に応じて容量制御しており、
第5図(d)に示すように、上記室内ユニットが運転を
停止したり、サーモオフすると、フルロードよりアンロ
ードに容量を低下させていた。
(See B). On the other hand, the capacity of the outdoor unit compressor is controlled according to the number of indoor units that are thermo-on.
As shown in FIG. 5(d), when the indoor unit stops operating or turns off the thermostat, the capacity is reduced from full load to unload.

しかしながら、上記室内電動膨張弁は室内ユニットがサ
ーモオフ等になると瞬時に全閉になるため、圧縮機は容
量を低下させるもののロード変化が追従しなかった。そ
の結果、冷媒回路の高圧冷媒圧力(高圧)と低圧冷媒圧
力(低圧)との差圧が小さい状態、例えば、外気温度が
低い場合や、冷房負荷が小さい場合において、2つの室
内電動膨張弁が全閉になると、第5図(e)に示すよう
に、高圧がやや低下すると同時に、第5図(f)におけ
る0点に示すように、−時的に低圧が低下し、冷媒循環
量が低下することになる。そして、上記圧縮機がスクロ
ール型の場合には低圧カットが生じることになり、また
、レシプロ型の場合にはガス欠になって吐出温度が上昇
することになり、連続運転が行えないという問題があっ
た。
However, the indoor electric expansion valve is fully closed instantaneously when the indoor unit turns off, such as when the thermostat is turned off, so although the compressor capacity is reduced, load changes cannot be followed. As a result, when the differential pressure between the high-pressure refrigerant pressure (high pressure) and the low-pressure refrigerant pressure (low pressure) in the refrigerant circuit is small, such as when the outside air temperature is low or the cooling load is small, the two indoor electric expansion valves are activated. When fully closed, as shown in Figure 5(e), the high pressure drops slightly, and at the same time, as shown at the 0 point in Figure 5(f), the low pressure temporarily drops and the refrigerant circulation amount decreases. This will result in a decline. If the compressor is a scroll type, a low pressure cut will occur, and if it is a reciprocating type, the compressor will run out of gas and the discharge temperature will rise, making continuous operation impossible. there were.

本発明は、斯かる点に鑑みてなされもので、低圧カット
やガス欠等を防止して連続運転を行えるようにすること
を目的とするものである。
The present invention has been made in view of the above, and an object of the present invention is to prevent low pressure cuts, gas shortages, etc., and to enable continuous operation.

(課題を解決するための手段) 上記目的を達成するために、本発明が講じた手段はぐ全
閉信号が出力されると、利用側膨張弁を一旦小開度に設
定した後に全閉にするようにしたものである。
(Means for Solving the Problems) In order to achieve the above object, the measures taken by the present invention are as follows: When a fully closed signal is output, the user side expansion valve is once set to a small opening and then fully closed. This is how it was done.

具体的に、第1図に示すように、請求項(1)に係る発
明が講じた手段は、先ず、容量可変な圧縮機(1)と、
熱源側熱交換器(6)と、各々開度調節自在な利用側膨
張弁(13)を有する複数の並設された利用側熱交換器
(12)、  (12)、…とが接続されて成る主冷媒
回路(14)を備えた空気調和装置を前提としている。
Specifically, as shown in FIG. 1, the measures taken by the invention according to claim (1) first include a variable capacity compressor (1);
The heat source side heat exchanger (6) is connected to a plurality of parallel use side heat exchangers (12), (12), ... each having a use side expansion valve (13) whose opening degree can be freely adjusted. The present invention is based on an air conditioner equipped with a main refrigerant circuit (14) consisting of:

そして、上記圧縮機(1)の運転容量を空調負荷に応じ
て制御する容量制御手段(62)が設けられると共に、
上記主冷媒回路(14)における冷房運転時の高圧冷媒
圧力と低圧冷媒圧力との差圧が所定以下になると低圧信
号を出力する低圧検出手段(Th7゜PL)が設けられ
ている。加えて、該低圧検出手段(Th7.PI)の低
圧信号出力時に、少なくとも1台の利用側熱交換器(1
2)が冷房運転の熱交換動作を継続すると共に、少なく
とも他の1台の利用側熱交換器(12)に対応する利用
側膨張弁(13)に対して全閉指令信号が出力されると
、該利用側膨張弁(13)を全閉指令信号の出力前の開
度より小さい小開度に所定時間設定した後に全閉とする
全閉制限手段(53b)が設けられた構成としている。
A capacity control means (62) for controlling the operating capacity of the compressor (1) according to the air conditioning load is provided, and
A low pressure detection means (Th7°PL) is provided that outputs a low pressure signal when the differential pressure between the high pressure refrigerant pressure and the low pressure refrigerant pressure during cooling operation in the main refrigerant circuit (14) becomes less than a predetermined value. In addition, when the low pressure detection means (Th7.PI) outputs a low pressure signal, at least one user side heat exchanger (1
2) continues the heat exchange operation of the cooling operation, and a fully closed command signal is output to the user-side expansion valve (13) corresponding to at least one other user-side heat exchanger (12). , a fully-closed limiting means (53b) is provided that fully closes the user-side expansion valve (13) after setting it to a small opening smaller than the opening before outputting the fully-closed command signal for a predetermined period of time.

また、請求項(2)に係る発明が講じた手段は、上記請
求項(1)記載の発明において、容量制御手段(62)
は熱交換動作している利用側熱交換器(12)、(12
)、…の台数に応じて圧縮機(1)の容量を制御するよ
うに構成される一方、低圧検出手段(Thl、PI)は
外気温度又は主冷媒回路(14)の低圧冷媒圧力を検出
し、該外気温度又は低圧冷媒圧力が所定以下になると低
圧信号を出力するように構成されている。
Further, the means taken by the invention according to claim (2) is the capacity control means (62) in the invention according to claim (1) above.
are the user-side heat exchangers (12) and (12) that are in heat exchange operation.
), ... is configured to control the capacity of the compressor (1) according to the number of compressors (1), while the low pressure detection means (Thl, PI) detects the outside temperature or the low pressure refrigerant pressure of the main refrigerant circuit (14). , is configured to output a low pressure signal when the outside air temperature or the low pressure refrigerant pressure falls below a predetermined value.

(作用) 上記構成により、請求項(1)に係る発明では、熱源側
熱交換器(6)で凝縮した冷媒を各利用側膨張弁(13
)、  (1,3)、…で減圧した後、各利用側熱交換
器(12)、・(12)、…で蒸発させて冷房運転を行
っている。そして、容量制御手段(62)が圧縮機(1
)の容量を空調負荷に応じて制御しており、具体的に請
求項(21に係る発明では、熱交換を行っている利用側
熱交換器(12)の台数によって圧縮機(1)の容量を
制御している。
(Function) With the above configuration, in the invention according to claim (1), the refrigerant condensed in the heat source side heat exchanger (6) is transferred to each user side expansion valve (13).
), (1, 3), ... to reduce the pressure, and then evaporate in each user side heat exchanger (12), .(12), ... to perform cooling operation. The capacity control means (62) is connected to the compressor (1).
) is controlled according to the air conditioning load, and specifically, in the invention according to claim (21), the capacity of the compressor (1) is controlled depending on the number of user-side heat exchangers (12) performing heat exchange. is under control.

る。Ru.

一方、主冷媒回路(14〕における高圧冷媒圧力と低圧
冷媒圧力との差圧は低圧検出手段(Th7、PI)によ
って検出されており、具体的に請求項(aに係る発明で
は、外気温度又は低圧冷媒圧力を検出している。そして
、該外気温度等が所定以下の状態において、少なくとも
1台の利用側熱交換器(12)が熱交換すると同時に、
少なくとも他の1台の利用側熱交換器(12)に対応す
る利用側膨張弁(13)に全閉指令信号が出力されると
、全閉制限手段(53b)が全閉指令信号の出力前の開
度より小さい開度に上記利用側膨張弁(13)を所定時
間設定した後に全閉に制御する。
On the other hand, the differential pressure between the high-pressure refrigerant pressure and the low-pressure refrigerant pressure in the main refrigerant circuit (14) is detected by the low-pressure detection means (Th7, PI). The low-pressure refrigerant pressure is detected.In a state where the outside air temperature, etc. is below a predetermined value, at least one user-side heat exchanger (12) exchanges heat, and at the same time,
When a full-close command signal is output to the user-side expansion valve (13) corresponding to at least one other user-side heat exchanger (12), the full-close limiter (53b) is activated before outputting the full-close command signal. After setting the usage-side expansion valve (13) to an opening smaller than the opening for a predetermined period of time, it is controlled to be fully closed.

例えば、上記利用側膨張弁(13)を全閉指令信号出力
前の1/2の開度に1分間設定した後に全閉にする。
For example, the usage-side expansion valve (13) is set to 1/2 the opening degree for one minute before outputting the full-close command signal, and then is fully closed.

(発明の効果) 従って、請求項(1)及び(2)に係る発明によれば、
主冷媒回路(14)における高低差圧が小さい場合、利
用側膨張弁(13)を−旦小開度に設定した後に全閉に
するようにしたために、圧縮機(1)のロード変化に対
応した冷媒循環量を確保することができるので、低圧冷
媒圧力の一時的な低下を防止することができる。その結
果、スクロール型圧縮機(1)における低圧カットを防
止することができる一方、レシプロ型圧縮機(1)にお
ける吐出温度の上昇を防止することができることから、
連続運転を行うことができ、快適な空調を行うことがで
きる。
(Effect of the invention) Therefore, according to the inventions of claims (1) and (2),
When the differential pressure between high and low levels in the main refrigerant circuit (14) is small, the expansion valve (13) on the user side is set to a small opening and then fully closed, so it can respond to changes in the load of the compressor (1). Since the refrigerant circulation amount can be ensured, a temporary decrease in the low-pressure refrigerant pressure can be prevented. As a result, while it is possible to prevent a low pressure cut in the scroll compressor (1), it is also possible to prevent an increase in the discharge temperature in the reciprocating compressor (1).
It can operate continuously and provide comfortable air conditioning.

(実施例) 以下、本発明の実施例について、図面に基づき詳細に説
明する。
(Example) Hereinafter, an example of the present invention will be described in detail based on the drawings.

第2図は本発明の実施例に係るマルチ型の空気調和装置
の冷媒配管系統を示し、(A)は室外ユニット、(B)
〜(F)は該室外ユニット(A)に並列に接続された室
内ユニットである。上記室外ユニット(A)の内部には
、インバータ(2a)により容量が調整される第1圧縮
機(1a)と、アンローダ(2b)により容量がフルロ
ード(100%)およびアンロード(50%)状態の2
段階に調整される第2圧縮機(1b)とを逆止弁(1e
)を介して並列に接続して構成される容量可変な圧縮機
(1)と、上記第1.第2圧縮機(la)、  (lb
)から吐出されるガス中の油をそれぞれ分離する第1.
第2油分離器(41)。
FIG. 2 shows a refrigerant piping system of a multi-type air conditioner according to an embodiment of the present invention, (A) is an outdoor unit, (B)
~(F) are indoor units connected in parallel to the outdoor unit (A). Inside the outdoor unit (A), there is a first compressor (1a) whose capacity is adjusted by an inverter (2a), and an unloader (2b) whose capacity is fully loaded (100%) and unloaded (50%). state 2
The second compressor (1b) which is adjusted in stages is connected to the second compressor (1b) by a check valve (1e).
), a variable capacity compressor (1) connected in parallel via the first compressor (1); Second compressor (la), (lb
) to separate the oil in the gas discharged from the first.
Second oil separator (41).

(4b)と、冷房運転時には図中実線の如く切換わり暖
房運転時には図中破線の如く切換わる四路切換弁(5)
と、冷房運転時に凝縮器、暖房運転時に蒸発器となる熱
源側熱交換器である室外熱交換器(6)および該室外熱
交換器(6)に付設された2台の室外ファン(6a)、
  (6b)と、冷房運転時には冷媒流量を調節し、暖
房運転時には冷媒の絞り作用を行う室外電動膨張弁(8
)と、冷媒を貯蔵するレシーバ(9)と、アキュムレー
タ(10)とが主要機器として内蔵されていて、該各機
器(1)〜(10)は各々冷媒の連絡配管(11)で冷
媒の流通可能に接続されている。また上記室内ユニット
”(B)〜(F)は同一構成であり、各々、冷房運転時
には蒸発器、暖房運転時には凝縮器となる利用側熱交換
器である室内熱交換器(12)…およびそのファン(1
2a)…を備え、かつ該室内熱交換器(12)…の液冷
媒分岐管(11a)…には、暖房運転時に冷媒流量を調
節し、冷房運転時に冷媒の絞り作用を行う利用側膨張弁
である室内電動膨張弁(13)…がそれぞれ介設され、
合流後手動閉鎖弁(17)を介し連絡配管(llb)に
よって室外ユニット(A)に接続されている。すなわち
、以上の各機器は冷媒配管(11)により、冷媒の流通
可能に接続されていて主冷媒回路(14)が構成されて
いる。
(4b) and a four-way switching valve (5) that switches as shown in the solid line in the figure during cooling operation and as shown in the broken line in the figure during heating operation.
and an outdoor heat exchanger (6) which is a heat source side heat exchanger that serves as a condenser during cooling operation and an evaporator during heating operation, and two outdoor fans (6a) attached to the outdoor heat exchanger (6). ,
(6b) and an outdoor electric expansion valve (8b) that adjusts the refrigerant flow rate during cooling operation and throttles the refrigerant during heating operation.
), a receiver (9) for storing refrigerant, and an accumulator (10) are built in as main equipment, and each of the equipment (1) to (10) is connected to the refrigerant through the refrigerant communication pipe (11). Possibly connected. In addition, the above-mentioned indoor units "(B) to (F)" have the same configuration, and each has an indoor heat exchanger (12) which is a user-side heat exchanger that serves as an evaporator during cooling operation and a condenser during heating operation, and its Fan (1
2a), and the liquid refrigerant branch pipe (11a) of the indoor heat exchanger (12) is provided with a user-side expansion valve that adjusts the refrigerant flow rate during heating operation and throttles the refrigerant during cooling operation. Indoor electric expansion valves (13)... are respectively interposed,
After merging, it is connected to the outdoor unit (A) via a manual closing valve (17) and a connecting pipe (llb). That is, the above-mentioned devices are connected to each other through refrigerant piping (11) so that refrigerant can flow therethrough, thereby forming a main refrigerant circuit (14).

次に、(11e)は、吐出管と液管とを接続する暖房過
負荷制御用バイパス路であって、該バイパス路(11e
)には、室外熱交換器(6)に並設された補助熱交換器
(22)、キャピラリ(28)及び冷媒高圧時に開作動
する電磁開閉弁(24)が順次直列にかつ室外熱交換器
(6)とは並列に接続されており、冷房運転時には常時
、暖房運転時には高圧が過上昇時に、上記電磁開閉弁(
24)が開状態になって、吐出ガスの一部を主冷媒回路
(14)から暖房過負荷制御用バイパス路(I L e
)にバイパスするようにしている。このとき、吐出ガス
の一部を補助熱交換器(22)で凝縮させて室外熱交換
器(6)の能力を補助するとともに、キャピラリ(28
)で室外熱交換器(6)側の圧力損失とのバランスを取
るようになされている。
Next, (11e) is a bypass path for heating overload control that connects the discharge pipe and the liquid pipe, and the bypass path (11e)
), an auxiliary heat exchanger (22) installed in parallel with the outdoor heat exchanger (6), a capillary (28), and an electromagnetic shut-off valve (24) that opens when the refrigerant pressure is high are connected in series and connected to the outdoor heat exchanger (6). (6) is connected in parallel with the above-mentioned electromagnetic on-off valve (
24) is in the open state, a part of the discharged gas is transferred from the main refrigerant circuit (14) to the heating overload control bypass path (I L e
). At this time, part of the discharged gas is condensed in the auxiliary heat exchanger (22) to assist the capacity of the outdoor heat exchanger (6), and the capillary (28
) to balance the pressure loss on the outdoor heat exchanger (6) side.

さらに、(l1g)は液管と吸入管との間を接続し、冷
暖房運転時に吸入ガスの過熱度を調節するためのリキッ
ドインジェクションバイパス路であって、該バイパス路
(l1g)には圧縮機(1)のオン・オフと連動して開
閉するインジェクション用電磁弁(29)と、キャピラ
リ (30)とが介設されている。
Furthermore, (l1g) is a liquid injection bypass path that connects the liquid pipe and the suction pipe to adjust the degree of superheating of the suction gas during heating and cooling operation, and the bypass path (l1g) is connected to the compressor ( An injection solenoid valve (29) that opens and closes in conjunction with the on/off of 1) and a capillary (30) are interposed.

また、(31)は、吸入管(11)中の吸入冷媒と液管
(11)中の液冷媒との熱交換により吸入冷媒を冷却さ
せて、連絡配管(1l b)における冷媒の過熱度の上
昇を補償するための吸入管熱交換器である。
In addition, (31) cools the suction refrigerant through heat exchange between the suction refrigerant in the suction pipe (11) and the liquid refrigerant in the liquid pipe (11), and reduces the degree of superheating of the refrigerant in the connecting pipe (1l b). A suction tube heat exchanger to compensate for the rise.

ここで、装置には多くのセンサ類が配置されていて、(
THI)は各室内温度を検出する室温サーモスタット、
(TH2)および(TH3)は各々室内熱交換器(12
)の液側およびガス側配管における冷媒の温度を検出す
る室内液温センサ及び室内ガス温センサ、(TH4)は
圧縮機(1)の吐出管温度を検出する吐出管センサ、(
TH5)は暖房運転時に室外熱交換器(6)の出口温度
から着霜状態を検出するデフロストセンサ、(TH6)
は上記吸入管熱交換器(31)の下流側の吸入管(11
)に配置され、吸入管温度を検出する吸入管センサ、(
TH7)は室外熱交換器(6)の空気吸込口に配置され
、吸込空気温度(外気温度)を検出する外気温センサ、
(Pl)は冷房運転時には冷媒圧力の低圧つまり蒸発圧
力相当飽和温度Teを、暖房運転時には高圧つまり凝縮
圧力相当飽和温度Tcを検出する圧力センサで、該外気
温センサ(Th7)又は圧力センサ(Pl)が本発明に
おける低圧検出手段を構成している。
Here, the device is equipped with many sensors (
THI) is a room temperature thermostat that detects the temperature in each room,
(TH2) and (TH3) are indoor heat exchangers (12
) is an indoor liquid temperature sensor and an indoor gas temperature sensor that detect the temperature of the refrigerant in the liquid side and gas side piping, (TH4) is a discharge pipe sensor that detects the discharge pipe temperature of the compressor (1), (
TH5) is a defrost sensor that detects frost formation from the outlet temperature of the outdoor heat exchanger (6) during heating operation; (TH6)
is the suction pipe (11) downstream of the suction pipe heat exchanger (31).
), the suction pipe sensor detects the suction pipe temperature, (
TH7) is an outside temperature sensor that is placed at the air intake port of the outdoor heat exchanger (6) and detects the intake air temperature (outside air temperature);
(Pl) is a pressure sensor that detects the low pressure of the refrigerant pressure, that is, the saturation temperature Te corresponding to evaporation pressure during cooling operation, and the high pressure, that is, the saturation temperature Tc corresponding to condensing pressure during heating operation. ) constitutes the low pressure detection means in the present invention.

なお、(1f)は第2圧縮機(1b)のバイパス路(1
1c)に介設されて、第2圧縮機(1b)の停止時およ
びアンロード状態時に「開」となり、フルロード状態で
「閉」となるアンローダ用電磁弁、(1g)は上記バイ
パス路(11C)に介設されたキャピラリ、(21)は
吐出管と吸入管とを接続する均圧ホットガスバイパス路
(11d)に介設されて、サーモオフ状態等による圧縮
機(1)の停止時、再起動前に一定時間開作動する均圧
用電磁弁、(33a)、  (33b)はそれぞれキャ
ピラリ(32a)、  (32b)を介して上記第1.
第2油分離器(4a)、(4b)から第1、第2圧縮機
(1a) 、  (1b)に油を戻すための油戻し管で
ある。
Note that (1f) is the bypass path (1f) of the second compressor (1b).
1c) is an unloader solenoid valve that is "open" when the second compressor (1b) is stopped and in an unloaded state, and "closed" when it is fully loaded; The capillary (21) is installed in the pressure-equalizing hot gas bypass path (11d) that connects the discharge pipe and the suction pipe, and when the compressor (1) is stopped due to thermo-off state, etc. The pressure equalizing solenoid valves (33a) and (33b), which are opened for a certain period of time before restarting, are connected to the first valve through capillaries (32a) and (32b), respectively.
This is an oil return pipe for returning oil from the second oil separators (4a), (4b) to the first and second compressors (1a), (1b).

また、図中、(HPS)は圧縮機保護用の高圧圧力開閉
器、(SP)はサービスポート、(GP)はゲージボー
トである。
Further, in the figure, (HPS) is a high pressure switch for protecting the compressor, (SP) is a service port, and (GP) is a gauge boat.

そして、第3図に示すように、上記各室内ユニッ) (
B)〜(F)には室内制御ユニット(51)が設けられ
ている。図中、(MF)は室内ファン(12a)のモー
タで、単相交流電源(52)を受けて各リレ一端子(R
Y+ )〜(RY3 )によって風量の大きい順に強風
と弱風とに切換え、暖房運転時室温サーモスタット(T
HI)の信号による停止時のみ微風にするようになされ
ている。
Then, as shown in Figure 3, each of the above indoor units) (
An indoor control unit (51) is provided in B) to (F). In the figure, (MF) is the motor of the indoor fan (12a), which receives a single-phase AC power supply (52) and receives one terminal of each relay (R
Y+) to (RY3) are used to switch between strong and weak winds in descending order of air volume, and the room temperature thermostat (T
Only when the train is stopped due to a signal of HI), the wind is turned to a light breeze.

そして、室内制御ユニット(16)のプリント基板の端
子CNには室内電動膨張弁(13)の開度を調節するパ
ルスモータ(EV)が接続される一方、室温サーモスタ
ット(THI)および温度センサ(TH2)、  (T
H3)の信号が入力されている。また、各室内制御ユニ
ット(51)は室外ユニット(A)を制御する室外制御
ユニット(61)に信号線を介して信号の授受可能に接
続されるとともに、リモコン(71)とは信号線で接続
されている。そして、上記室外制御ユニット(61)に
はCPU等が内蔵されていて、上記各センサ類の検出信
号等に基づいて圧縮機(1)の容量や室外ファン(6a
)、  (6b)を制御する運転制御手段(62)が構
成されている。該運転制御手段(62)は熱交換動作す
る室内ユニット(B)〜(F)の運転台数、つまり、サ
ーモオンしている台数(空調負荷)に応じて圧縮機(1
)の容量を制御する容量制御手段を構成している。一方
、上記室内制御ユニット(51)にはCPU (53)
が内蔵され、該CPU (5B)には空調制御手段(5
3a)及び室内電動膨張弁(13)の全閉制限手段(5
3b)が構成されている。そして、該空調制御手段(5
3a)は上記センサ類の検出信号や室外制御ユニット(
A)の制御信号等によって室内電動膨張弁(13)の開
度や室内ファン(12a)の風量等を制御するように構
成されている。また、上記全閉制限手段(53b)は室
外温度が10℃以下、又は蒸発圧力相当飽和温度Teが
0℃以下になると、全閉指令信号の出力時に室内電動膨
張弁(13)を全閉指令信号出力前の開度の1/2に1
分間設定した後に全閉に制御するように構成されている
A pulse motor (EV) that adjusts the opening degree of the indoor electric expansion valve (13) is connected to the terminal CN of the printed circuit board of the indoor control unit (16), while a room temperature thermostat (THI) and a temperature sensor (TH2 ), (T
H3) signal is input. In addition, each indoor control unit (51) is connected to an outdoor control unit (61) that controls the outdoor unit (A) via a signal line so as to be able to send and receive signals, and is also connected to a remote control (71) via a signal line. has been done. The outdoor control unit (61) has a built-in CPU, etc., and determines the capacity of the compressor (1) and the outdoor fan (6a) based on the detection signals of the sensors, etc.
), (6b) is configured. The operation control means (62) controls the compressor (1
) constitutes a capacity control means for controlling the capacity. On the other hand, the indoor control unit (51) includes a CPU (53).
is built-in, and the CPU (5B) has an air conditioning control means (5B).
3a) and the fully closed limit means (5) of the indoor electric expansion valve (13).
3b) is configured. Then, the air conditioning control means (5
3a) is the detection signal of the above sensors and the outdoor control unit (
The control signal A) is configured to control the opening degree of the indoor electric expansion valve (13), the air volume of the indoor fan (12a), etc. In addition, when the outdoor temperature is 10°C or less or the evaporation pressure equivalent saturation temperature Te is 0°C or less, the fully closed limit means (53b) commands the indoor electric expansion valve (13) to fully close when the fully closed command signal is output. 1/2 of the opening degree before signal output
It is configured to control to fully close after setting for a minute.

次に、上記空気調和装置の運転動作について説明する。Next, the operation of the air conditioner will be explained.

先ず、第2図において、冷房運転時には、四路切換弁(
2)が図中実線側に切換わり、補助熱交換器(22)の
電磁開閉弁(24)が常時開いて、圧縮機(1)で圧縮
された冷媒が室外熱交換器(6)及び補助熱交換器(2
2)で凝縮され、連絡配管(llb)を経て各室内ユニ
ットCB)〜(F)に分岐して送られる。各室内ユニッ
ト(B)〜(F)では、各室内電動膨張弁(1B)、…
で減圧され、各室内熱交換器(12)、…で蒸発した後
合流して、室外ユニット(A)にガス状態で戻り、圧縮
機(1)に吸入されるように循環する。
First, in Figure 2, during cooling operation, the four-way selector valve (
2) switches to the solid line side in the figure, the solenoid on-off valve (24) of the auxiliary heat exchanger (22) is always open, and the refrigerant compressed by the compressor (1) is transferred to the outdoor heat exchanger (6) and the auxiliary heat exchanger (2). Heat exchanger (2
2), and is branched and sent to each indoor unit CB) to (F) via a connecting pipe (llb). In each indoor unit (B) to (F), each indoor electric expansion valve (1B),...
After being evaporated in each indoor heat exchanger (12), etc., it is combined, returned to the outdoor unit (A) in a gaseous state, and circulated so as to be sucked into the compressor (1).

また、暖房運転時には、四路切換弁(5)が図中破線側
に切換わり、冷媒の流れは上記冷房運転時と逆となって
、圧縮機(1)で圧縮された冷媒が各室内熱交換器(1
2)、…で凝縮され、合流して液状態で室外ユニッ) 
(A)に流れ、室外電動膨張弁(8)、…により減圧さ
れ、室外熱交換器(6)で蒸発した後圧縮機(1)に戻
るように循環する。
In addition, during heating operation, the four-way switching valve (5) switches to the dashed line side in the figure, and the flow of refrigerant is reversed to that during cooling operation, and the refrigerant compressed by the compressor (1) is used to heat each room. Exchanger (1
2) It is condensed in ..., merges, and goes to the outdoor unit in a liquid state)
(A), is depressurized by the outdoor electric expansion valves (8), . . . , evaporated in the outdoor heat exchanger (6), and then circulated back to the compressor (1).

この空気調和装置の冷房運転時において、本発明の特徴
とする室内電動膨張弁(13)の制御について第4図の
制御フローに基づいて説明する。
The control of the indoor electric expansion valve (13), which is a feature of the present invention, during cooling operation of the air conditioner will be explained based on the control flow shown in FIG. 4.

先ず、運転動作を開始すると、ステップSTIにおいて
、各室内ユニット(B)〜(F)がサーモオンした運転
中か否かが判定され、サーモオン時にはステップST2
に移り、空調制御手段(53a)によって各室内電動膨
張弁(13)、  (13)、…は通常の制御が行われ
てリターンする。
First, when a driving operation is started, in step STI, it is determined whether each indoor unit (B) to (F) is operating with the thermostat turned on, and when the thermostat is turned on, step ST2
Then, the indoor electric expansion valves (13), (13), . . . are controlled normally by the air conditioning control means (53a), and the process returns.

一方、上記ステップSTIにおいて、各室内ユニット(
B)〜(F)がサーモオン状態よりサーモオフ又は冷房
運転を停止すると、判定がNOになってステップST3
に移り、外気温センサ(Th7)が検出する外気温度T
 outが10℃以下か、又は圧力センサ(Pl)が検
出する低圧圧力による蒸発圧力相当飽和温度Teが0℃
以下か否かが判定され、つまり、主冷媒回路(14)に
おける高圧圧力と低圧圧力との差圧が所定以下になった
か否かが判定される。そして、上記外気温度等が低下し
て高低差圧が小さくなると、ステップST4に移り、圧
縮機(1)がオンしているか否か、つまり、少なくとも
1台の室内ユニット(B)〜(F)がサーモオンして熱
交換動作を継続するか否かが判定され、少なくとも1台
の室内ユニット(B)〜(F)がサーモオフしていると
、ステップST4からステップST5に移る。このステ
ップST5において、タイマがセットされているか否か
が判定され、セットされていない場合にはステップST
6でタイマをセット(60秒)した後にステップST7
に移り、セットされている場合にはステップST5から
ステップST7に移り、タイムアツプしたか否かが判定
される。
On the other hand, in the above step STI, each indoor unit (
When B) to (F) turn off the thermostat or stop the cooling operation from the thermoon state, the determination becomes NO and step ST3
, the outside air temperature T detected by the outside air temperature sensor (Th7)
out is 10℃ or less, or the evaporation pressure equivalent saturation temperature Te due to the low pressure detected by the pressure sensor (Pl) is 0℃
In other words, it is determined whether the differential pressure between the high pressure and the low pressure in the main refrigerant circuit (14) has become below a predetermined value. Then, when the outside air temperature etc. decrease and the pressure difference between heights becomes small, the process moves to step ST4, and it is determined whether the compressor (1) is on or not, that is, whether or not the compressor (1) is turned on, that is, whether or not at least one of the indoor units (B) to (F) is turned on. It is determined whether or not to turn on the thermostat and continue the heat exchange operation, and if at least one of the indoor units (B) to (F) has the thermostat turned off, the process moves from step ST4 to step ST5. In this step ST5, it is determined whether or not the timer is set, and if the timer is not set, step ST5
After setting the timer (60 seconds) in step ST7
If it is set, the process moves from step ST5 to step ST7, and it is determined whether or not time has elapsed.

そして、上記タイマがタイムアツプするまでステップS
T7からステップST8に移り、全閉制限手段(53b
)がサーモオフ等をした室内ユニット(B)〜(F)の
室内電動膨張弁(13)をサーモオフ等をする直前の開
度の1/2に設定してリターンし、上記ステップST1
からの動作を繰り返す。その後、ステップST6のタイ
マがタイムアツプすると、ステップST7からステップ
ST9に移り、上記サーモオフ等をする室内ユニット(
B)〜(F)の室内電動膨張弁(13)を全閉にしてリ
ターンすることになる。
Then, step S until the above timer times up.
The process moves from T7 to step ST8, and the fully closed limit means (53b
) sets the indoor electric expansion valves (13) of the indoor units (B) to (F) whose thermostat has been turned off, etc. to 1/2 of the opening degree immediately before the thermostat is turned off, etc., and returns to step ST1.
Repeat the operations from. Thereafter, when the timer in step ST6 times up, the process moves from step ST7 to step ST9, and the indoor unit (
The indoor electric expansion valves (13) of B) to (F) are fully closed before returning.

すなわち、主冷媒回路(14)における高低差圧が小さ
い場合には、例えば、サーモオンしている3台の室内ユ
ニット(B)〜(D)のうち2台の室内ユニット(B)
、  (C)がサーモオフすると、このサーモオフする
室内ユニット(B)。
That is, when the differential pressure in the main refrigerant circuit (14) is small, for example, two indoor units (B) out of the three indoor units (B) to (D) whose thermostat is turned on.
, (C) turns off the thermostat, the indoor unit (B) turns off the thermostat.

(C)の室内電動膨張弁(13)、  (13)に全閉
指令信号が出力されるが、該室内電動膨張弁(13)、
  (13)を瞬時に全閉にすることなく、サーモオフ
直前の1/2の開度に設定した後、1分経過すると全閉
にする。
A fully close command signal is output to the indoor electric expansion valve (13), (13) in (C), but the indoor electric expansion valve (13),
(13) is not fully closed instantaneously, but is set to 1/2 the opening degree just before the thermostat is turned off, and then fully closed after 1 minute has elapsed.

尚、第4図の制御フローにおいて、外気温度等が高く高
低差圧が十分に大きい場合には上記ステップST3より
ステップST9に移る一方、圧縮機(1)が停止した場
合には上記ステップST4よりステップST9に移り、
それぞれ室内電動膨張弁(13)を全閉指令信号に基づ
いて瞬時に全閉に制御する。
In the control flow shown in FIG. 4, if the outside air temperature is high and the pressure difference between high and low levels is sufficiently large, the process moves from step ST3 to step ST9, while if the compressor (1) has stopped, the process moves from step ST4 to step ST9. Moving on to step ST9,
Each indoor electric expansion valve (13) is instantaneously controlled to be fully closed based on the fully closed command signal.

従って、上記主冷媒回路(14)における高低差圧が小
さい場合、室内電動膨張弁(13)を−旦小開度に設定
した後に全閉にするようにしたために、圧縮機(1)の
ロード変化に対応した冷媒循環量を確保することができ
るので、低圧冷媒圧力の一時的な低下を防止することが
できる。その結果、スクロール型圧縮機(1)における
低圧カットを防止することができる一方、レシプロ型圧
縮機(1)における吐出温度の上昇を防止することがで
きることから、連続運転を行うことができ、快適な空調
を行うことができる。
Therefore, when the pressure differential in the main refrigerant circuit (14) is small, since the indoor electric expansion valve (13) is first set to a small opening and then fully closed, the load on the compressor (1) is Since the refrigerant circulation amount corresponding to the change can be ensured, a temporary decrease in the low-pressure refrigerant pressure can be prevented. As a result, it is possible to prevent a low pressure cut in the scroll compressor (1), and also to prevent an increase in the discharge temperature in the reciprocating compressor (1), allowing continuous operation and comfortable operation. air conditioning.

尚、上記実施例において、全閉制限手段(53a)は室
内電動膨張弁(13)をサーモオフ等の直前における1
/2の開度に設定したが、本発明はこれに限られず、所
定の冷媒循環量を確保し得る開度であればよく、また、
小開度に設定する時間は1分に限られるものではない。
In the above embodiment, the fully closed limit means (53a) closes the indoor electric expansion valve (13) to 1 immediately before turning off the thermostat, etc.
Although the opening degree is set to /2, the present invention is not limited to this, and any opening degree that can ensure a predetermined amount of refrigerant circulation may be used.
The time for setting the small opening degree is not limited to one minute.

また、低圧検出手段は外気温センサ(Th7)等に限ら
れず、冷媒圧力を直接に検出するようにしてもよい。
Further, the low pressure detection means is not limited to the outside temperature sensor (Th7), etc., and may directly detect the refrigerant pressure.

また、主冷媒回路(14)は実施例に限られず、冷房運
転のみ行うものであってもよい。
Further, the main refrigerant circuit (14) is not limited to the embodiment, and may be used only for cooling operation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の構成を示すプロ・ツク図である。 第2図〜第4図は本発明の実施例を示し、第2図は空気
調和装置の冷媒回路図、第3図は室内制御ユニットの電
気回路図、第4図は室内電動膨張弁の制御動作を示す制
御フロー図である。第5図は従来の室内電動膨張弁の開
度制御に対する圧縮機のロード変化及び高圧並びに低圧
の変化を示す特性図である。 1…圧縮機 6…室外熱交換器 12…室内熱交換器 3…室内電動膨張弁 4…主冷媒回路 1…室内制御ユニット 3a…空調制御ユニット 3b…全閉制限手段 1…室外制御ユニット 2…運転制御手段 ほか2名 第4 図 (e) HP し 第 図
FIG. 1 is a block diagram showing the configuration of the present invention. Figures 2 to 4 show embodiments of the present invention, Figure 2 is a refrigerant circuit diagram of an air conditioner, Figure 3 is an electric circuit diagram of an indoor control unit, and Figure 4 is a control of an indoor electric expansion valve. It is a control flow diagram showing operation. FIG. 5 is a characteristic diagram showing changes in the load of the compressor and changes in high pressure and low pressure with respect to the opening degree control of the conventional indoor electric expansion valve. 1...Compressor 6...Outdoor heat exchanger 12...Indoor heat exchanger 3...Indoor electric expansion valve 4...Main refrigerant circuit 1...Indoor control unit 3a...Air conditioning control unit 3b...Total closure limiting means 1...Outdoor control unit 2... Operation control means and 2 other people Figure 4 (e) HP Figure 4

Claims (2)

【特許請求の範囲】[Claims] (1)容量可変な圧縮機(1)と、熱源側熱交換器(6
)と、各々開度調節自在な利用側膨張弁(13)を有す
る複数の並設された利用側熱交換器(12)、(12)
、…とが接続されて成る主冷媒回路(14)を備えた空
気調和装置において、 上記圧縮機(1)の運転容量を空調負荷に応じて制御す
る容量制御手段(62)と、 上記主冷媒回路(14)における冷房運転時の高圧冷媒
圧力と低圧冷媒圧力との差圧が所定以下になると低圧信
号を出力する低圧検出手段(Th7、P1)と、 該低圧検出手段(Th7、P1)の低圧信号出力時に、
少なくとも1台の利用側熱交換器(12)が冷房運転の
熱交換動作を継続すると共に、少なくとも他の1台の利
用側熱交換器(12)に対応する利用側膨張弁(13)
に対して全閉指令信号が出力されると、該利用側膨張弁
(13)を全閉指令信号の出力前の開度より小さい小開
度に所定時間設定した後に全閉とする全閉制限手段(5
3b)とを備えていることを特徴とする空気調和装置の
運転制御装置。
(1) A variable capacity compressor (1) and a heat source side heat exchanger (6
), and a plurality of parallel use-side heat exchangers (12), (12) each having a use-side expansion valve (13) whose opening degree can be freely adjusted.
, ..., a capacity control means (62) for controlling the operating capacity of the compressor (1) according to the air conditioning load; Low pressure detection means (Th7, P1) that outputs a low pressure signal when the differential pressure between high pressure refrigerant pressure and low pressure refrigerant pressure during cooling operation in the circuit (14) becomes less than a predetermined value; When outputting low pressure signal,
At least one user-side heat exchanger (12) continues heat exchange operation for cooling operation, and a user-side expansion valve (13) corresponding to at least one other user-side heat exchanger (12)
When a full-close command signal is output for a fully-closed command signal, the user-side expansion valve (13) is set to a small opening smaller than the opening before the fully-closed command signal is output for a predetermined period of time, and then fully closed. Means (5
3b) An operation control device for an air conditioner, comprising:
(2)請求項(1)記載の空気調和装置の運転制御装置
において、容量制御手段(62)は熱交換動作している
利用側熱交換器(12)、(12)、…の台数に応じて
圧縮機(1)の容量を制御するように構成される一方、 低圧検出手段(Th7、P1)は外気温度又は主冷媒回
路(14)の低圧冷媒圧力を検出し、該外気温度又は低
圧冷媒圧力が所定以下になると低圧信号を出力するよう
に構成されていることを特徴とする空気調和装置の運転
制御装置。
(2) In the operation control device for an air conditioner according to claim (1), the capacity control means (62) is configured according to the number of user-side heat exchangers (12), (12), etc. that are performing heat exchange operation. The low pressure detection means (Th7, P1) detects the outside air temperature or the low pressure refrigerant pressure in the main refrigerant circuit (14), and detects the outside air temperature or the low pressure refrigerant pressure. An operation control device for an air conditioner, characterized in that the device is configured to output a low pressure signal when the pressure falls below a predetermined level.
JP1337757A 1989-12-25 1989-12-25 Operation control device for air conditioner Pending JPH03195855A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1337757A JPH03195855A (en) 1989-12-25 1989-12-25 Operation control device for air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1337757A JPH03195855A (en) 1989-12-25 1989-12-25 Operation control device for air conditioner

Publications (1)

Publication Number Publication Date
JPH03195855A true JPH03195855A (en) 1991-08-27

Family

ID=18311674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1337757A Pending JPH03195855A (en) 1989-12-25 1989-12-25 Operation control device for air conditioner

Country Status (1)

Country Link
JP (1) JPH03195855A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008082653A (en) * 2006-09-28 2008-04-10 Mitsubishi Electric Corp Hot water supply cold and warm water air conditioner

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59104051A (en) * 1982-12-03 1984-06-15 株式会社東芝 Air conditioner
JPS63161342A (en) * 1986-12-24 1988-07-05 Daikin Ind Ltd Electrical expansion valve control device for air conditioner

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59104051A (en) * 1982-12-03 1984-06-15 株式会社東芝 Air conditioner
JPS63161342A (en) * 1986-12-24 1988-07-05 Daikin Ind Ltd Electrical expansion valve control device for air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008082653A (en) * 2006-09-28 2008-04-10 Mitsubishi Electric Corp Hot water supply cold and warm water air conditioner

Similar Documents

Publication Publication Date Title
JP2002147823A (en) Air conditioner
JP2922002B2 (en) Air conditioner
JP2508860B2 (en) Operation control device for air conditioner
JPH06337174A (en) Operation controller for air-conditioner
JPH05288438A (en) Refrigerant filled amount detector of refrigerating plant
JPH06341720A (en) Refrigerator
JP2002147819A (en) Refrigeration unit
JPH0694954B2 (en) Refrigerator superheat control device
JP3149625B2 (en) Operation control device for air conditioner
JPH03195855A (en) Operation control device for air conditioner
JP3047788B2 (en) Operation control device for air conditioner
JP3059886B2 (en) Refrigeration equipment
JP3353367B2 (en) Air conditioner
JPH03186156A (en) Pressure equalizer of air conditioner
JPH10132406A (en) Refrigerating system
US20240068695A1 (en) Air conditioner
JPH02157568A (en) Refrigerant residence suppressing device for air conditioning device
JPH0820140B2 (en) Oil recovery operation control device for air conditioner
JP2976905B2 (en) Air conditioner
KR101513305B1 (en) Injection type heat pump air-conditioner and the converting method for injection mode thereof
JP2634267B2 (en) Anti-freezing device for air conditioners
JPH08128747A (en) Controller for air conditioner
JPH06341695A (en) Operation control device for air conditioner
JPH0510620A (en) Multi-air conditioner
JPS63180050A (en) Electric expansion valve controller for air conditioner