JPH03189601A - Pinhole substrate and production thereof - Google Patents

Pinhole substrate and production thereof

Info

Publication number
JPH03189601A
JPH03189601A JP32916489A JP32916489A JPH03189601A JP H03189601 A JPH03189601 A JP H03189601A JP 32916489 A JP32916489 A JP 32916489A JP 32916489 A JP32916489 A JP 32916489A JP H03189601 A JPH03189601 A JP H03189601A
Authority
JP
Japan
Prior art keywords
pinhole
substrate
light
transparent resin
microlens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32916489A
Other languages
Japanese (ja)
Other versions
JP2578376B2 (en
Inventor
Takeo Tanaami
健雄 田名網
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP32916489A priority Critical patent/JP2578376B2/en
Publication of JPH03189601A publication Critical patent/JPH03189601A/en
Application granted granted Critical
Publication of JP2578376B2 publication Critical patent/JP2578376B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To realize the pinhole substrate improved in light utilizing efficiency by forming a microlens having the area wider than the aperture area of the pinhole by curing a transparent resin to a spherical surface shape in the inlet of the pinhole on the incident light side of the substrate. CONSTITUTION:Since the diameter of the pinhole 10b provided on the substrate 10a is as small as 1 to several 10mum, the light does not leak to the exit light side by passing the pinhole 10b even if the photosetting type transparent resin 20 is applied on the incident light side of the substrate 10a. The light of the high intensity is projected from the exit light side to the substrate 10a to form the cured part of the spherical surface shape in the photosetting type transparent resin 20 on the incident light side. The liquid parts exclusion of the cured parts are thereafter flushed away, by which the microlens 10c is formed on the substrate 10a. The incident light is collected in the inlet of the pinhole 10b by the microlens 10c and the much light is condensed if this pinhole substrate 10 is irradiated with the light from a light source. The utilizing efficiency of light is thus improved.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、球面波発生装置や共焦点顕微鏡等に用いるピ
ンホール基板に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a pinhole substrate used in spherical wave generators, confocal microscopes, and the like.

〈従来の技術〉 第4図は螺旋状に配置された多数のピンホールを有する
ピンホール基板を用いた共焦点顕微鏡の一例を示す構成
図である。第4図において、図示しない光源からの出射
光は偏向子1a、ビームスプリッタ2を通ってピンホー
ル基板3に照射される。この照射光の内、ピンホール基
板3に螺旋状に配置された多数のピンホール3aの幾つ
かを通過した光は、1/4波長板4、対物レンズ5を経
て試料6に集光される。試料6からの反射光は同一の光
路を通ってピンホール基板3のピンホール3aの1つに
集光され、ピンホール3aを通って、ビームスプリッタ
2、偏向子1bを経て接眼レンズ7を介して試料6の像
を目で捕らえることができる。この装置ではピンホール
基板3をモータ3bで一定速度で回転させており、ピン
ホール基板3の回転に伴うピンホール3aの移動により
、試料6への集束光点を走査している。
<Prior Art> FIG. 4 is a configuration diagram showing an example of a confocal microscope using a pinhole substrate having a large number of spirally arranged pinholes. In FIG. 4, light emitted from a light source (not shown) passes through a polarizer 1a and a beam splitter 2, and is irradiated onto a pinhole substrate 3. Of this irradiation light, the light that passes through some of the many pinholes 3a arranged spirally on the pinhole substrate 3 passes through the quarter-wave plate 4 and the objective lens 5, and is focused on the sample 6. . The reflected light from the sample 6 passes through the same optical path and is focused on one of the pinholes 3a of the pinhole substrate 3, passes through the pinhole 3a, passes through the beam splitter 2, the deflector 1b, and then passes through the eyepiece lens 7. The image of the sample 6 can be captured visually. In this device, a pinhole substrate 3 is rotated at a constant speed by a motor 3b, and a focused light spot on a sample 6 is scanned by movement of the pinhole 3a as the pinhole substrate 3 rotates.

〈発明が解決しようとする課題〉 しかしながら上記従来技術に示す螺旋状に配置された多
数のピンホール3aを有するピンホール基板3に図示し
ない光源から光が照射された際、ピンホール3aの開口
面積が1%とすれば、ピンホール3aを通過する光はピ
ンホール基板3への全照射光の1%、即ち光の利用効率
が1%と非常に悪いものであるという課題があった。
<Problems to be Solved by the Invention> However, when the pinhole substrate 3 having a large number of spirally arranged pinholes 3a shown in the above-mentioned prior art is irradiated with light from a light source (not shown), the opening area of the pinholes 3a 1%, the problem is that the light passing through the pinhole 3a is 1% of the total light irradiated onto the pinhole substrate 3, that is, the light utilization efficiency is very poor at 1%.

本発明は上記従来技術の課題を踏まえて成されたもので
あり、光利用効率を向上したピンホール基板を提供する
ことを目的としたものである。
The present invention has been made in view of the above-mentioned problems of the prior art, and aims to provide a pinhole substrate with improved light utilization efficiency.

く課題を解決するための手段〉 上記諜Uを解決するための本発明の構成は、ピンホール
が設けられた基板の入射光側の前記ピンホールの入口に
透明樹脂を球面状に硬化して形成されたマイクロレンズ
を備えた構成としたことを特徴とするものであり、その
作製方法として、ピンホールが設けられた基板の入射光
側の面に光硬化型透明樹脂を塗布し、次いで前記基板の
出射光側の面に強い強度の光を照射して前記ピンホール
から球面波を発生させて、前記光硬化型透明樹脂を球面
状に硬化させ、その後球面状に硬化した部分以外の樹脂
を除去することにより、前記ピンホルの入口に球面状の
マイクロレンズを形成させることを特徴とするものであ
る。
Means for Solving the Problems> The structure of the present invention for solving the above problem is to cure transparent resin into a spherical shape at the entrance of the pinhole on the incident light side of the substrate provided with the pinhole. The device is characterized by having a structure including formed microlenses, and its manufacturing method is to apply a photocurable transparent resin to the incident light side surface of a substrate provided with a pinhole, and then apply the above-mentioned method. The photo-curing transparent resin is cured into a spherical shape by irradiating the surface of the substrate on the outgoing light side with strong light to generate a spherical wave from the pinhole, and then the resin other than the spherically hardened portion is cured. By removing , a spherical microlens is formed at the entrance of the pinhole.

〈作用〉 本発明によると、ピンホールの開口面積より広い面積を
有するマイクロレンズをピンホールの入射光側に設けて
おり、より多くの入射光をピンホールに集めることがで
きる。
<Function> According to the present invention, a microlens having an area larger than the opening area of the pinhole is provided on the incident light side of the pinhole, and more incident light can be collected into the pinhole.

く実總例〉 以下、本発明を図面に基づいて説明する。Practical example> Hereinafter, the present invention will be explained based on the drawings.

第1図は本発明に係わるピンホール基板の一実施例を示
す構成図である。第1図において、ピンホール10bが
設けられた基板10aの入射光側には、光硬化型透明樹
脂が球面状に硬化して成るマイクロレンズ10cがピン
ホール10bの入口部分に形成されている。ここで、第
2図は本発明に係わるピンホール基板の作製方法を示す
工程図である。第2図において、基板10aにはピンホ
ール10bが設けである。この基板10aの入射光側に
光硬化型透明樹脂20を塗布する(イ図)。
FIG. 1 is a configuration diagram showing an embodiment of a pinhole substrate according to the present invention. In FIG. 1, on the incident light side of a substrate 10a provided with a pinhole 10b, a microlens 10c made of a photocurable transparent resin cured into a spherical shape is formed at the entrance of the pinhole 10b. Here, FIG. 2 is a process diagram showing a method for manufacturing a pinhole substrate according to the present invention. In FIG. 2, a pinhole 10b is provided in a substrate 10a. A photocurable transparent resin 20 is applied to the incident light side of the substrate 10a (FIG. 1).

この時、ピンホール10bの孔径は1〜数十μmと小さ
いなめ、表面張力により光硬化型透明樹脂20がピンホ
ール10bを通って出射光側に漏れることはない、その
後、出射光側から強い強度の光を基板10aに照射させ
ると、ピンホール10bを通った光は、光硬化型透明樹
脂20が塗布された基板10aの入射光側に球面波とな
って発生する。光硬化型透明樹脂20は、強い強度の光
が照射された部分が硬化していくため、球面波の照射さ
れた部分20aだけが球面状に硬化していく(四国)0
次に、硬化された以外の液状部分は洗い流して除去する
ことにより、基板10aには光硬化型透明樹脂20が球
面状に硬化して成るマイクロレンズ10C(球面状に硬
化した部分20a)がピンホール10bの入口部分に形
成される(ハス)、第1図に戻り、このピンホール基板
10に図示しない光源から光が照射されると、マイクロ
レンズ10cにより入射光がピンホール10bの入口に
集められ、マイクロレンズ10cがない構成のものに比
べて、より多くの光を集光できるなめ、光の利用効率を
向上することができる。なお、マイクロレンズ10cが
ピンホール10bの出射光側に設け゛であると、出射光
には波面収差が発生し、きれいな球面波を得ることがで
きないが、マイクロレンズ10cをピンホール10bの
入射光側に設けであるなめ、出射光は波面収差の小さい
、きれいな球面波となる。
At this time, the diameter of the pinhole 10b is small, from 1 to several tens of μm, and the photocurable transparent resin 20 does not leak through the pinhole 10b to the output light side due to surface tension. When the substrate 10a is irradiated with intense light, the light passing through the pinhole 10b is generated as a spherical wave on the incident light side of the substrate 10a coated with the photocurable transparent resin 20. Since the photo-curing transparent resin 20 is cured in the part that is irradiated with strong light, only the part 20a that is irradiated with the spherical wave is cured into a spherical shape (Shikoku)0
Next, by washing away the liquid portion other than the hardened portion, the microlens 10C (the spherically hardened portion 20a) formed by hardening the photocurable transparent resin 20 into a spherical shape is pinned onto the substrate 10a. Returning to FIG. 1, when this pinhole substrate 10 is irradiated with light from a light source (not shown), the incident light is focused at the entrance of the pinhole 10b by the microlens 10c. Therefore, more light can be collected than in a configuration without the microlens 10c, and the efficiency of light utilization can be improved. Note that if the microlens 10c is provided on the outgoing light side of the pinhole 10b, wavefront aberration will occur in the outgoing light, making it impossible to obtain a clean spherical wave. Since it is installed on the side, the emitted light becomes a clean spherical wave with small wavefront aberration.

第3図は本発明に係わるピンホール基板の他の作製方法
を示す図である。この作製方法では、ピンホール10b
が設けられた基板10aの出射光側から透明樹脂30を
ピンホール10bを通して圧力をかけて注入する。基板
10aの入射光側には表面張力により球面状に透明樹脂
30が押出された部分30aが形成される。この球面状
に形成゛された透明樹脂30aを硬化させることにより
、ピンホール基板10が作製できる。この作製方法に用
いる透明樹脂30は光硬化型に限るものではなく、時間
硬化型や熱硬化型を用いても可能である。
FIG. 3 is a diagram showing another method for manufacturing a pinhole substrate according to the present invention. In this manufacturing method, the pinhole 10b
The transparent resin 30 is injected under pressure through the pinhole 10b from the output light side of the substrate 10a provided with the transparent resin 30. A portion 30a in which transparent resin 30 is extruded into a spherical shape due to surface tension is formed on the incident light side of the substrate 10a. By curing this spherical transparent resin 30a, the pinhole substrate 10 can be manufactured. The transparent resin 30 used in this manufacturing method is not limited to a photo-curing type, but may also be a time-curing type or a thermosetting type.

又、ガラス基板の片面に薄膜を形成させ、薄膜にピンホ
ールか設けであるような構成の場合においても、第2図
の作製方法によれば、本発明のピンホール基板を作製す
ることは可能であり、同様の効果を得ることができる。
Furthermore, even in the case of a structure in which a thin film is formed on one side of a glass substrate and a pinhole is provided in the thin film, it is possible to produce the pinhole substrate of the present invention according to the production method shown in FIG. , and similar effects can be obtained.

更に、マイクロレンズを1回で形成させるのではなく、
何回かに分けて形成させても良く、その場合、各層の屈
折率や粘性を変化させることにより、マイクロレンズ部
分の設計の自由度を広くすることができ、第2図に示す
作製方法だけでなく、第2図と第3図の作製方法を組合
せて用いても可能である。
Furthermore, instead of forming microlenses in one go,
It may be formed in several steps, and in that case, by changing the refractive index and viscosity of each layer, the degree of freedom in designing the microlens portion can be widened. Alternatively, it is also possible to use a combination of the manufacturing methods shown in FIGS. 2 and 3.

〈発明の効果〉 以上、実施例と共に具体的に説明したように、本発明に
よれば、光硬化や注入等の方法を用いて容易に形成でき
る球面状のマイクロレンズをピンホールの入射光側に設
けることにより、より多くの入射光をピンホールに集光
できるので、光の利用効率を向上できるピンホール基板
を実現することかできる。
<Effects of the Invention> As described above in detail with the embodiments, according to the present invention, a spherical microlens that can be easily formed using a method such as photocuring or injection is placed on the incident light side of a pinhole. Since more incident light can be focused on the pinhole by providing the pinhole, it is possible to realize a pinhole substrate that can improve the light utilization efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係わるピンホール基板の一実籍例を示
す構成図、第2図は本発明に係わるピンホール基板の作
製方法を示す工程図、第3図は本発明に係わるピンホー
ル基板の他の作製方法を示す図、第4図は従来のピンホ
ール基板を用いた共焦点頴微鏡の構成図である。 10・・・ピンホール基板、10a・・・基板、10b
・・・ピンホール、10c・・・マイクロレンズ、20
・・・光硬化型透明樹脂、20a・・・球面状に硬化し
た部分。 第3図 第2 図 第4図
FIG. 1 is a block diagram showing an actual example of a pinhole substrate according to the present invention, FIG. 2 is a process diagram showing a method for manufacturing a pinhole substrate according to the present invention, and FIG. 3 is a diagram showing a pinhole substrate according to the present invention. FIG. 4, which is a diagram showing another method of manufacturing a substrate, is a configuration diagram of a confocal microscope using a conventional pinhole substrate. 10... Pinhole board, 10a... Substrate, 10b
...Pinhole, 10c...Microlens, 20
. . . Photocurable transparent resin, 20a . . . A spherically hardened portion. Figure 3 Figure 2 Figure 4

Claims (2)

【特許請求の範囲】[Claims] (1)ピンホールが設けられた基板の入射光側の前記ピ
ンホールの入口に透明樹脂を球面状に硬化して形成され
たマイクロレンズを備えた構成としたことを特徴とする
ピンホール基板。
(1) A pinhole substrate comprising a microlens formed by hardening a transparent resin into a spherical shape at the entrance of the pinhole on the incident light side of the substrate provided with the pinhole.
(2)ピンホールが設けられた基板の入射光側の面に光
硬化型透明樹脂を塗布し、次いで前記基板の出射光側の
面に強い強度の光を照射して前記ピンホールから球面波
を発生させて、前記光硬化型透明樹脂を球面状に硬化さ
せ、その後球面状に硬化した部分以外の樹脂を除去する
ことにより、前記ピンホールの入口に球面状のマイクロ
レンズを形成させることを特徴とするピンホール基板の
作製方法。
(2) Apply a photocurable transparent resin to the surface of the substrate on the incident light side where the pinhole is provided, and then irradiate the surface of the substrate on the output light side with strong light to generate spherical waves from the pinhole. The photocurable transparent resin is cured into a spherical shape by generating a spherical surface, and then the resin other than the spherically hardened portion is removed to form a spherical microlens at the entrance of the pinhole. A method for producing a featured pinhole substrate.
JP32916489A 1989-12-19 1989-12-19 Pinhole substrate and manufacturing method thereof Expired - Fee Related JP2578376B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32916489A JP2578376B2 (en) 1989-12-19 1989-12-19 Pinhole substrate and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32916489A JP2578376B2 (en) 1989-12-19 1989-12-19 Pinhole substrate and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH03189601A true JPH03189601A (en) 1991-08-19
JP2578376B2 JP2578376B2 (en) 1997-02-05

Family

ID=18218360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32916489A Expired - Fee Related JP2578376B2 (en) 1989-12-19 1989-12-19 Pinhole substrate and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2578376B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0527714U (en) * 1991-09-13 1993-04-09 横河電機株式会社 Transmissive confocal optical scanner
JPH0533109U (en) * 1991-10-14 1993-04-30 横河電機株式会社 Confocal laser microscope
JPH0533111U (en) * 1991-10-14 1993-04-30 横河電機株式会社 Confocal optical scan
JPH0575719U (en) * 1992-03-23 1993-10-15 横河電機株式会社 Pinhole scanning laser microscope
EP0727684A3 (en) * 1991-10-31 1996-10-30 Yokogawa Electric Corp Confocal optical scanner
JPH11258409A (en) * 1998-03-13 1999-09-24 Kanagawa Acad Of Sci & Technol Manufacture of light condensing element

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210025937A (en) * 2019-08-28 2021-03-10 엘지전자 주식회사 Electronic device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0527714U (en) * 1991-09-13 1993-04-09 横河電機株式会社 Transmissive confocal optical scanner
JPH0533109U (en) * 1991-10-14 1993-04-30 横河電機株式会社 Confocal laser microscope
JPH0533111U (en) * 1991-10-14 1993-04-30 横河電機株式会社 Confocal optical scan
EP0727684A3 (en) * 1991-10-31 1996-10-30 Yokogawa Electric Corp Confocal optical scanner
JPH0575719U (en) * 1992-03-23 1993-10-15 横河電機株式会社 Pinhole scanning laser microscope
JPH11258409A (en) * 1998-03-13 1999-09-24 Kanagawa Acad Of Sci & Technol Manufacture of light condensing element

Also Published As

Publication number Publication date
JP2578376B2 (en) 1997-02-05

Similar Documents

Publication Publication Date Title
KR100415714B1 (en) Micro Relief Element and Manufacturing Method
KR20030003273A (en) Diffraction lens element and lighting system using the lens element
CN111856892A (en) Parallel super-resolution three-dimensional direct writing device
CN111596462B (en) Multi-orbital angular momentum light beam generator and preparation method thereof
JP2578376B2 (en) Pinhole substrate and manufacturing method thereof
JP3815652B2 (en) Two-photon micro-stereolithography method and apparatus thereof, parts formed by two-photon micro-stereolithography and movable mechanism
TW201346325A (en) Miniature microscope and manufacturing method of holographic optical element thereof
JPH07306304A (en) Optical homogenizer
JP2003340588A (en) Method for processing inside transparent material and its device
JP4362680B2 (en) Fine structure manufacturing method and manufacturing apparatus
CN108710268A (en) A kind of parallel lithography system and method based on two-photon polymerized exposure
CN112859478A (en) Off-axis focusing lens and manufacturing method thereof
Yang et al. Design and fabrication of microlens and spatial filter array by self-alignment for maskless lithography systems
DE102011017329A1 (en) Method for producing an optical waveguide in a polymer
JP6666792B2 (en) Optical image measurement device, optical image measurement method
JP4294261B2 (en) Condensing optical splitter and manufacturing method thereof
JPH09318831A (en) Direct plotting method
CN111215768A (en) Method for longitudinal processing by utilizing inverse spherical aberration correction and application
US20030091278A1 (en) Device for focusing a laser beam exiting from a glass fiber
US10962840B2 (en) Recursive photoalignment method
RU198454U1 (en) OPTICAL INTEGRAL CHIP WITH ELEMENT FOR INPUT RADIATION IN A WAVEGUIDE
JP2942825B1 (en) Method of manufacturing optical integrated circuit having out-of-plane branch mirror
RU199213U1 (en) OPTICAL INTEGRATED CHIP WITH ELEMENT FOR FOCUSING AND INPUTING RADIATION INTO OR OUT OF THE WAVEGUIDE
Heinrich et al. Locally and temporally resolved image-based determination of the refractive index distribution during additive manufacturing of polymer
JP4160682B2 (en) Microlens and microlens array

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071107

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081107

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091107

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees