JPH03186631A - Dynamic damper - Google Patents

Dynamic damper

Info

Publication number
JPH03186631A
JPH03186631A JP32408489A JP32408489A JPH03186631A JP H03186631 A JPH03186631 A JP H03186631A JP 32408489 A JP32408489 A JP 32408489A JP 32408489 A JP32408489 A JP 32408489A JP H03186631 A JPH03186631 A JP H03186631A
Authority
JP
Japan
Prior art keywords
elastic member
dynamic damper
load voltage
cavity
viscosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32408489A
Other languages
Japanese (ja)
Inventor
Minoru Kitani
木谷 稔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP32408489A priority Critical patent/JPH03186631A/en
Publication of JPH03186631A publication Critical patent/JPH03186631A/en
Pending legal-status Critical Current

Links

Landscapes

  • Vibration Prevention Devices (AREA)

Abstract

PURPOSE:To obtain a dynamic damper effect extending over the whole range of engine rotating speed, by filling a cavity provided in an elastic member with an electric rheology liquid, the viscosity of which changes according to the load voltage and thereby varying a spring constant of an elastic member. CONSTITUTION:A cavity 4 is provided in an elastic member 2, the cavity is filled up with an electric rheology fluid 7, the viscosity of which changes according to the load voltage, and voltage depending on the engine rotating speed is applied to an electrode 6. When the load voltage increase, the viscosity of the electric rheology fluid 7 is enlarged to increase a spring constant of the elastic member 2, so that the resonance frequency of a dynamic damper formed by a mass body 3 and the elastic member 2 is hightened. On the contrary, when the load voltage decreases, the reverse operation is caused. Thus, a dynamic damper effect can be obtained extending over the whole range of the engine rotating speed by applying the load voltage which changes in synchronization with the rotating speed of an engine to the electrodes 6, 6.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、例えばエンジンの回転に応じて生じる振動に
対して、回転数の全域にわたってその振動を抑制するた
めのダイナミックダンパに関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a dynamic damper for suppressing vibrations generated in accordance with, for example, the rotation of an engine over the entire range of rotational speed.

(従来の技術) 第11図は従来のダイナミックダンパの一例を示す部分
図で、第12図はそれを振動モデル化した説明図である
(Prior Art) FIG. 11 is a partial diagram showing an example of a conventional dynamic damper, and FIG. 12 is an explanatory diagram showing a vibration model of the dynamic damper.

図中1は被制振体、2はゴム等の弾性部材、3はこの弾
性部材2を介して被制振体1に連結された所定の質量を
有する質量体である。
In the figure, reference numeral 1 denotes a vibration damped body, 2 an elastic member such as rubber, and 3 a mass body having a predetermined mass that is connected to the vibration damped body 1 via the elastic member 2.

また第12図において、Kは弾性部材2のばね要素のば
ね定数、Cは弾性部材2の減衰要素、Mは質量体3の質
量である。
Further, in FIG. 12, K is the spring constant of the spring element of the elastic member 2, C is the damping element of the elastic member 2, and M is the mass of the mass body 3.

(発明が解決しようとする課M) 従来のダイナミックダンパは、第11図および第12図
に示すように、質量Mの質量体3と、ばね定数におよび
減衰要素Cを有する弾性部材2とによって横取されてい
る。
(Problem M to be Solved by the Invention) As shown in FIGS. 11 and 12, a conventional dynamic damper includes a mass body 3 having a mass M and an elastic member 2 having a spring constant and a damping element C. It has been stolen.

第13図は、横座標に第11.12図に示したダイナミ
ックダンパの周波数をとり、縦座標に質量体3の変位を
とった場合の特性を示すもので、曲線Aは減衰要素Cが
小さいときのものであり、曲線Bは減衰要素Cが大きい
ときのものである。
Figure 13 shows the characteristics when the frequency of the dynamic damper shown in Figure 11.12 is plotted on the abscissa and the displacement of the mass body 3 is plotted on the ordinate.Curve A shows the small damping element C. The curve B is the one when the damping element C is large.

これから従来のダイナミックダンパでは、減衰要素Cを
変えても、質量体の変位のピーク時の高さは変化するが
、そのピーク時の共振周波数はほとんど変わらないこと
がわかる。
It can be seen from this that in the conventional dynamic damper, even if the damping element C is changed, the height at the peak of the displacement of the mass changes, but the resonance frequency at the peak does not change much.

従来のダイナミックダンパでは、質量体3の質量M、お
よび弾性部材2のばね定数Kを可変にすることが困難で
あるから、ダイナミックダンパのチューニング周波数が
一つに限られる結果、エンジンの回転数に応じて生じる
振動に対しては、回転数の全域にわたってダイナミック
ダンパ効果を得るのが難しいという問題点があった。
In conventional dynamic dampers, it is difficult to vary the mass M of the mass body 3 and the spring constant K of the elastic member 2, so the tuning frequency of the dynamic damper is limited to one. There has been a problem in that it is difficult to obtain a dynamic damper effect over the entire range of rotational speeds with respect to the vibrations that occur accordingly.

(課題を解決するための手段) 上述の問題点を解決するため本発明においては、被制振
体に弾性部材を介して所定の質量体を設けたダイナミッ
クダンパにおいて、前記弾性部材内に空洞を設け、その
空洞内に負荷電圧に応じて粘度が変化する電気レオロジ
ー流体を充填し、その流体に電圧を印加できる電極を設
け、この電極に加振周波数に応じて変化する電圧を印加
するようにしてダイナミックダンパを構成する。
(Means for Solving the Problems) In order to solve the above-mentioned problems, the present invention provides a dynamic damper in which a predetermined mass body is provided on a damped body via an elastic member, in which a cavity is formed in the elastic member. The cavity is filled with an electrorheological fluid whose viscosity changes depending on the load voltage, and an electrode capable of applying a voltage to the fluid is provided, and a voltage that changes depending on the excitation frequency is applied to the electrode. to configure a dynamic damper.

(作 用) 上述のように本発明においては、弾性部材内に空洞を設
け、その空洞内に負荷電圧に応じて粘度が変化する電気
レオロジー流体を充填し、その流体に電圧を印加できる
電極を設け、この電極に加振周波数に応じて変化する電
圧を印加するようにしたから、前記電気レオロジー流体
の粘度が加振周波数に応じて変化することにより、前記
弾性部材の変形のしやすさが変化して、そのばね定数が
変化する結果、共振周波数が連続的に変化するから、加
振周波数の全域にわたってダイナミックダンパ効果を得
ることができる。
(Function) As described above, in the present invention, a cavity is provided in the elastic member, an electrorheological fluid whose viscosity changes depending on the applied voltage is filled in the cavity, and an electrode capable of applying a voltage to the fluid is provided. Since the viscosity of the electrorheological fluid changes depending on the excitation frequency, the ease with which the elastic member deforms is reduced. As a result of the change in the spring constant, the resonant frequency changes continuously, so a dynamic damper effect can be obtained over the entire range of excitation frequencies.

(実施例) 以下、第1図〜第10図について本発明の詳細な説明す
る0図中前記符合と同一の符合は同等のものを示す。す
なわち、図中1は被制振体、2はゴム等の弾性部材、3
はこの弾性部材2を介して被制振体lに連結された所定
の質量を有するX1体である。
(Example) Hereinafter, the present invention will be described in detail with reference to FIGS. 1 to 10. In FIG. That is, in the figure, 1 is a damped body, 2 is an elastic member such as rubber, and 3 is a damped member.
is an X1 body having a predetermined mass and connected to the damped body l via the elastic member 2.

本実施例においては、弾性部材2内に空洞4を設けると
共に、この弾性部材2を第1,2図において上下に二分
割する。
In this embodiment, a cavity 4 is provided in the elastic member 2, and the elastic member 2 is divided into upper and lower halves in FIGS. 1 and 2.

また第3図および第4図に示すように、電気絶縁物製の
リングを二分割して、それぞれ半円弧状のインタリング
5.5を形威し、この各インクリング5に電極保持用の
孔5aを設け、この穴5aを介して電極6を保持したイ
ンタリング5,5を、前記した弾性部材2の分割面間に
介挿すると共に、空洞4内に負荷電圧に応じて粘度が変
化する電気レオロジー流体7を充填し、前記電極6にエ
ンジン回転数に応じて変化する電圧を印加するようにす
る。
Further, as shown in Figs. 3 and 4, the ring made of electrical insulator is divided into two parts, each forming a semicircular arc-shaped interring 5.5, and each ink ring 5 has an electrode holding ring. A hole 5a is provided, and the interrings 5, 5 holding the electrode 6 through the hole 5a are inserted between the split surfaces of the elastic member 2, and the viscosity changes depending on the load voltage inside the cavity 4. The electrode 6 is filled with an electrorheological fluid 7, and a voltage that changes depending on the engine speed is applied to the electrode 6.

すなわち第1図中の8は、電極6,6に接続した電圧発
生装置で、9はその電圧発生装置8と接続したコントロ
ーラ、IOはそのコントローラ9と接続したエンジン回
転数検出装置である。
That is, 8 in FIG. 1 is a voltage generating device connected to the electrodes 6, 6, 9 is a controller connected to the voltage generating device 8, and IO is an engine rotation speed detecting device connected to the controller 9.

第5図は、電気レオロジー流体7の粘度と、負荷電圧と
の関係を示す特性図である。すなわち、負荷電圧が大き
くなると、電気レオロジー流体7の粘度が大きくなるこ
とがわかる。そしてこの場合は、弾性部材2内の空洞4
がつぶれにくくなり、ばね定数も大きくなる。したがっ
てこの場合は、質量体3と弾性部材2で構成されるダイ
ナミックダンパの共振周波数が高くなる。
FIG. 5 is a characteristic diagram showing the relationship between the viscosity of the electrorheological fluid 7 and the load voltage. That is, it can be seen that as the load voltage increases, the viscosity of the electrorheological fluid 7 increases. In this case, the cavity 4 in the elastic member 2
is less likely to collapse, and the spring constant is also increased. Therefore, in this case, the resonance frequency of the dynamic damper composed of the mass body 3 and the elastic member 2 becomes high.

また負荷電圧が小さくなって電気レオロジー流体7の粘
度が小さくなると、弾性部材2内の空洞4がつぶれやす
くなって、ばね定数も小さくなる。
Furthermore, when the load voltage decreases and the viscosity of the electrorheological fluid 7 decreases, the cavity 4 within the elastic member 2 becomes more likely to collapse, and the spring constant also decreases.

したがってこの場合は共振周波数が低くなる。Therefore, in this case, the resonant frequency becomes low.

そして第5図に示したように、電気レオロジー流体は、
負荷電圧に対する粘度の変化が連続的に行われるので、
弾性部材2のばね定数も第6図に示すように、負荷電圧
に対して連続的に変化する。
As shown in Figure 5, the electrorheological fluid is
Since the viscosity changes continuously with respect to the load voltage,
The spring constant of the elastic member 2 also changes continuously with respect to the load voltage, as shown in FIG.

したがってダイナミックダンパの共振周波数も、第7図
に示すように、負荷電圧に対して連続的に変化する。
Therefore, the resonant frequency of the dynamic damper also changes continuously with respect to the load voltage, as shown in FIG.

すなわち本発明によれば、エンジンの回転数に応じて生
じる振動問題に対して、回転数に同期して変化する負荷
電圧を電極6.6にかけることにより、回転数の全域に
わたってダイナミックダンパ効果を得ることができる。
That is, according to the present invention, in order to solve the vibration problem that occurs depending on the engine speed, a dynamic damper effect can be achieved over the entire engine speed range by applying a load voltage that changes in synchronization with the engine speed to the electrode 6.6. Obtainable.

なお、本実施例において使用したインクリング5は、電
極6を確実に保持すると共に、弾性部材2を保護する作
用を有している。
Note that the ink ring 5 used in this example has the function of reliably holding the electrode 6 and protecting the elastic member 2.

また第8図は、電極6を図示しない状態の本発明ダイナ
ミックダンパの説明図であり、第9図はそれを振動モデ
ル化した説明図である。図中Mは質量体3の質量、K1
は■部のばね定数、K2はI。
Further, FIG. 8 is an explanatory diagram of the dynamic damper of the present invention in a state in which the electrodes 6 are not shown, and FIG. 9 is an explanatory diagram of the dynamic damper as a vibration model. In the figure, M is the mass of mass body 3, K1
is the spring constant of part ■, and K2 is I.

■部のばね定数、C1は■部の可変の減衰要素、C2は
I、II部の減衰要素である。
C1 is the spring constant of part 2, C1 is a variable damping element of part 2, and C2 is a damping element of parts I and II.

すなわち本発明のダイナミックダンパは、■。That is, the dynamic damper of the present invention has ■.

■部と■部が直列になっている振動系で表現できる。そ
してC,=Oのときは、ばね定数はに1とに、の直列ば
ねとなり、ばね定数は最も小さくなり、第10図に示す
ように、質量体の変位のピーク時における共振周波数も
、曲線りで示すように最も低い。
It can be expressed by a vibration system in which part ■ and part ■ are connected in series. When C,=O, the spring constant becomes a series spring with a spring constant of 1, and the spring constant becomes the smallest.As shown in Fig. 10, the resonance frequency at the peak of the displacement of the mass also changes according to the curve is the lowest as shown in .

またC+=■のときは、ばね定数はに2で決まり、質量
体の変位のピーク時における共振周波数は、第10図の
曲線Hで示すように最も高い。
When C+=■, the spring constant is determined by 2, and the resonance frequency at the peak of the displacement of the mass is the highest, as shown by curve H in FIG.

そしてCIがO〜のまでの中間の値の場合は、第10図
の曲線E、F、Gのようになる。しかしてこれらの各曲
線D−Hのそれぞれのピークをd、e。
When CI is an intermediate value between 0 and 0, the curves E, F, and G in FIG. 10 are obtained. Therefore, the respective peaks of each of these curves DH are d and e.

r、g、hで示せば、これら各ピークを結ぶ曲線d−e
−f−g−hが、本発明のダイナミックダンパによる共
振周波数の連続的変化を示すものである。
If indicated by r, g, h, the curve connecting these peaks is d-e
-fgh indicates a continuous change in resonance frequency due to the dynamic damper of the present invention.

(発明の効果) 上述のように本発明においては、弾性部材2内に空洞4
を設け、その空洞4内に負荷電圧に応じて粘度が変化す
る電気レオロジー流体7を充填し、その流体7に電圧を
印加できる電極6を設け、この電極6にエンジン回転数
に応じて変化する電圧を印加するようにしたから、前記
電気レオロジー流体7の粘度がエンジンの回転数に応じ
て変化することにより、前記弾性部材2の変形のしやす
さが変化して、そのばね定数が変化する結果、共振周波
数が連続的に変化するから、本発明によれば、回転数の
全域にわたってダイナミックダンパ効果を得ることがで
きるという効果が得られる。
(Effects of the Invention) As described above, in the present invention, the cavity 4 is provided in the elastic member 2.
The cavity 4 is filled with an electrorheological fluid 7 whose viscosity changes depending on the load voltage, and an electrode 6 that can apply a voltage to the fluid 7 is provided, and the electrode 6 has a viscosity that changes depending on the engine speed. Since a voltage is applied, the viscosity of the electrorheological fluid 7 changes in accordance with the engine speed, which changes the ease with which the elastic member 2 deforms, and its spring constant changes. As a result, since the resonant frequency changes continuously, according to the present invention, it is possible to obtain a dynamic damper effect over the entire rotation speed range.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のダイナミックダンパの一部を断面で示
す部分断面図、 第2図はその外観を示す斜視図、 第3図はそのインタリングの斜視図、 第4図は第3図のIV−rV断面図、 第5図〜第7図は各種特性図、 第8図および第9図は本発明ダンパの説明図、第10図
は本発明ダンパの特性図、 第11図および第12図は従来のダンパの説明図、第1
3図は従来のダンパの特性図である。 1・・・被制振体     2・・・弾性部材3・・・
質量体      4・・・空洞5・・・インクリング
   6・・・電極7・・・電気レオロジー流体 8・・・電圧発生装置   9・・・コントローラ10
・・・エンジン回転数検出装置 第1図 第2図 第3図 5(イ/ゲリ7ゲ) 第4図 第5図 第6図 v4荷電圧 第7図 負荷電圧 第8図 第9図
Fig. 1 is a partial sectional view showing a part of the dynamic damper of the present invention, Fig. 2 is a perspective view showing its appearance, Fig. 3 is a perspective view of its interring, and Fig. 4 is the same as Fig. 3. IV-rV sectional view, Figures 5 to 7 are various characteristic diagrams, Figures 8 and 9 are explanatory diagrams of the damper of the present invention, Figure 10 is characteristic diagrams of the damper of the present invention, Figures 11 and 12 The figure is an explanatory diagram of a conventional damper.
FIG. 3 is a characteristic diagram of a conventional damper. 1... Vibration controlled body 2... Elastic member 3...
Mass body 4...Cavity 5...Ink ring 6...Electrode 7...Electrorheological fluid 8...Voltage generator 9...Controller 10
...Engine speed detection device Fig. 1 Fig. 2 Fig. 3 Fig. 5 (I/Geri 7ge) Fig. 4 Fig. 5 Fig. 6 v4 Load voltage Fig. 7 Load voltage Fig. 8 Fig. 9

Claims (1)

【特許請求の範囲】[Claims] 1、被制振体に弾性部材を介して所定の質量体を設けた
ダイナミックダンパにおいて、前記弾性部材内に空洞を
設け、その空洞内に負荷電圧に応じて粘度が変化する電
気レオロジー流体を充填し、その流体に電圧を印加でき
る電極を設け、この電極に加振周波数に応じて変化する
電圧を印加するようにしたことを特徴とするダイナミッ
クダンパ。
1. In a dynamic damper in which a predetermined mass body is provided on the damped body via an elastic member, a cavity is provided in the elastic member, and the cavity is filled with an electrorheological fluid whose viscosity changes depending on the load voltage. A dynamic damper characterized in that an electrode capable of applying a voltage to the fluid is provided, and a voltage that changes depending on the excitation frequency is applied to the electrode.
JP32408489A 1989-12-15 1989-12-15 Dynamic damper Pending JPH03186631A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32408489A JPH03186631A (en) 1989-12-15 1989-12-15 Dynamic damper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32408489A JPH03186631A (en) 1989-12-15 1989-12-15 Dynamic damper

Publications (1)

Publication Number Publication Date
JPH03186631A true JPH03186631A (en) 1991-08-14

Family

ID=18161973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32408489A Pending JPH03186631A (en) 1989-12-15 1989-12-15 Dynamic damper

Country Status (1)

Country Link
JP (1) JPH03186631A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0886079A3 (en) * 1997-06-18 2003-01-08 Deutsches Zentrum für Luft- und Raumfahrt e.V Method and apparatus for vibration damping using a dynamic mass
KR20030020612A (en) * 2001-09-04 2003-03-10 현대자동차주식회사 lower arm bush of vehicle
US8152145B2 (en) * 2009-04-29 2012-04-10 Honeywell International Inc. Isoelastic magneto-rheological elastomer isolator
JP2014109300A (en) * 2012-11-30 2014-06-12 Railway Technical Research Institute Vibration control device and railway car

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0886079A3 (en) * 1997-06-18 2003-01-08 Deutsches Zentrum für Luft- und Raumfahrt e.V Method and apparatus for vibration damping using a dynamic mass
KR20030020612A (en) * 2001-09-04 2003-03-10 현대자동차주식회사 lower arm bush of vehicle
US8152145B2 (en) * 2009-04-29 2012-04-10 Honeywell International Inc. Isoelastic magneto-rheological elastomer isolator
JP2014109300A (en) * 2012-11-30 2014-06-12 Railway Technical Research Institute Vibration control device and railway car

Similar Documents

Publication Publication Date Title
US4893800A (en) Electronically controlled vibration damper for mounting automotive internal combustion engines and the like
US4913409A (en) Electronically controllable vibration damper for use with automotive engine or the like
Flower Understanding hydraulic mounts for improved vehicle noise, vibration and ride qualities
US6439556B1 (en) Active decoupler hydraulic mount
US5044813A (en) Bush type hydraulically damped engine or transmission mount
EP0412674A1 (en) Mount with adjustable length inertia track
JPS60104828A (en) Two chamber type engine supporter having hydraulic damping performance
US4873887A (en) Torsion-vibration damper
US4641808A (en) Dynamic vibration attenuator utilizing inertial fluid
JPH0718470B2 (en) Controlled vibration control device
JP2860701B2 (en) Liquid filled vibration isolator
JPH03186631A (en) Dynamic damper
US5145024A (en) Engine suspension system
EP0174184A2 (en) Vibration isolating apparatus
US5028039A (en) Vibration damping device
JPS591828A (en) Liquid-enclosing vibration-proof device
JP3039105B2 (en) Cylindrical anti-vibration mount, power plant supporting device using the cylindrical anti-vibration mount, and method of controlling cylindrical anti-vibration mount in power plant supporting device
JP2002055117A (en) Capacitance type acceleration sensor
JPH07243482A (en) Damper
Tagata Parametric oscillations of a non-linear string
EP0926385A1 (en) A vibration absorbing system
JPH0925988A (en) Vibration control device
GB2314399A (en) A device for damping the transmission of vibration
JPH01188737A (en) Vibration damper
JPH0821478A (en) Vibration dapming device