JPH03187191A - Thin film el device - Google Patents

Thin film el device

Info

Publication number
JPH03187191A
JPH03187191A JP1326173A JP32617389A JPH03187191A JP H03187191 A JPH03187191 A JP H03187191A JP 1326173 A JP1326173 A JP 1326173A JP 32617389 A JP32617389 A JP 32617389A JP H03187191 A JPH03187191 A JP H03187191A
Authority
JP
Japan
Prior art keywords
thin film
emitting layer
light emitting
color
thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1326173A
Other languages
Japanese (ja)
Inventor
Koyata Takahashi
小弥太 高橋
Koji Shibuya
渋谷 孝二
Akio Kondo
近藤 昭夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP1326173A priority Critical patent/JPH03187191A/en
Publication of JPH03187191A publication Critical patent/JPH03187191A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3668Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having electrical properties
    • C03C17/3671Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having electrical properties specially adapted for use as electrodes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

PURPOSE:To obtain a multi-color thin film electroluminescence EL panel to be combined with a color filter by including a thin strontium sulfide film containing cerium, a thin strontium sulfide or zinc sulfide film containing terbium and a thin zinc sulfide film containing manganese. CONSTITUTION:A transparent electrode 2 is formed in a stripe on a glass substrate by photo etching, a first insulating layer 3 is formed on it, and then light emitting layers 4 to 6 are formed by electron beam deposition method. The light emitting layer 4 is a thin zinc sulfide film containing 0.4 atomic % of manganese, the light emitting layer 5 is a thin strontium sulfide film containing 2.0 atomic % of terbium, and the light emitting layer 6 on it is a thin strontium sulfide containing 0.1 atomic % of cerium. Thus a thin film EL device is improved in color purity in emitted colors in green and blue regions without dropping brightness. Therefore by combining a color filter with the device, a color EL panel having a good color reproduction region equal to a color CRT can be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は薄膜EL(エレクトロルミネッセンス)素子に
関し、特にマルチカラー平面デイスプレィに用いること
のできる薄膜EL素子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a thin film EL (electroluminescence) device, and particularly to a thin film EL device that can be used in a multicolor flat display.

[従来の技術] 一般に薄膜EL素子は全固体薄型でコントラストの高い
高品質の表示ができるなどの優れた特徴を持つものであ
り、基板上に第一電極を配設し、該電極上に第一絶縁層
、EL発光層、第二絶縁層および第二電極を積層した構
造を有し、第一電極と第二電極との間に電圧を印加する
ことにより発光を生じる。この薄膜EL素子のEL発光
層の材料としては硫化亜鉛にマンガンを添加したものが
知られており、この材料を用いた薄膜EL素子は黄橙色
発光を呈し、計測機器、各種情報機器などへ応用されて
いる。
[Prior Art] Thin-film EL devices generally have excellent features such as being thin, all-solid-state, and capable of high-contrast, high-quality display. It has a structure in which one insulating layer, an EL light-emitting layer, a second insulating layer, and a second electrode are laminated, and light is emitted by applying a voltage between the first electrode and the second electrode. The material for the EL emitting layer of this thin film EL device is known to be zinc sulfide with manganese added.Thin film EL devices using this material emit yellow-orange light and are used in measuring instruments, various information devices, etc. has been done.

ところで近年、より多くの情報を表示するために多色あ
るいはフルカラー表示が可能なRIII E L素子の
出現が強く望まれており、薄膜EL素子を用いて多色表
示をする方法のひとつとして、幅広いスペクトルをもっ
た発光を呈する薄膜EL素子の上にカラーフィルターを
重ねる方法が提案されている。そのため幅広い発光を呈
する薄膜EL素子の検討が行なわれている。このような
薄膜EL素子として例えば硫化ストロンチウムにセリウ
ムおよび塩素元素を添加した材料からなるR膜の上にマ
ンガンを添加した硫化亜鉛からなる薄膜を積層し、この
積層物をEL発光層として用いたものが知られている。
Incidentally, in recent years, there has been a strong desire for the emergence of RIII EL elements capable of multi-color or full-color display in order to display more information. A method has been proposed in which a color filter is placed on top of a thin film EL element that emits light with a spectrum. For this reason, thin film EL elements that exhibit a wide range of light emission are being studied. As such a thin film EL element, for example, a thin film made of zinc sulfide to which manganese is added is laminated on an R film made of a material in which cerium and chlorine elements are added to strontium sulfide, and this laminate is used as an EL light emitting layer. It has been known.

しかしながら、このような薄膜EL素子に通常のカラー
フィルターを適用して薄膜ELパネルを得た場合、得ら
れるパネルは緑色領域で黄色によった緑が、青色領域で
は白っぽいあるいは緑がかった青が得られるなど色純度
の点で問題があった。また、上記薄膜EL素子から深い
緑および深い青を得るために特殊なカラーフィルターを
用いた場合縁、青の色調は良くなるが、輝度がかなり損
なわれるという問題があった。
However, if a normal color filter is applied to such a thin film EL element to obtain a thin film EL panel, the resulting panel will have a yellowish green color in the green region and a whitish or greenish blue color in the blue region. There were problems with color purity. Further, when a special color filter is used to obtain deep green and deep blue from the thin film EL element, the blue tone is improved, but there is a problem in that the brightness is considerably impaired.

[発明が解決しようとする課題] 本発明は上記課題に鑑みてなされたものであり、カラー
フィルタを適用した多色化薄膜ELパネルを得るために
好適に用いることのできる薄膜EL素子を提供すること
にある。
[Problems to be Solved by the Invention] The present invention has been made in view of the above problems, and provides a thin film EL element that can be suitably used to obtain a multicolor thin film EL panel to which a color filter is applied. There is a particular thing.

[課題を解決するための手段] 本発明者らは上記課題を解決するために、硫化ストロン
チウム薄膜と硫化亜鉛薄膜を含んでなるEL発光層およ
び上記EL発光層中に発光中心として添加する元素につ
いて鋭意検討を行った結果本発明を完成するに至った。
[Means for Solving the Problems] In order to solve the above problems, the present inventors have developed an EL light-emitting layer comprising a strontium sulfide thin film and a zinc sulfide thin film, and an element added as a luminescence center in the EL light-emitting layer. As a result of extensive research, we have completed the present invention.

すなわち本発明は、セリウムを含有する硫化ストロンチ
ウム薄膜、テルビウムを含有する硫化ストロンチウム薄
膜また硫化亜鉛薄膜及びマンガンを含有する硫化亜鉛薄
膜を含んでなるEL発光層を備えることを特徴とする薄
膜EL素子である。
That is, the present invention provides a thin film EL device comprising an EL light emitting layer comprising a strontium sulfide thin film containing cerium, a strontium sulfide thin film containing terbium, or a zinc sulfide thin film and a manganese containing zinc sulfide thin film. be.

本発明の薄膜EL素子はEL発光層が上記硫化ストロン
チウム薄膜及び硫化亜鉛薄膜を含むものであればよく、
これら薄膜の上下位置については限定されない。更に上
記薄膜は各々複数層含むものであってもよい。このうち
、薄膜形成過程の観点からEL発光層の最上層および最
下層を硫化亜鉛薄膜とすることによりEL発光層のリソ
グラフィー耐性が向上するので好ましい。本発明の薄膜
EL素子は上記の薄膜をEL発光層中に含むことにより
スペクトルの幅が広い発光を呈し、発光色に偏りのない
発光を呈するものとなる。したがって、この薄膜EL素
子とカラーフィルタを重ねることにより得られる薄膜E
Lパネルは色純度の点で問題のないものとなる。
The thin film EL device of the present invention may have an EL light emitting layer containing the above-mentioned strontium sulfide thin film and zinc sulfide thin film,
The vertical positions of these thin films are not limited. Furthermore, each of the above thin films may include a plurality of layers. Among these, from the viewpoint of the thin film formation process, it is preferable to use a zinc sulfide thin film as the uppermost layer and the lowermost layer of the EL luminescent layer, since this improves the lithography resistance of the EL luminescent layer. The thin film EL device of the present invention includes the above-mentioned thin film in the EL light emitting layer, so that it emits light with a wide spectrum and has no bias in emitted color. Therefore, the thin film E obtained by overlapping this thin film EL element and color filter
The L panel has no problem in terms of color purity.

なお、本発明の薄膜EL素子のEL発光層中に含まれる
セリウムは硫化ストロンチウム薄膜に対して0.03〜
0.25原子%、テルビウムは硫化ストロンチウム薄膜
または硫化亜鉛薄膜に対して0.2〜3.0原子%、マ
ンガンは硫化亜鉛薄膜に対して0.1〜1.0原子%と
することが好ましく、上記範囲の含有量とすることによ
り高輝度の発光を呈する薄膜EL素子が得られる。
Note that the cerium contained in the EL light emitting layer of the thin film EL device of the present invention is 0.03 to
It is preferable that the amount of terbium be 0.25 at%, 0.2 to 3.0 at% of terbium to the strontium sulfide thin film or the zinc sulfide thin film, and 0.1 to 1.0 at% of manganese to the zinc sulfide thin film. By setting the content within the above range, a thin film EL element that emits light with high brightness can be obtained.

また、本発明の薄膜EL素子における発光層の厚みは特
に限定されないが、薄膜EL素子の駆動電圧、明るさな
どを考慮して0.5〜3.0gmとすることが好ましい
Further, the thickness of the light emitting layer in the thin film EL device of the present invention is not particularly limited, but it is preferably 0.5 to 3.0 gm in consideration of the drive voltage, brightness, etc. of the thin film EL device.

本発明の薄膜EL素子の発光層は例えばスパッタリング
法、蒸着法、CVD法、ALE法など種々の薄膜形成技
術により形成することができる。
The light emitting layer of the thin film EL device of the present invention can be formed by various thin film forming techniques such as sputtering, vapor deposition, CVD, and ALE.

更に本発明の薄膜EL素子のEL発光層において、含ま
れる硫化ストロンチウム薄膜の結晶方位が[1001に
配向し、硫化亜鉛薄膜の結晶方位が閃亜鉛鉱型構造の[
1111及び/またはウルツ鉱型構造の[0011に”
配向している場合、より安定した色調、高輝度の発光を
呈する。上記結晶方位が配向した硫化ストロンチウム薄
膜、硫化亜鉛薄膜は薄膜形成条件を適宜調整することに
より得ることができる。例えば電子ビーム蒸着法により
薄膜を形成する場合、硫化亜鉛薄膜は基板温度を200
〜250℃として形成することにより上記のように配向
し易くなり、硫化ストロンチウム薄膜は基板温度を30
0〜700℃とし、蒸着源として希土類元素が硫化物の
形で含有する硫化ストロンチウムを用いて形成すること
により結晶の配向性の制御が容易となる。
Furthermore, in the EL light-emitting layer of the thin film EL device of the present invention, the crystal orientation of the strontium sulfide thin film contained therein is oriented in [1001, and the crystal orientation of the zinc sulfide thin film is oriented in [1001], which has a zinc blende structure.
1111 and/or wurtzite structure [0011”
When it is oriented, it exhibits more stable color tone and high-intensity light emission. The strontium sulfide thin film and zinc sulfide thin film with the above-mentioned crystal orientation can be obtained by appropriately adjusting the thin film forming conditions. For example, when forming a thin film by electron beam evaporation, the zinc sulfide thin film has a substrate temperature of 200°C.
By forming the strontium sulfide thin film at a temperature of ~250°C, it becomes easier to align as described above.
By setting the temperature to 0 to 700° C. and using strontium sulfide containing a rare earth element in the form of sulfide as a vapor deposition source, the crystal orientation can be easily controlled.

[実施例] 以下、本発明を実施例により示すが、本発明はこれらに
限定されるものではない。
[Examples] Hereinafter, the present invention will be illustrated by Examples, but the present invention is not limited thereto.

実施例1.2 比較例1 第1図に示す構造の薄膜EL素子を製造した。Example 1.2 Comparative example 1 A thin film EL device having the structure shown in FIG. 1 was manufactured.

はじめにガラス基板1の上に、フォトエツチングにより
ストライプ状に透明電極2を形威し、この上に第一絶縁
層3を形成した。第一絶縁層3は酸化ケイ素を0,03
js、窒化ケイ素を0.17jm、RFスパッタリング
法により積層して形成した。
First, a transparent electrode 2 was formed in stripes on a glass substrate 1 by photo-etching, and a first insulating layer 3 was formed thereon. The first insulating layer 3 contains 0.03 silicon oxide
js, silicon nitride was deposited to a thickness of 0.17jm by RF sputtering.

次に発光層4.5及び6を電子ビーム蒸着法により形成
した。発光層4はマンガンを0.4原子%含む硫化亜鉛
薄膜であり、その厚みは約0.6μmとし、発光層5は
テルビウムを2.0原子%含有する硫化ストロンチウム
薄膜であり、その厚みは約0.4μmとし、更にその上
の発光層6はセリウムを0.1原子%含む硫化ストロン
チウム薄膜であり、その厚みは約1.0μmとした。ま
た、発光層4の蒸着は基板温度を230℃と一定にし、
発光層5.6の蒸着は、基板温度を600℃と一定にし
て、到達真空度を3 X 10−6Torr以下とし、
蒸着中は硫化水素を3 X 10−5Torrまで導入
して雰囲気の制御を行ない、堆積速度は5人/秒として
行なった。更に発光層5.6を蒸着する際に、テルビウ
ム硫化物またはセリウム硫化物を硫化ストロンチウムに
混合して得られたペレットを蒸着源として用いた。
Next, light emitting layers 4.5 and 6 were formed by electron beam evaporation. The light-emitting layer 4 is a zinc sulfide thin film containing 0.4 at% manganese and has a thickness of approximately 0.6 μm, and the light-emitting layer 5 is a strontium sulfide thin film containing 2.0 at% terbium and has a thickness of approximately 0.6 μm. Further, the light emitting layer 6 thereon was a strontium sulfide thin film containing 0.1 atomic % of cerium, and its thickness was about 1.0 μm. In addition, when depositing the light emitting layer 4, the substrate temperature was kept constant at 230°C.
The light-emitting layer 5.6 was deposited at a constant substrate temperature of 600°C and an ultimate vacuum of 3 x 10-6 Torr or less.
During the deposition, the atmosphere was controlled by introducing hydrogen sulfide to 3.times.10@-5 Torr, and the deposition rate was 5 people/second. Further, when depositing the light emitting layer 5.6, pellets obtained by mixing terbium sulfide or cerium sulfide with strontium sulfide were used as a deposition source.

次に、発光層6の上にRFスパッタリング法により第二
絶縁層7を形成した。第二絶縁層7は厚み0.15jm
の窒化ケイ素および厚み0.051mの酸化アルミニウ
ムを積層して形成した。更にこの第二絶縁層7上に背面
電極8として金属アルミニウムを0.11mの厚みで透
明電極2と直交するように形成した。
Next, a second insulating layer 7 was formed on the light emitting layer 6 by RF sputtering. The second insulating layer 7 has a thickness of 0.15jm
was formed by laminating silicon nitride of 0.051 m in thickness and aluminum oxide of 0.051 m in thickness. Furthermore, metal aluminum was formed as a back electrode 8 on this second insulating layer 7 with a thickness of 0.11 m so as to be perpendicular to the transparent electrode 2.

以上の方法により作製した薄膜EL素子には湿気防止対
策として背面ガラスを取り付け、背面ガラスと薄膜EL
素子との間の空間部分にシリカゲルを含んだシリコンオ
イルを注入した後、注入口の封止を行ない、これを用い
て発光特性の測定を行なった。なお、特性測定は透明電
極2と背面電極8との間に周波数50Hz、パルス幅3
0μ秒の交流パルスを印加させて行なった。
A back glass was attached to the thin film EL device manufactured by the above method as a moisture prevention measure, and the back glass and thin film EL
After silicone oil containing silica gel was injected into the space between the device and the device, the injection port was sealed, and the light emitting characteristics were measured using this. In addition, the characteristic measurement was performed using a frequency of 50 Hz and a pulse width of 3 between the transparent electrode 2 and the back electrode 8.
This was performed by applying an alternating current pulse of 0 microseconds.

また、実施例2として発光層5.が厚み約0.41のテ
ルビウムを2.0原子%含有した硫化亜鉛薄膜を用いた
以外は上記薄膜EL素子(実施例1)と同様の構造の薄
膜EL素子を作製し、特性測定を行なった。更に比較例
1として発光層5を形威しなかった以外は実施例1と同
様の構造の薄膜EL素子を作製し、特性測定を行なった
。なお実施例2において、発光層5は基板温度を230
℃と一定にして電子ビーム蒸着法により形成した。
Further, as Example 2, the light emitting layer 5. A thin film EL device having the same structure as the above thin film EL device (Example 1) was fabricated, except that a zinc sulfide thin film containing 2.0 at% of terbium and having a thickness of about 0.41 was used, and its characteristics were measured. . Further, as Comparative Example 1, a thin film EL device having the same structure as Example 1 except that the light emitting layer 5 was not formed was fabricated, and its characteristics were measured. In Example 2, the light emitting layer 5 has a substrate temperature of 230°C.
It was formed by electron beam evaporation at a constant temperature of .degree.

m2図に実施例1、実施例2、比較例1により得られた
薄膜EL素子の発光スペクトルを示す。
Fig. m2 shows the emission spectra of the thin film EL devices obtained in Example 1, Example 2, and Comparative Example 1.

第2図より実施例1の薄膜EL素子の発光スペクトルは
450〜550 naのセリウムを含有した硫化ストロ
ンチウム薄膜に由来する発光、550〜640nsのマ
ンガンを含有した硫化亜鉛薄膜に由来する発光及び54
5n−付近のピークを最大強度とした400〜600 
rvにわたる幾つかのピークの発光が認められた。また
実施例2の薄膜EL素子の発光スペクトルはテルビウム
を含有した硫化亜鉛薄膜に由来した543.488nw
なとのピークと前記のセリウムを含有した硫化ストロン
チウム薄膜に由来する発光およびマンガンを含有した硫
化亜鉛薄膜に由来する発光スペクトルが重なり合わされ
たものが認められた。以上の発光スペクトルにより、本
発明の薄膜EL素子は結果的に比較例1の薄膜EL素子
と比較すると幅広いスペクトルの発光を呈することがわ
かる。
From FIG. 2, the emission spectra of the thin film EL device of Example 1 are as follows: 450 to 550 nA of light emission originating from the strontium sulfide thin film containing cerium, 550 to 640 ns of light emission originating from the manganese containing zinc sulfide thin film, and 54 to 540 nA of light emission originating from the zinc sulfide thin film containing manganese.
400 to 600 with maximum intensity of peak near 5n-
Several peaks of emission across the rv were observed. Furthermore, the emission spectrum of the thin film EL device of Example 2 was 543.488nw derived from the zinc sulfide thin film containing terbium.
It was observed that the peak of 100% and the luminescence spectrum derived from the strontium sulfide thin film containing cerium and the luminescence spectrum originating from the zinc sulfide thin film containing manganese were superimposed. From the above emission spectra, it can be seen that the thin film EL device of the present invention emits light with a wider spectrum than the thin film EL device of Comparative Example 1.

次に、第3図に示す透過特性を持つカラーフィルターを
用いて実施例1.2及び比較例1の薄膜ELg子の赤、
緑、青の発光を分離した。この薄膜EL素子を230v
で駆動したときの赤、緑、青の色度座標を第4図に、輝
度を表1に示す。また、参考のために第4図中にCRT
の色度座標を併わせて示した。第4図および表1より、
本発明の薄膜EL素子は輝度レベルをほとんど損なうこ
となく、緑、青の色度座標が向上し、CRTの色度座標
に近づくことが確認された。
Next, using a color filter having the transmission characteristics shown in FIG.
Green and blue luminescence were separated. This thin film EL element
The chromaticity coordinates of red, green, and blue are shown in FIG. 4, and the brightness is shown in Table 1. Also, for reference, the CRT is shown in Figure 4.
The chromaticity coordinates of are also shown. From Figure 4 and Table 1,
It was confirmed that the thin film EL element of the present invention has improved green and blue chromaticity coordinates, approaching those of a CRT, with almost no loss in brightness level.

表1 実施例3 実施例1と同様の方法で、第1図に示すEL素子を作製
した。ただし発光層4.5及び6を蒸着する場合の硫化
水素圧力、蒸着速度を制御して得られる薄膜の結晶方位
の配向性を制御した。
Table 1 Example 3 The EL device shown in FIG. 1 was produced in the same manner as in Example 1. However, when the light-emitting layers 4.5 and 6 were deposited, the hydrogen sulfide pressure and deposition rate were controlled to control the crystal orientation of the resulting thin films.

第5図に得られたマンガンを含有する硫化亜鉛薄膜(発
光層4)のX線回折パターンを示すが、これによりこの
薄膜は閃亜鉛鉱型構造の[111]に配向していること
が確認された。また第6図にセリウムを含有する硫化ス
トロンチウムIN (発光層6)のX線回折パターンを
示すが、このうちピークはそれぞれ岩塩型結晶構造の硫
化ストロンチウムにおける(111)、(200)、(
220)と同定された。なお、テルビウムを含有する硫
化ストロンチウム薄膜(発光層5)においても第6図と
同様のX線回折パターンが得られた。
Figure 5 shows the X-ray diffraction pattern of the obtained manganese-containing zinc sulfide thin film (light-emitting layer 4), which confirms that this thin film has a [111] orientation with a zincblende structure. It was done. Figure 6 shows the X-ray diffraction pattern of strontium sulfide IN (light-emitting layer 6) containing cerium, of which the peaks are (111), (200), and (200) for strontium sulfide with a rock salt crystal structure, respectively.
220). Note that an X-ray diffraction pattern similar to that shown in FIG. 6 was also obtained for the strontium sulfide thin film (light-emitting layer 5) containing terbium.

第7頭に硫化ストロンチウム薄膜の[100F方向の配
向性に関連する(200)ピーク強度と(111)ピー
ク強度の比を横軸にとり、フィルター透過後のRGBの
発光開始電圧を縦軸にとりプロットしたグラフを、第8
図に縦軸として48Vでの輝度をとりプロットしたグラ
フを示す。第7図及び第8図より硫化ストロンチウム薄
膜の[100F方向の配向性が強くなるにしたがってR
GBの発光開始電圧が一致するために色調の制御性が良
くなり、輝度についても高くなるという結果が得られた
In the seventh head, the horizontal axis is the ratio of the (200) peak intensity to the (111) peak intensity, which is related to the orientation of the strontium sulfide thin film in the [100F direction, and the vertical axis is the RGB emission starting voltage after passing through the filter. graph, 8th
The figure shows a graph plotting the luminance at 48V as the vertical axis. From FIGS. 7 and 8, as the orientation of the strontium sulfide thin film in the [100F direction becomes stronger, R
Since the emission start voltages of GB were the same, the controllability of color tone was improved and the brightness was also increased.

[発明の効果コ 以上述べたように、本発明の薄膜EL素子は緑、青領域
の発光の色純度について、輝度を落とすことなく改善さ
れる。従って本発明の薄111EL素子とカラーフィル
ターを組み合わせることにより、カラーCRTに匹敵す
る良好な色再現領域を持ったカラーELパネルが得られ
る。また、本発明の薄膜EL素子における発光層を構成
する硫化亜鉛薄膜と硫化ストロンチウム薄膜の結晶方位
を特定することにより、RGBの発光開始電圧が一致す
るために階調表示が可能となる。
[Effects of the Invention] As described above, the thin film EL device of the present invention improves the color purity of emitted light in the green and blue regions without reducing brightness. Therefore, by combining the thin 111 EL element of the present invention and a color filter, a color EL panel with a good color reproduction range comparable to that of a color CRT can be obtained. Furthermore, by specifying the crystal orientations of the zinc sulfide thin film and the strontium sulfide thin film that constitute the light emitting layer in the thin film EL element of the present invention, the RGB light emission start voltages match, making it possible to display gradations.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の薄膜EL素子の構造の一実施例を示す
断面図である。 第2図は本発明の実施例1.2及び比較例1の薄膜EL
素子の発光スペクトルを示す図である。 第3図は本発明の実施例において用いたカラーフィルタ
ーの透過特性である。 第4図は本発明の実施例1.2及び比較例1の薄膜EL
素子の発光の色度座標を示す図である。 第5図は本発明の実施例3において得られた薄膜EL素
子の発光層に含まれる硫化亜鉛薄膜のX線回折パターン
を示す図である。 第6図は本発明の実施例3において得られた薄膜EL素
子の発光層に含まれる硫化ストロンチウム薄膜のX線回
折パターンを示す図である。 第7図は本発明の実施例3において得られた薄膜EL素
子のEL発光層中の硫化ストロンチウム薄膜の[100
1配向性とRGB発光の発光開始電圧との関係を示す図
である。 第8図は本発明の実施例3において得られた薄膜EL素
子のEL発光層中の硫化ストロンチウム薄膜の[100
1配向性と発光開始電圧から48v上での輝度との関係
を示す図である。
FIG. 1 is a sectional view showing one embodiment of the structure of a thin film EL device of the present invention. Figure 2 shows the thin film EL of Example 1.2 of the present invention and Comparative Example 1.
FIG. 3 is a diagram showing the emission spectrum of the device. FIG. 3 shows the transmission characteristics of the color filter used in the example of the present invention. Figure 4 shows the thin film EL of Example 1.2 of the present invention and Comparative Example 1.
FIG. 3 is a diagram showing chromaticity coordinates of light emission of an element. FIG. 5 is a diagram showing an X-ray diffraction pattern of a zinc sulfide thin film included in the light emitting layer of the thin film EL device obtained in Example 3 of the present invention. FIG. 6 is a diagram showing an X-ray diffraction pattern of a strontium sulfide thin film contained in the light emitting layer of the thin film EL device obtained in Example 3 of the present invention. FIG. 7 shows the [100
1 is a diagram showing the relationship between the 1 orientation and the emission start voltage of RGB light emission. FIG. 8 shows the [100
1 is a diagram showing the relationship between the 1 orientation and the luminance at 48 V from the emission start voltage.

Claims (4)

【特許請求の範囲】[Claims] (1)セリウムを含有する硫化ストロンチウム薄膜、テ
ルビウムを含有する硫化ストロンチウム薄膜または硫化
亜鉛薄膜及びマンガンを含有する硫化亜鉛薄膜を含んで
なるEL発光層を備えることを特徴とする薄膜EL素子
(1) A thin film EL device comprising an EL light emitting layer comprising a strontium sulfide thin film containing cerium, a strontium sulfide thin film containing terbium or a zinc sulfide thin film, and a zinc sulfide thin film containing manganese.
(2)セリウムの含有量が硫化ストロンチウム薄膜に対
して0.03〜0.25原子%、テルビウムの含有量が
硫化ストロンチウム薄膜または硫化亜鉛薄膜に対して0
.2〜3.0原子%、マンガンの含有量が硫化亜鉛薄膜
に対して0.1〜1.0原子%であることを特徴とする
請求項第1項に記載の薄膜EL素子。
(2) The content of cerium is 0.03 to 0.25 at% relative to the strontium sulfide thin film, and the terbium content is 0 relative to the strontium sulfide thin film or zinc sulfide thin film.
.. 2. The thin film EL device according to claim 1, wherein the content of manganese is 0.1 to 1.0 atom % based on the zinc sulfide thin film.
(3)硫化ストロンチウム薄膜の結晶方位が[100]
に配向し、硫化亜鉛薄膜の結晶方位が閃亜鉛鉱型構造の
[111]及び/またはウルツ鉱型構造の[001]に
配向していることを特徴とする請求項第1項に記載の薄
膜EL素子。
(3) The crystal orientation of the strontium sulfide thin film is [100]
2. The thin film according to claim 1, wherein the zinc sulfide thin film has a crystal orientation of [111] of a zinc blende structure and/or [001] of a wurtzite structure. EL element.
(4)EL発光層の最上層および最下層を硫化亜鉛薄膜
とすることを特徴とする請求項第1項に記載の薄膜EL
素子。
(4) The thin film EL according to claim 1, wherein the uppermost layer and the lowermost layer of the EL light emitting layer are zinc sulfide thin films.
element.
JP1326173A 1989-12-18 1989-12-18 Thin film el device Pending JPH03187191A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1326173A JPH03187191A (en) 1989-12-18 1989-12-18 Thin film el device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1326173A JPH03187191A (en) 1989-12-18 1989-12-18 Thin film el device

Publications (1)

Publication Number Publication Date
JPH03187191A true JPH03187191A (en) 1991-08-15

Family

ID=18184859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1326173A Pending JPH03187191A (en) 1989-12-18 1989-12-18 Thin film el device

Country Status (1)

Country Link
JP (1) JPH03187191A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5543237A (en) * 1992-09-14 1996-08-06 Fuji Xerox Co., Ltd. Inorganic thin film electroluminescent device having an emission layer
US5648181A (en) * 1992-09-14 1997-07-15 Fuji Xerox Co., Ltd. Inorganic thin film electroluminescent device having a light emission layer
US5667607A (en) * 1994-08-02 1997-09-16 Nippondenso Co., Ltd. Process for fabricating electroluminescent device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5543237A (en) * 1992-09-14 1996-08-06 Fuji Xerox Co., Ltd. Inorganic thin film electroluminescent device having an emission layer
US5648181A (en) * 1992-09-14 1997-07-15 Fuji Xerox Co., Ltd. Inorganic thin film electroluminescent device having a light emission layer
US5667607A (en) * 1994-08-02 1997-09-16 Nippondenso Co., Ltd. Process for fabricating electroluminescent device

Similar Documents

Publication Publication Date Title
US4945009A (en) Electroluminescence device
JP2840185B2 (en) Phosphor thin film and thin film EL panel using the same
US5939825A (en) Alternating current thin film electroluminescent device having blue light emitting alkaline earth phosphor
US6072198A (en) Electroluminescent alkaline-earth sulfide phosphor thin films with multiple coactivator dopants
JPH03187191A (en) Thin film el device
US4987339A (en) Enhanced single layer multi-color luminescent display with coactivators
JPH03194895A (en) Multicolor el display
JP3442918B2 (en) Thin-film electroluminescence panel
JPH03187190A (en) Thin film el device and manufacture thereof
JP3987263B2 (en) Aluminate blue light-emitting phosphor material and blue light-emitting thin-film electroluminescent device formed using the same
JPH0521278Y2 (en)
JPH08162273A (en) Thin film el element
JPS63299092A (en) Thin film electroluminescent panel
JPH1092580A (en) Thin film electroluminescent element and manufacture thereof
JPH0883685A (en) White el element
JP2753723B2 (en) Red EL element
KR950013666B1 (en) Thin el display element and manufacture method thereof
JP2828019B2 (en) ELECTROLUMINESCENT ELEMENT AND ITS MANUFACTURING METHOD
JPH0494094A (en) Film el devices
JPH01241793A (en) Thin film el element
JPS63274090A (en) Thin film el element
JPH03167783A (en) Thin film el element and its manufacture
JPH01146288A (en) Multicolor thin film electroluminescent element
JPS6380498A (en) Thin film el device
JPH0869881A (en) Manufacture of thin film el element