JPH03190607A - Fine groove forming device and grinding method for diamond cutter used therefor - Google Patents

Fine groove forming device and grinding method for diamond cutter used therefor

Info

Publication number
JPH03190607A
JPH03190607A JP33080189A JP33080189A JPH03190607A JP H03190607 A JPH03190607 A JP H03190607A JP 33080189 A JP33080189 A JP 33080189A JP 33080189 A JP33080189 A JP 33080189A JP H03190607 A JPH03190607 A JP H03190607A
Authority
JP
Japan
Prior art keywords
diamond tool
polishing
voice coil
load
workpiece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33080189A
Other languages
Japanese (ja)
Inventor
Yasuhiro Otsuka
泰弘 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP33080189A priority Critical patent/JPH03190607A/en
Publication of JPH03190607A publication Critical patent/JPH03190607A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

PURPOSE:To facilitate the accurate formation of a diamond cutter and a fine groove by enabling detection of a vertical load through confirmation of the time when the cutter is brought into contact with a grinding plate or workpiece by a height adjustable load detector. CONSTITUTION:A diamond cutter 10 and a workpiece 16 are coated with a thin metal film an subjected to conduction treatment. It is confirmed by a conduction measuring device that the diamond cutter 10 is moved to the upper side of the workpiece 16 to abut thereon and the current value i1 of a voice coil 14 at that time is also measured thereby. After the cutter 10 is moved to the upper side of a load detector 19 the current i1 is flowed to the voice coil 14, and the detector 19 is moved to the upper side gradually by a stage 18. Then at the time a load is detected after the tip of the cutter 10 is brought into contact the stage is fixed, and a relation between the current (i) and a vertical load F is obtained. The relation corresponds with that between the current value (i) during prossessing and the vertical load F, whereby a fine grove is formed at a high accuracy. Similary, in the case of grinding of the diamond cutter 10, the relation between the current value (i) of the voice coil 14 and the vertical load F is obtained before grinding it to enable an accurate grinding of the cutter 10.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、切削法により微細溝を形成する微細溝形成装
置、更に詳しくはダイヤモンド工具を被加工物に押し当
てながら被加工物を移動し、微細溝を形成する定圧切削
加工法による微細溝形成装置と、該微細溝形成装置に使
用するダイヤモンド工具を研磨板に押し当てながら該研
磨板を回転し、ダイヤモンド工具を研磨する方法とに関
する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a microgroove forming device that forms microgrooves by a cutting method, more specifically, a microgroove forming device that moves a workpiece while pressing a diamond tool against the workpiece. , relates to a microgroove forming device using a constant pressure cutting method for forming microgrooves, and a method of polishing a diamond tool by rotating the polishing plate while pressing the diamond tool used in the microgrooving device against the polishing plate.

〔従来の技術〕[Conventional technology]

一般に定圧切削法による微細溝形成装置として、第8図
の正面図に示すように、支点12の回りに回転可能なア
ーム11を取り付け、アーム11の一端にダイヤモンド
工具10を取り付けたてこの原理を応用した微細溝形成
装置が知られている(例えば、大塚:昭和60年度精密
工学会春季大会、P869)。
Generally, as shown in the front view of FIG. 8, as a microgroove forming device using a constant pressure cutting method, an arm 11 rotatable around a fulcrum 12 is attached, and a diamond tool 10 is attached to one end of the arm 11. A device for forming fine grooves is known (for example, Otsuka: 1985 Spring Conference of the Japan Society for Precision Engineering, p. 869).

アーム11の他端に取り付けたバランスウェイ)−13
及びボイスコイル14により、ダイヤモンド工具10に
垂直荷重Fを作用させ、被剛材16にダイヤモンド工具
10を押し当てながらエアースライダ15を移動し、微
細溝を形成する。
Balance way attached to the other end of arm 11)-13
A vertical load F is applied to the diamond tool 10 by the voice coil 14, and the air slider 15 is moved while pressing the diamond tool 10 against the rigid material 16 to form a fine groove.

又、第9図の正面図に示すような装置を使用し、ダイヤ
モンド工具10を研磨板24に押し当てながら研磨板2
4を回転し、ダイヤモンド1具10を研磨する方法とし
て、上記の微細溝形成と同様に、てこの原理を応用した
ダイヤモンド工具10の研磨方法が知られている。
Also, using a device as shown in the front view of FIG. 9, the diamond tool 10 is pressed against the polishing plate 24 while the polishing plate 2
As a method of polishing the diamond tool 10 by rotating the diamond tool 4, there is known a method of polishing the diamond tool 10 that applies the principle of leverage, similar to the above-mentioned microgroove formation.

これらの微細溝形成装置及びそれに使用するダイヤモン
ド工具の研磨方法において、ダイヤモンド工具10に作
用させる垂直荷重Fの調整は、第8図及び第9図に示す
ようにアーム11上のバランスウェイト13の位置を変
化させたり、ボイスコイル14に流す電流iの大きさを
変化(支点12の回りのモーメントMの大きさを変化)
させて行なわれる。ここで、バランスウェイト13は垂
直荷重Fの粗調整用として用いられ、ボイスコイル14
は垂直荷重の微調整用に用いられる。
In these fine groove forming devices and the diamond tool polishing method used therein, the vertical load F applied to the diamond tool 10 is adjusted by adjusting the position of the balance weight 13 on the arm 11 as shown in FIGS. 8 and 9. or change the magnitude of the current i flowing through the voice coil 14 (change the magnitude of the moment M around the fulcrum 12).
It is done by letting Here, the balance weight 13 is used for rough adjustment of the vertical load F, and the voice coil 14
is used for fine adjustment of vertical load.

ボイスコイル14の電流値がゼロの場合に、ダイヤモン
ド工具10に上向きの力が作用し、被削材16あるいは
研磨板24にダイヤモンド工具10が接触しないように
バランスウェイト13の位置を粗調整し、微細溝の加工
時あるいはダイヤモンド工具10の研磨時にはボイスコ
イル14の電流を増加し、所要の下向きの垂直荷重Fが
ダイヤモンド工具10に作用するように、ボイスコイル
14の電流を調整する。形成する微細溝の深さの制御は
、ダイヤモンド工具10に作用させる垂直荷重Fの大き
さを制御することにより行う。
When the current value of the voice coil 14 is zero, an upward force acts on the diamond tool 10, and the position of the balance weight 13 is roughly adjusted so that the diamond tool 10 does not come into contact with the workpiece 16 or the polishing plate 24. When processing a fine groove or polishing the diamond tool 10, the current of the voice coil 14 is increased and adjusted so that the required downward vertical load F acts on the diamond tool 10. The depth of the fine grooves to be formed is controlled by controlling the magnitude of the vertical load F applied to the diamond tool 10.

ダイヤモンド工具10の研磨は、第9図に示すように、
ダイヤモンド工具10をNi、Fe、W、Ti等のダイ
ヤモンドと化学的に活性な物質により構成される研磨板
24上に押し当てながら研磨板24を回転して行う、ダ
イヤモンド工具10の研磨量は、ダイヤモンド工具10
に作用させる垂直荷重Fの大きさと研磨時間により制御
し、所要の刃先形状にダイヤモンド工具10を研磨する
The diamond tool 10 is polished as shown in FIG.
The amount of polishing of the diamond tool 10 is as follows: diamond tools 10
The diamond tool 10 is polished into a desired cutting edge shape by controlling the magnitude of the vertical load F applied to the diamond tool and the polishing time.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ダイヤモンド工具10に作用させる垂直荷重Fの大きさ
は、支点12の回りのモーメントMの大きさをボイスコ
イル14の電流値により制御して行う。このため、ダイ
ヤモンド工具10を交換するとダイヤモンド工具10の
質量が変わるため、支点12回りのモーメントが変化し
、ボイスコイル14の電流値とダイヤモンド工具10に
作用する垂直荷重Fの大きさとの関係が変化する。
The magnitude of the vertical load F applied to the diamond tool 10 is determined by controlling the magnitude of the moment M around the fulcrum 12 by the current value of the voice coil 14. Therefore, when the diamond tool 10 is replaced, the mass of the diamond tool 10 changes, so the moment around the fulcrum 12 changes, and the relationship between the current value of the voice coil 14 and the magnitude of the vertical load F acting on the diamond tool 10 changes. do.

又、第7図(a)、(b)のそれぞれ正面図に示すよう
に、被剛材16を変更すると必ず漫かながらも被削材厚
さに変化が生じる。被剛材16の厚さが変化すると、微
細溝形成時のアーム11と水平面とのなす角度θ(又は
ダイヤモンド工具IOの研磨時のアーム11と水平面と
のなす角度θ)が変化し、支点12回りのモーメントM
に変化が生じる。被削材16の厚さ変化による支点12
回りのモーメントMの変化は次のような理由による。
Furthermore, as shown in the front views of FIGS. 7(a) and 7(b), when the rigid material 16 is changed, the thickness of the material to be cut inevitably changes, albeit vaguely. When the thickness of the rigid material 16 changes, the angle θ between the arm 11 and the horizontal surface when forming micro grooves (or the angle θ between the arm 11 and the horizontal surface when polishing the diamond tool IO) changes, and the fulcrum 12 Moment M around
changes occur. Support point 12 due to thickness change of work material 16
The change in the surrounding moment M is due to the following reasons.

第7図(a)に示すように、支点12を境にして左側、
すなわちアーム11の左側部及びダイヤモンド工具10
の質量の和をml 、その重心の位置G、から支点12
までの距離をLl、重心G。
As shown in FIG. 7(a), the left side of the fulcrum 12,
That is, the left side of the arm 11 and the diamond tool 10
The sum of the masses of is ml, from the position of its center of gravity G, to the fulcrum 12
The distance to Ll, the center of gravity G.

と支点12とを結ぶ線が水平面からなす角度をθ1とす
る。同様にして支点12から右側、すなわちアーム11
の右側部、バランスウェイト13及びボイスコイル14
の質量の和をm3 、その重心の位置G2から支点12
までの距離をt、、z−重心G2の位置と支点12とを
結ぶ線が水平面からなす角度をθ2とする。
Let θ1 be the angle that the line connecting the fulcrum 12 and the horizontal plane makes. Similarly, from the fulcrum 12 to the right side, that is, the arm 11
right side, balance weight 13 and voice coil 14
The sum of the masses of m3, from the center of gravity G2 to the fulcrum 12
The distance to z is assumed to be t, and the angle that the line connecting the position of the center of gravity G2 and the fulcrum 12 makes from the horizontal plane is θ2.

ボイスコイル14の発生する力をR、ボイスコイル14
と支点12との間の距離をし、とすると、アーム11と
水平面とのなす角度がθ=0゜ノ場合、支点回りのモー
メントM、は、M(1=L、3 XR+L1 xml 
xcosθ1t、、2Xm2 xCO3θ2−− (1
)となる。ここで被削材16の厚さが変化し、第7図(
b)に示すようにアーム11と水平面とのなす角度がθ
(くθ2)になった場合、支点12回りのモーメントM
lは、 M r = L3 X RX CQ Sθ+ L IX
 m lX COS (θt + 6’ )−L2 X
m2 xcos (θ2−θ)・・・・・・(2) となる。(1)式、(2)式から明らがなように、アー
ム11と水平面とのなす角度θの変化(被削材16の厚
さの変化)により、支点12回りのモーメントMの大き
さが変化することが分かる。
The force generated by the voice coil 14 is R, and the voice coil 14
and the fulcrum 12. If the angle between the arm 11 and the horizontal plane is θ=0°, the moment M around the fulcrum is M(1=L, 3 XR+L1 xml
xcosθ1t,,2Xm2 xCO3θ2−- (1
). At this point, the thickness of the work material 16 changes, as shown in Fig. 7 (
As shown in b), the angle between the arm 11 and the horizontal plane is θ
(ku θ2), the moment M around the fulcrum 12
l is M r = L3 X RX CQ Sθ+ L IX
m lX COS (θt + 6') - L2
m2 x cos (θ2-θ) (2). As is clear from equations (1) and (2), the magnitude of the moment M around the fulcrum 12 changes depending on the change in the angle θ between the arm 11 and the horizontal plane (change in the thickness of the workpiece 16). It can be seen that the changes.

このように装置系が一定であっても、ダイヤモンド工具
10(質x)、及び被削材16(厚さ)を変えるたびに
、ボイスコイル14の電流値iとダイヤモンド工具1o
に作用する垂直荷重Fの大きさが変化する。
Even if the device system is constant in this way, the current value i of the voice coil 14 and the diamond tool 1o change each time the diamond tool 10 (quality x) and the workpiece material 16 (thickness) are changed.
The magnitude of the vertical load F acting on changes.

従って、微細溝を形成する前及びダイヤモンド工具10
を研磨する前に、ボイスコイル14の電流値ど垂直荷重
Fとの関係を正確に求めておく必要がある(例えば10
nmオーダ深さの微細溝を形成する場合には、少なくと
も0.05gfの精度で荷重設定を行う必要がある)。
Therefore, before forming the microgroove and the diamond tool 10
Before polishing, it is necessary to accurately determine the relationship between the current value of the voice coil 14 and the vertical load F (for example, 10
When forming fine grooves with a depth on the order of nm, it is necessary to set the load with an accuracy of at least 0.05 gf).

ボイスコイル14の電流値iと垂直荷重Fとの関係が予
め正確に分かっていないと、所要深さの微細溝を高精度
に形成することができず、また所要形状の刃先にダイヤ
モンド工具lOを研磨することができなくなる。ところ
が従来の微細溝形成装置及びダイヤモンド工具の研磨方
法では、ボイスコイル14の電流値iと垂直荷重Fとの
関係を求ることができなかった。
If the relationship between the current value i of the voice coil 14 and the vertical load F is not accurately known in advance, it will not be possible to form a microgroove of the required depth with high precision, and it will not be possible to form a diamond tool lO on the cutting edge of the desired shape. It becomes impossible to polish. However, with the conventional microgroove forming apparatus and diamond tool polishing method, it was not possible to determine the relationship between the current value i of the voice coil 14 and the vertical load F.

従来の微細溝形成装置では、ダイヤモンド工具10及び
被削材16を変更するごとに、ボイスコイル14の電流
値を徐々に変化させながら微細溝を形成し、形成した微
細溝の深さとボイスコイル14の電流値jとの関係を実
験的に求てぃた。このような従来の微細溝形成装置では
、所要深さの微細溝を形成するのに必要なボイスコイル
14の電流値を求るために、上述のような“予備前ニー
溝深さ測定“のサイクルを数多く繰り返さなければなら
ず、所要のボイスコイル電流値を決定するのに数時間を
要し、生産性の点及び精度の点で課題があった。
In the conventional microgroove forming device, microgrooves are formed while gradually changing the current value of the voice coil 14 each time the diamond tool 10 and the workpiece 16 are changed, and the depth of the microgroove formed and the voice coil 14 are The relationship between the current value and the current value j was determined experimentally. In such a conventional fine groove forming apparatus, in order to determine the current value of the voice coil 14 necessary to form a fine groove of a required depth, the above-mentioned "preliminary knee groove depth measurement" is carried out. Many cycles had to be repeated and it took several hours to determine the required voice coil current value, creating problems in terms of productivity and accuracy.

ダイヤモンド工具10の研磨においても同様の理由によ
り生産性の点で課題があるとともに、垂直荷重を正確に
設定できないため、研磨時間と研磨量との関係を把握す
ることができず、余剰研磨が度々生じ、所要の刃先形状
に高精度に研磨することが困難であった。
Polishing the diamond tool 10 also has problems in terms of productivity for the same reason, and because the vertical load cannot be set accurately, the relationship between polishing time and amount of polishing cannot be grasped, and excessive polishing is often performed. This made it difficult to polish the cutting edge to the desired shape with high precision.

本発明の目的はこのような従来の課題を解決して、生産
性に優れた微細溝形成装置を提供すること、及び生産性
に優れしかも高精度にダイヤモンド工具刃先を研磨でき
るダイヤモンド工具の研磨方法を提供することにある。
The purpose of the present invention is to solve such conventional problems and provide a microgroove forming device with excellent productivity, and a diamond tool polishing method that can polish the cutting edge of a diamond tool with high productivity and high precision. Our goal is to provide the following.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の微細溝形成装置は、支点の回りに回転可能なア
ームを取り付け、該アームの先端にダイヤモンド工具を
固定し、てこの原理を利用して該ダイヤモンド工具を被
加工物に押し当てながら該被加工物を移動し微細溝を形
成する装置において、前記ダイヤモンド工具と前記被加
工物が接触した瞬間を確認する機構と、高さ調整が可能
なステージに搭載した荷重検出器とを備え構成される。
The microgrooving device of the present invention includes an arm that is rotatable around a fulcrum, a diamond tool fixed to the tip of the arm, and a diamond tool being pressed against a workpiece using the principle of leverage. An apparatus for moving a workpiece to form a fine groove, comprising a mechanism for confirming the moment when the diamond tool and the workpiece come into contact, and a load detector mounted on a height-adjustable stage. Ru.

又、本発明のダイヤモンド工具の研磨方法は、支点の回
りに回転可能なアームを取り付け、該アームの先端にダ
イヤモンド工具を固定し、てこの原理を利用して該ダイ
ヤモンド工具をダイヤモンドと化学的に活性な材質から
構成される研磨板に押し当てながら該研磨板を回転し、
前記ダイヤモンド工具を研磨する方法において、高さ調
整が可能なステージに#N紋した荷重検出器により、前
記ダイヤモンド工具と前記研磨板が接触した瞬間を確認
して垂直荷重を検出することによって構成される。
In addition, the method for polishing a diamond tool of the present invention includes attaching an arm rotatable around a fulcrum, fixing a diamond tool to the tip of the arm, and using the lever principle to chemically polish the diamond tool with diamond. Rotating the polishing plate while pressing it against a polishing plate made of an active material,
The method for polishing a diamond tool includes detecting a vertical load by confirming the moment when the diamond tool and the polishing plate come into contact with each other using a load detector with a #N symbol on a height-adjustable stage. Ru.

〔作用〕[Effect]

まず、微細溝形成装置について説明する。まず第一にダ
イヤモンド工具と被削材の少なくとも一部に、スパッタ
法等により金属薄膜をコーティングし、導電性処理を施
す。第1図(a)の正面図に示すようにダイヤモンド1
具10を被削材16上の導電性処理が施された領域の上
方に移動し、徐々にボイスコイル14の電流iを増加す
る。ボイスコイル14の電流iの増加により、ダイヤモ
ンド工具10と被削材16が接触すると、導通確認測定
装置20で確認することができる。この時のボイスコイ
ル電流値11を測定する。
First, the microgroove forming device will be explained. First of all, at least a portion of the diamond tool and the workpiece are coated with a thin metal film by sputtering or the like to make them conductive. Diamond 1 as shown in the front view of Figure 1(a)
The tool 10 is moved above the conductive treatment area on the workpiece 16, and the current i of the voice coil 14 is gradually increased. When the diamond tool 10 and the workpiece 16 come into contact with each other due to an increase in the current i of the voice coil 14, this can be confirmed by the continuity confirmation measuring device 20. The voice coil current value 11 at this time is measured.

次に第1図(b)の平面図に示すように、ダイヤモンド
工具10を荷重検出器19の上方に移動後ボイスコイル
14に電流11を流し、荷重検出器19をステージ18
により徐々に上方へ移動させる。荷重検出器19がダイ
ヤモンド工具lOの刃先に接触し、荷重を検出した瞬間
にステージ18を固定する。この状態で、ボイスコイル
電流1と垂直荷重Fとの関係を荷重検出器19を用いて
fめ求めておく。荷重検出器19の高さは被削材16の
高さに一致するため、荷重検出器19上で求めたボイス
コイル電流値iと垂直荷重Fとの関係は、加工中のボイ
スコイル電流値iと垂直荷重E′との関係に一致する。
Next, as shown in the plan view of FIG. 1(b), after moving the diamond tool 10 above the load detector 19, a current 11 is applied to the voice coil 14, and the load detector 19 is moved to the stage 18.
gradually move it upwards. The stage 18 is fixed at the moment when the load detector 19 contacts the cutting edge of the diamond tool IO and detects the load. In this state, the relationship between the voice coil current 1 and the vertical load F is determined using the load detector 19. Since the height of the load detector 19 matches the height of the workpiece 16, the relationship between the voice coil current value i determined on the load detector 19 and the vertical load F is the voice coil current value i during machining. and vertical load E'.

以トのように本発明によれば、ボイスコイル電流値iと
垂直荷重Fとの関係を加工前に正確にしかも容易に求め
ることができるため、所要形状(深さ)の微細溝を、高
精度にしかも容易に形成することができる。
As described above, according to the present invention, the relationship between the voice coil current value i and the vertical load F can be accurately and easily determined before machining. It can be formed accurately and easily.

第2図(a)、(b)に示すようにダイヤモンド工具1
0の研磨においても、上記の微細溝形成装置と同様にし
て研磨前にボイスコイル電流値iと垂直荷重Fとの関係
を求めることができるため、垂直荷重Fと研F14量及
び研磨時間の関係が既知であれば、ダイヤモンド工具1
0の質量が変化しても所要の刃先形状にダイヤモンド工
具10を高精度にしかも容易に研磨することができる。
As shown in FIGS. 2(a) and (b), the diamond tool 1
0 polishing, the relationship between the voice coil current value i and the vertical load F can be determined before polishing in the same manner as the above-mentioned microgrooving device, so the relationship between the vertical load F, the amount of polishing F14, and the polishing time can be determined. is known, diamond tool 1
Even if the mass of the diamond tool 10 changes, the diamond tool 10 can be easily polished with high precision into the desired shape of the cutting edge.

〔実施例〕〔Example〕

以下、本発明の実施例について図面を参照して詳細に説
明する。第1図(a)、(b)はそれぞれ本発明の一実
施例の微細溝形成装置の正面図及び平面図を示す。第2
図(a)、(b)はそれぞれ前記一実施例で用いるダイ
ヤモンド工具の研磨方法の一実施例を説明するための研
磨装置の正面図及び平面図を示す。第3図(a>、(b
)はそれぞれ研磨前のダイヤモンド工具の正面図及び側
面図を、第3図(C)、(d)はそれぞれ本発明の研磨
方法の一実施例により研磨したダイヤモンド工具の正面
図及び側面図を示す。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIGS. 1(a) and 1(b) show a front view and a plan view, respectively, of a microgroove forming apparatus according to an embodiment of the present invention. Second
Figures (a) and (b) respectively show a front view and a plan view of a polishing apparatus for explaining an embodiment of the diamond tool polishing method used in the above embodiment. Figure 3 (a>, (b)
) respectively show a front view and a side view of a diamond tool before polishing, and FIGS. 3(C) and (d) respectively show a front view and a side view of a diamond tool polished by an embodiment of the polishing method of the present invention. .

本発明の研磨方法の一実施例では、まず最初に第2図<
a>、(b)に示すダイヤモンド工具の研磨装置を用い
、第3図(a)、(b)に示すダイヤモンド工具10(
剣バイト、すくい面の角度60°、逃げ角3°)を、第
3図(c)、(d)に示す刃幅1μmの逆台形状のすく
い面を有するダイヤモンド工具10になるように研磨成
形した。次に、研磨したダイヤモンド工具10を用い、
第4図の断面図に示すような寸法のプリグループ25付
き光デイスク原盤を作成した。
In one embodiment of the polishing method of the present invention, first of all, FIG.
Using the diamond tool polishing apparatus shown in FIGS. 3(a) and 3(b), the diamond tool 10(
A sword cutting tool (60° rake face angle, 3° clearance angle) was polished and formed into a diamond tool 10 having an inverted trapezoidal rake face with a blade width of 1 μm as shown in Fig. 3(c) and (d). did. Next, using the polished diamond tool 10,
An optical disk master with a pre-group 25 having dimensions as shown in the sectional view of FIG. 4 was prepared.

第3図(a)に示す剣バイトを第3図(C)に示す逆台
形状すくい面を有するダイヤモンド工具に研磨する条件
は、研磨荷重がF=O,Igfの場合に、1分間の研磨
時間(エアースピンドルの回転速度は2Orpm)で達
成できることが予め分かっている。そこでまず研磨荷重
がF=0.Igfとなるボイスコイル14の電流i1 
を求めた。研磨板24は、第2図(a)に示すようにガ
ラス基板23にNiのスパッタ薄膜22を0.1μm成
膜したものを用いた。研磨板24は導電性を有するため
、ダイヤモンド工具10の導電性コーティングのみ行っ
た。スパッタ法によりAuの薄膜をダイヤモンド工具1
0に約0.02μm成膜した。
The conditions for polishing the sword bit shown in Figure 3(a) into the diamond tool having the inverted trapezoidal rake face shown in Figure 3(C) are as follows: When the polishing load is F=O, Igf, the polishing time is 1 minute. It is known in advance that this can be achieved in hours (the rotational speed of the air spindle is 2 Orpm). First, the polishing load is F=0. The current i1 of the voice coil 14 which becomes Igf
I asked for As shown in FIG. 2(a), the polishing plate 24 used was one in which a sputtered Ni film 22 of 0.1 μm was formed on a glass substrate 23. Since the polishing plate 24 has conductivity, only the conductive coating of the diamond tool 10 was applied. Sputtering a thin Au film onto a diamond tool 1
A film with a thickness of about 0.02 μm was formed on 0.

第2図(a)に示すように研磨板24をエアースピンド
ル17に固定し、研磨板24上にダイヤモンド工具10
の刃先位置を移動し、ボイスコイル14の電流を徐々に
増加し、ダイヤモンド工具lOの刃先が研磨板24に接
触するボイスコイル電流値i□を求めた。ダイヤモンド
工具10と研磨板24との接触の確認は、ダイヤモンド
工具10と研磨板24との間に電圧を加えておき、接触
した瞬間に流れる電流を検出する導通確認装置20によ
り行なった。本発明の研磨方法の一実施例では、接触し
た瞬間のボイスコイル電流は、il =20.3mAで
あった。
As shown in FIG. 2(a), the polishing plate 24 is fixed to the air spindle 17, and the diamond tool 10 is placed on the polishing plate 24.
The voice coil current value i□ at which the cutting edge of the diamond tool 10 contacts the polishing plate 24 was determined by moving the position of the cutting edge of the diamond tool 10 and gradually increasing the current of the voice coil 14. Confirmation of contact between the diamond tool 10 and the polishing plate 24 was performed using a continuity confirmation device 20 that applies a voltage between the diamond tool 10 and the polishing plate 24 and detects the current flowing at the moment of contact. In one embodiment of the polishing method of the present invention, the voice coil current at the moment of contact was il = 20.3 mA.

次に、第2図(b)に示すように、高さ方向の最小設定
学位が0.1!1mのZステージ18に搭載した荷重検
出器191に、ダイヤモンド工具10の刃先が位置する
ようにエアースライダ15を移動した。ボイスコイル1
4に電流値1=jl(20,3mA)を通電し、ダイヤ
モンド工具10に下向きの垂直荷重Fを作用゛させなが
ら、Zステージ18を徐々に上方に移動した。荷重検出
器1つがダイヤモンド工具10に接触し、荷重を検出し
た瞬間にZステージ18の位置を固定した9更にボイス
コイル14の電流を除々に増加し、垂直荷重がF=O,
Igfとなるボイスコイル電流12を求めた。本発明の
研磨方法の一実施例では、i2 =25.3mAであっ
た。
Next, as shown in FIG. 2(b), the cutting edge of the diamond tool 10 is positioned on the load detector 191 mounted on the Z stage 18 whose minimum height setting is 0.1!1 m. Air slider 15 was moved. voice coil 1
A current value 1=jl (20.3 mA) was applied to the diamond tool 10, and the Z stage 18 was gradually moved upward while applying a downward vertical load F to the diamond tool 10. One of the load detectors came into contact with the diamond tool 10 and the position of the Z stage 18 was fixed at the moment the load was detected9.Furthermore, the current of the voice coil 14 was gradually increased until the vertical load was F=O,
The voice coil current 12 serving as Igf was determined. In one embodiment of the polishing method of the present invention, i2 =25.3 mA.

研磨板24を20rpmで回転しながら、ボイスコイル
14にjz =25.3mAを流し、垂直荷重F=0.
 Igfでダイヤモンド工具10を研磨板24に押し当
て研磨を行った。同時にダイヤモンド工具10をエアー
スライダ15で0.4mm/minの速度で移動し、ダ
イヤモンド工具10を1分間研磨した。その結果、第3
図(b)に示すような刃幅1μmの逆台形状のすくい面
を有するダイヤモンド工具10を研磨成形することがで
きた。なお、上述のダイヤモンド工具の研磨に要した時
間は、研磨時間も含めて僅か4分程度であり、刃幅1μ
mの精度も電子顕微鏡では測定不可能なほど、高精度に
研磨することができた。
While rotating the polishing plate 24 at 20 rpm, jz = 25.3 mA is applied to the voice coil 14, and a vertical load F = 0.
Polishing was performed by pressing the diamond tool 10 against the polishing plate 24 using Igf. At the same time, the diamond tool 10 was moved at a speed of 0.4 mm/min using the air slider 15, and the diamond tool 10 was polished for 1 minute. As a result, the third
It was possible to polish and form a diamond tool 10 having an inverted trapezoidal rake face with a blade width of 1 μm as shown in Figure (b). The time required to polish the diamond tool mentioned above, including polishing time, was only about 4 minutes, and the blade width was 1 μm.
It was also possible to polish with such high precision that the accuracy of m cannot be measured with an electron microscope.

次に研磨したダイヤモンド工具10及び第1図(a)、
(b)に示す微細溝形成装置を用いて、第4図に示すよ
うな溝幅1μm、溝深さ0.08μm、ピッチ1.6μ
mの光ディスクのプリグループ25をスパイラル状に形
成した。被剛材16は第5図の正面図に示すように、直
径5インチの研磨ガラス基板23に、Cuスパッタ薄膜
26を下地膜として0.04μm、Auスパッタ薄膜2
7を0.04μm形成したものを用いた。
Next, the polished diamond tool 10 and FIG. 1(a),
Using the fine groove forming apparatus shown in (b), a groove width of 1 μm, a groove depth of 0.08 μm, and a pitch of 1.6 μm as shown in FIG.
A pre-group 25 of an optical disk of m was formed in a spiral shape. As shown in the front view of FIG. 5, the rigid material 16 is a polished glass substrate 23 with a diameter of 5 inches, with a Cu sputter thin film 26 as a base film and a 0.04 μm Au sputter thin film 2.
7 formed to a thickness of 0.04 μm was used.

アリグループの加工は第6図の断面図に示すようにガラ
ス基板23を溝深さを決定するストッパー層として用い
、Cuスパッタ薄膜26及びAuスパッタ薄膜27に、
その膜厚の和(0,08μm )に等しい深さのグルー
プを形成することにより行った。ここでダイヤモンド工
具10に作用させる垂直荷重Fは、ガラス基板23を破
壊させない荷重、すなわちガラス基板23とダイヤモン
ド工具10の刃先か弾性的に接触する範囲内の垂直荷重
であることが必要であり、予備実験により垂直荷重F=
0.5gfによりこの条件を達成できることが分かって
いる。
As shown in the cross-sectional view of FIG. 6, the dot group is processed by using the glass substrate 23 as a stopper layer that determines the groove depth, and depositing on the Cu sputtered thin film 26 and the Au sputtered thin film 27.
This was done by forming groups with a depth equal to the sum of the film thicknesses (0.08 μm). The vertical load F applied to the diamond tool 10 here needs to be a load that does not destroy the glass substrate 23, that is, a vertical load within the range where the glass substrate 23 and the cutting edge of the diamond tool 10 come into elastic contact. According to preliminary experiments, the vertical load F=
It has been found that this condition can be achieved with 0.5 gf.

まず、ダイヤモンド工具1.0の研磨と同様に[2て、
第1図(a)に示すように、ダイヤモンド工具IOと被
剛材16とが接触するボイスコイル電流iIを求め、次
いで第1図(b)に示すようにボイスコイル電流11を
通電した状態で、Zステージ】8上の荷重検出器1つが
ダイヤモンド工具10に接触するようにZステージ18
の高さの調整を行い、ボイスコイル電流値iと垂直荷重
F(0,01gfごとに求めた)との関係を求めた。こ
こで、垂直荷重とボイスコイル電流との関係を求めるの
に要した時間は、僅かに3分であった。
First, in the same way as the diamond tool 1.0 polishing [2]
As shown in FIG. 1(a), the voice coil current iI at which the diamond tool IO and the rigid material 16 come into contact is determined, and then, as shown in FIG. 1(b), with the voice coil current 11 energized, , Z stage] Z stage 18 so that one load detector on 8 is in contact with the diamond tool 10.
The height of was adjusted, and the relationship between the voice coil current value i and the vertical load F (calculated every 0.01 gf) was determined. Here, the time required to determine the relationship between the vertical load and the voice coil current was only 3 minutes.

第1図(a)に示すように、エアースピンドル17によ
り被削材16を一定回転速度20Orpmで回転しなが
ら、ダイヤモンド工具1.0を被剛材16に一定垂直荷
重F=0.5gf (ボイスコイル電流40.3mA)
で押し当て、同時にダイヤモンド工具10をエアースラ
イダ15で一定速度V−0,032mm/m i nで
移動することにより、プリグループ25をスパイラル状
に形成した。その結果、第4図に示すような幅1μm、
深さ0.08μm、ピッチ1.6μmのプリグループ2
5を、溝深さ精度±0.05μmと極めて高精度に形成
することができた。
As shown in FIG. 1(a), while the workpiece 16 is rotated by the air spindle 17 at a constant rotational speed of 20 rpm, the diamond tool 1.0 is applied to the workpiece 16 with a constant vertical load F=0.5gf (voice Coil current 40.3mA)
The pre-group 25 was formed into a spiral shape by pressing the diamond tool 10 with the air slider 15 at a constant speed of V-0,032 mm/min. As a result, the width was 1 μm as shown in Figure 4.
Pre-group 2 with depth 0.08μm and pitch 1.6μm
5 was able to be formed with extremely high precision, with a groove depth accuracy of ±0.05 μm.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明の微細溝形成装置では、溝深
さが0.01μmオーダである微細な溝を、高精度にし
かも生産性に優れた方法で形成することができる効果が
ある。又、本発明のダイヤモンド工具の研磨方法では、
刃幅が僅か1μmであるような逆台形状のすくい面を有
するダイヤモンド工具を、高精度にしかも容易に研磨成
形できる効果がある。
As described above, the fine groove forming apparatus of the present invention has the advantage that fine grooves having a groove depth on the order of 0.01 μm can be formed with high precision and with a method excellent in productivity. Furthermore, in the diamond tool polishing method of the present invention,
This has the effect that a diamond tool having an inverted trapezoidal rake face with a blade width of only 1 μm can be easily polished and formed with high precision.

【図面の簡単な説明】[Brief explanation of drawings]

第112f(a>、(b)はそれぞれ本発明の一実施例
の微細溝成形装置の正面図及び平面図、第2図(a)、
(b)はそれぞれ本発明の前記一実施例で使用するダイ
ヤモンド工具の研磨方法の一実施例を説明するための研
磨装置の正面図及び平面図、 第3図(a)、(b)は
それぞれ研磨前のダイヤモンド工具の正面図及び側面図
、第3図(c)、(d)はそれぞれ本発明の研磨方法の
一実施例で研磨形成したダイヤモンド工具の正面図及び
側面図、第4図は本発明の微細溝成形装置の一実施例で
加工したプリグループ付き光デイスク原盤の断面図、第
5図は第4図で用いた被剛材の正面図、第6図は第4図
の加工[状態を示す断面図、第7図(a)、(b)はそ
れぞれ支点回りの力の釣合いの様子を示す正面図、第8
図は従来の微細溝形成装置の正面図、第9図は従来のダ
イヤモンド工具の研磨方法を説明するための研磨装置の
正面図を示す。 10・・・ダイヤモンド工具、11−・・アーム、12
・・・支点、13−バランスウェイト、14・・・ボイ
スコイル、15・・・エアースライダ、16・・・被削
材、17・・・エアースピンドル、18・・・Zステー
ジ、19・・・荷重検出器、20・・・導通確認装置、
22・・・Niスパッタ薄膜、23・・・ガラス基板、
24・・・研磨板、25・・・プリグループ、26・・
・Cuスパッタ薄膜、27・・・Auスパッタ薄膜。
112f (a>, (b) are respectively a front view and a plan view of a microgroove forming apparatus according to an embodiment of the present invention; FIG. 2(a);
(b) is a front view and a plan view, respectively, of a polishing apparatus for explaining an embodiment of the diamond tool polishing method used in the above-mentioned embodiment of the present invention, and FIGS. 3(a) and (b) are respectively FIGS. 3(c) and 3(d) are a front view and a side view of a diamond tool before polishing, respectively, and FIG. 4 is a front view and a side view of a diamond tool polished by an embodiment of the polishing method of the present invention. A cross-sectional view of an optical disk master disk with a pre-group processed by an embodiment of the micro-groove forming apparatus of the present invention, FIG. 5 is a front view of the rigid material used in FIG. 4, and FIG. [A sectional view showing the state, Figures 7(a) and 7(b) are front views showing the balance of forces around the fulcrum, and Figure 8
The figure shows a front view of a conventional fine groove forming apparatus, and FIG. 9 shows a front view of a polishing apparatus for explaining a conventional method of polishing a diamond tool. 10...Diamond tool, 11-...Arm, 12
...Fulcrum, 13-Balance weight, 14-Voice coil, 15-Air slider, 16-Work material, 17-Air spindle, 18-Z stage, 19... Load detector, 20... continuity confirmation device,
22...Ni sputter thin film, 23...Glass substrate,
24... Polishing plate, 25... Pre-group, 26...
- Cu sputtered thin film, 27... Au sputtered thin film.

Claims (1)

【特許請求の範囲】 1、支点の回りに回転可能なアームを取り付け、該アー
ムの先端にダイヤモンド工具を固定し、てこの原理を利
用して該ダイヤモンド工具を被加工物に押し当てながら
該被加工物を移動し微細溝を形成する装置において、前
記ダイヤモンド工具と前記被加工物が接触した瞬間を確
認する機構と、高さ調整が可能なステージに搭載した荷
重検出器とを備えることを特徴とする微細溝形成装置。 2、支点の回りに回転可能なアームを取り付け、該アー
ムの先端にダイヤモンド工具を固定し、てこの原理を利
用して該ダイヤモンド工具をダイヤモンドと化学的に活
性な材質から構成される研磨板に押し当てながら該研磨
板を回転し、前記ダイヤモンド工具を研磨する方法にお
いて、高さ調整が可能なステージに搭載した荷重検出器
により、前記ダイヤモンド工具と前記研磨板が接触した
瞬間を確認して垂直荷重を検出することを特徴とする請
求項1記載の微細溝形成装置に使用するダイヤモンド工
具の研磨方法。
[Claims] 1. An arm rotatable around a fulcrum is attached, a diamond tool is fixed to the tip of the arm, and the diamond tool is pressed against the workpiece using the principle of leverage. An apparatus for moving a workpiece to form a microgroove, characterized by comprising a mechanism for confirming the moment when the diamond tool and the workpiece come into contact, and a load detector mounted on a height-adjustable stage. Micro groove forming device. 2. Attach an arm that can rotate around a fulcrum, fix a diamond tool to the tip of the arm, and use the principle of leverage to attach the diamond tool to a polishing plate made of diamond and a chemically active material. In the method of polishing the diamond tool by rotating the polishing plate while pressing against it, a load detector mounted on a height-adjustable stage confirms the moment when the diamond tool and the polishing plate come into contact, and 2. A method for polishing a diamond tool for use in a microgroove forming apparatus according to claim 1, further comprising detecting a load.
JP33080189A 1989-12-19 1989-12-19 Fine groove forming device and grinding method for diamond cutter used therefor Pending JPH03190607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33080189A JPH03190607A (en) 1989-12-19 1989-12-19 Fine groove forming device and grinding method for diamond cutter used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33080189A JPH03190607A (en) 1989-12-19 1989-12-19 Fine groove forming device and grinding method for diamond cutter used therefor

Publications (1)

Publication Number Publication Date
JPH03190607A true JPH03190607A (en) 1991-08-20

Family

ID=18236706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33080189A Pending JPH03190607A (en) 1989-12-19 1989-12-19 Fine groove forming device and grinding method for diamond cutter used therefor

Country Status (1)

Country Link
JP (1) JPH03190607A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08197309A (en) * 1995-01-19 1996-08-06 Fanuc Ltd Ion implanted diamond cutting tool
US6758640B2 (en) 2000-10-11 2004-07-06 Fuji Seiko Limited Method and apparatus for controlling movement of cutting blade and workpiece
WO2013047604A1 (en) * 2011-09-26 2013-04-04 高知Fel株式会社 Machining apparatus for diamond cutting tool
JP2020082250A (en) * 2018-11-21 2020-06-04 株式会社ディスコ Method for correcting cutting tool

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08197309A (en) * 1995-01-19 1996-08-06 Fanuc Ltd Ion implanted diamond cutting tool
US6758640B2 (en) 2000-10-11 2004-07-06 Fuji Seiko Limited Method and apparatus for controlling movement of cutting blade and workpiece
US7056072B2 (en) 2000-10-11 2006-06-06 Fuji Seiko Limited Method and apparatus for controlling movement of cutting blade and workpiece
WO2013047604A1 (en) * 2011-09-26 2013-04-04 高知Fel株式会社 Machining apparatus for diamond cutting tool
CN103889653A (en) * 2011-09-26 2014-06-25 高知Fel株式会社 Machining apparatus for diamond cutting tool
JPWO2013047604A1 (en) * 2011-09-26 2015-03-26 高知Fel株式会社 Diamond cutting tool processing equipment
JP2020082250A (en) * 2018-11-21 2020-06-04 株式会社ディスコ Method for correcting cutting tool

Similar Documents

Publication Publication Date Title
US6659843B2 (en) Substrate dicing method
US5718615A (en) Semiconductor wafer dicing method
JP2805370B2 (en) Method of slice-cutting a rod-shaped workpiece into a thin plate using an inner peripheral saw
US20090247050A1 (en) Grinding method for grinding back-surface of semiconductor wafer and grinding apparatus for grinding back-surface of semiconductor wafer used in same
JP3166116B2 (en) Method and apparatus for cutting magnetic recording medium
JPH03190607A (en) Fine groove forming device and grinding method for diamond cutter used therefor
JPH08197309A (en) Ion implanted diamond cutting tool
JP2020026010A (en) Grinding method of workpiece
JPH05200616A (en) Working of groove and groove working device
JP2002164311A (en) Method and apparatus of orientation flat machining of ingot
JPH0351044Y2 (en)
JP4649592B2 (en) Single-crystal diamond cutting edge two-face machining apparatus and machining method
JPH01146649A (en) Cutting tool polishing device
JPH03108142A (en) Optical master disk working device
JPH026400A (en) Method for diamond tool
US5307718A (en) Apparatus and process for removing a predetermined portion of reflective material from mirror
JPH0735689Y2 (en) Turret for lathe
JPH0639846Y2 (en) Turret for lathe
JPH012863A (en) Grindstone forming method and device
JPH0639845Y2 (en) Turret for lathe
JPH0288103A (en) Machining method of fine groove
JPS62224566A (en) Method of forming diamond
JPH06143108A (en) Groove processing method and device
JPH04321931A (en) Texture working machine
JPH0561048B2 (en)