JPH03170640A - Manufacture of high purity high chromium alloy - Google Patents

Manufacture of high purity high chromium alloy

Info

Publication number
JPH03170640A
JPH03170640A JP30849889A JP30849889A JPH03170640A JP H03170640 A JPH03170640 A JP H03170640A JP 30849889 A JP30849889 A JP 30849889A JP 30849889 A JP30849889 A JP 30849889A JP H03170640 A JPH03170640 A JP H03170640A
Authority
JP
Japan
Prior art keywords
ferrochrome
nitride
low carbon
ferrochrome nitride
high purity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30849889A
Other languages
Japanese (ja)
Inventor
Yutaka Yano
豊 矢野
Kiyoshi Kawasaki
清 川崎
Yoshinori Kato
加藤 昌憲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP30849889A priority Critical patent/JPH03170640A/en
Publication of JPH03170640A publication Critical patent/JPH03170640A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE:To manufacture the high purity ferrochrome having high Cr content and low content of other impurities by reducing SiO2 in low carbon ferrochrome into Si, thereafter nitriding the low carbon ferrochrome into ferrochrome nitride, pulverizing the ferrochrome nitride, treating it with an acid soln, removing iron therefrom and thereafter executing deoxidization. CONSTITUTION:Low carbon ferrochrome usually placed on the market is pulverized, is heated in a vacuum heating furnace to reduce the included SiO2 into Si by the reaction of the SiO2 with C. Next, an N2 gas is introduced into the heating furnace, and nitriding treatment is executed to transform the low carbon ferrochrome into ferrochrome nitride. The fine-powdery ferrochrome nitride is charged to a vessel 1 in the shape of fine powder of <=1mm, to which the water soln. of sulfuric acid is added to form a suspension 2 of the ferrochrome nitride, which is stirred by an impeller 4, and Fe in the ferrochrome nitride is melted by the sulfuric acid and is removed. The ferrochrome nitride is filtered, cleaned and dried, by which the high Cr ferrochrome constituted of 70 to 95wt.% Cr and the balance Fe and having extremely low content of other impurities can be manufactured.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は合金の添加金属として用いられる高純度でク
ロム含有率の高いクロム合金の製造方法に関する. [従来の技術] 高純度の含クロム合金( Cr 65wt%以上)は、
ニッケル基、鉄ニッケル基、コバルト基などのスーパー
アロイ分野で、主要戒分のクロム源として添加され、耐
食性または強度の向上に必要不可欠のものである.また
、溶接棒,粉末冶金の分野では粉末状の添加剤として鉄
、ニッケルの粉末と混合されて多量に使用されている. 従来の高クロム低炭素フェロクロムの製造方法としては
、大別すると(a)ペラン法、(b)スウェーデン法、
(c)多段ベラン法、(d)その他が挙げられる. このうち、(a),(b)法は電気炉を用いて多量に生
産できる経済的な方法として知られている.また、(C
)法はクロム鉱石のl次スラグを溶解後、弱還元条件で
脱鉄し、最後に強還元して低炭素フエロクロムを得る方
法で、85〜90wt%の高いCr成分のものが得れる
.さらに、<d)その他の方法としてアルミテルミット
法が考えられる.〔発明が解決しようとする課題コ しかしながら、前記(a)ベラン法、(b)スウエデン
法では、原料として経済的に入手できるクロム鉱石はF
eを多量に含むため、得られる低炭素フエロクロムのC
rFi.分は72%が上限である.(C〉多段ペラン法
は、高いCr成分のものが得られる反面、製造工程で高
融点の溶融金属の取り扱いに問題があり、また多量に発
生するCr含有量の低い低炭素フェロクロムの処理が必
要となり、さらにSi,O,N等の不純物が多い等の欠
点がある.さらに、<d)アルミテルミット法では[A
11の混入が避けられず,また原料として使用する酸化
クロムや反応助剤が高価であるなどの問題がある.本発
明はかかる事情に鑑みてなされたもので、上記の難点を
解消し、クローム含有率70〜95wtXの高純度、高
クロム合金の製造方法を提供しようとするものである. [問題点を解決するための手段及び作用]本発明による
高純度、高クロム合金の製造方法は、工業的に生産され
、不純物を含有する低炭素フェロクロムを出発原料とし
、前記原料を真空加熱により、原料中に含まれるシリカ
を還元して金属シリコンとする第1の工程と、前記第1
の工程を経た低炭素フエロクロムを、固体窒化法により
窒化して窒化フェロクロムを得る第2の工程と、前記窒
化フエロクロムを1關以下の粒度に破砕して、酸溶液と
混合、攪拌する酸処理により脱鉄する第3の工程と、脱
鉄された前記窒化フェロクロムを真空加熱して脱窒する
第4の工程とを含むものである. 第1の工程における原料中のシリカの還元は、原料が真
空中で加熱され、前記シリカが原料中のCにより、下記
の還元反応により行われる.SiOz(s)+ 2C(
S)−   St(s)  + 2CO(g)、上記の
式で、(,9)は固体、(g)は気体を表す.以下同様
とする. 第2の工程で窒素雰囲気で加熱して得られる窒化フェロ
クロムはCrが85〜95vt$の窒化物相とFe,S
i.Coおよび5〜20wt%のCrを含む金属相から
なっている. 第3の工程では酸処理により前記金属相に含まれるFe
,Si,P,Ni.Co,Mn等の不純物が除去される
.前記酸処理において、第1の工程で還元を行わない場
合は、非金属介在物の多い原料を使用するとS+02が
窒化物相とともに残留し、十分な脱珪が行われない. 第4の工程では、酸処理された窒化フェロクロムは、真
空中で加熱することにより下記反応により脱窒されると
ともにC.O等の不純物戒分が除去される. CraN(s)    −  2Cr(s)+ 1/2
Nz(g)、C(s)+ 0(s)  −”  CO(
g)、[実施例] 第1の工程において、表1 − (1)に示す戒分の低
炭素フエロクロムを出発原料として、これを粒度3關以
下に破砕し、破砕された低炭素フェロクロム30kgを
真空加熱炉で、0.05Torr. l150’c24
Hrの真空加熱を行い、前記出発原料中に含まれるシリ
カを、同じく出発原料中に含まれる炭素により還元して
金属シリコンとする. 前記第1の工程における真空加熱の後、第2の工程にお
いて、前記真空加熱炉に窒素を導入して、760Tor
rの窒素雰囲気とし、1150℃、24Hrの11 化
処理tr 行ツT−、IN]= 6.9wtL IO]
= 0.020wt%を含有する表1 − (2>の窒
化フェロクロムを得た. 続いて第3の工程において、第1図に示す攪拌装置を用
いて次の通り酸処理を行った.第2図は比較例(1)に
用いた攪拌装置である.前記第1図で1は反応容器、2
は窒化フェロクロムと酸溶液が混合されたスラリー,4
は攪拌羽根である. 容21? IOOfの反応容器1に水50j!と0.3
問以下に破砕された前記窒化フェロクロムを1 2 k
g入れ、攪拌機を用いて混合した。前記攪拌機は、上昇
流タイプの羽根を有し、羽根径/タンク径=0.8で回
転数: 25Orpmで運転された.前記攪拌機を用い
た攪拌方法では、窒化フェロクロムの粒子が全量、酸溶
液中に浮遊され、酸処理が効率的に行われる.前記反応
容器に、62、5%.H2So4を全量で61、連続的
に定量ボンブにより10Hrにわたって添加し、添加開
始がら16Hr, ill拌を続けた. この後、酸溶液と窒化フェロクロムが混合されたスラリ
ーを濾過、水洗、乾燥して9kgを回収した.その成分
は表1−(3)に示す通りである.比較例(1)として
用いた攪拌装置を第2図に示す.第2図で3は容器底に
沈積した窒化フェロクロム、5は比較例に用いた攪拌羽
根で、その他は第1図と同様である.比較例(1)おい
ては、羽根径/タンク径=0.6で、回転数; 150
rpLで運転された.その他の酸処理および酸処理後の
回収の条件は、第1図の実施例と同様である.この場合
の攪拌方法では、攪拌力が弱く、窒化フェロクロムの粒
子が一部、反応容器の底部に沈積される.比較例(1〉
において回収された窒化フェロクロムの戒分は表1 −
 (5)に示してある.表1−(5)と表1−(3)の
戒分を比較すると、実施例では比較例(1)に対して、
Cr含有率が太き( 、Si.Pの不純物は低下してい
る.第4の工程において、第3の工程で得られた回収物
に、カーボンブラック 0.3wL%を加えて混合し、
1250℃. 24Hrの真空加熱を行って脱窒した.
第4の工程により、表1 − (4)に示す通り Cr
,88.5wt% 、St,0.02wt%.その他P
,S,Ni,Co,Mn,V,C,Q,Nがいずれも低
い高純度、高クロム合金が8.0kg得られた. 表 1 比較例(2〉として、第1の工程において、低炭素フェ
ロクロムを粒度3關以下に破砕した後、加熱処理による
還元工程を行わず、上記実施例の第2乃至第4の工程に
より、各工程で得られたものの或分を表1に対応して、
それぞれ表2 − (2),(3),(4)に示す.表
1−(1)と表2−(1)は同じ出発原料の成分である
. 表 2 表1− (3).(4)と表2 − (3),<4)を
Siにツいて比較すると、本実施例は比較例(2)に対
して、顕著に脱珪されていることが示されている.[発
明の効果] 本発明によれば、低炭素フェロクロムを真空加熱により
還元した後、窒化して得られる窒化フェロクロムを粉砕
し、これを水と混合して強攪拌しながら、連続的に酸溶
液を添加して脱鉄、不純物の除去を十分行い,その後真
空脱窒するので、市販の安価な低炭素フェロクロムから
特にSiが低減され、その他、P,S,Ni,Co,M
n,C.N,O等の不純物量が少なく、Crが70〜9
5wL%の高純度、高クロム合金が経済的に製造可能で
ある.
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to a method for producing a chromium alloy with high purity and high chromium content, which is used as an additive metal in an alloy. [Prior art] High purity chromium-containing alloy (Cr 65wt% or more) is
It is added as a major chromium source in the field of superalloys such as nickel-based, iron-nickel-based, and cobalt-based alloys, and is essential for improving corrosion resistance and strength. In addition, in the fields of welding rods and powder metallurgy, it is used in large quantities as a powdered additive, mixed with iron and nickel powder. Conventional methods for producing high-chromium, low-carbon ferrochrome can be roughly divided into (a) Perrin method, (b) Swedish method,
(c) multi-stage Veran method; (d) others. Among these methods, methods (a) and (b) are known as economical methods that can be produced in large quantities using an electric furnace. Also, (C
) method is a method in which the first-order slag of chromium ore is melted, iron is removed under weak reducing conditions, and finally strong reduction is performed to obtain low carbon ferrochrome, which has a high Cr content of 85 to 90 wt%. Furthermore, <d) The aluminum thermite method can be considered as another method. [Problems to be solved by the invention] However, in the above-mentioned (a) Veran method and (b) Swedish method, chromium ore, which is economically available as a raw material, is F.
Because it contains a large amount of e, the resulting low carbon ferrochrome C
rFi. The upper limit is 72%. (C) Although the multi-stage Perrin process can produce products with a high Cr content, there are problems in handling molten metal with a high melting point during the manufacturing process, and it is necessary to process low-carbon ferrochrome with a low Cr content, which is generated in large quantities. Furthermore, there are drawbacks such as a large amount of impurities such as Si, O, and N.Furthermore, in the <d) aluminum thermite method, [A
There are other problems, such as the unavoidable contamination of chromium oxide and reaction aids used as raw materials. The present invention has been made in view of the above circumstances, and aims to solve the above-mentioned difficulties and provide a method for producing a high-purity, high-chromium alloy with a chromium content of 70 to 95 wtX. [Means and effects for solving the problems] The method for producing a high-purity, high-chromium alloy according to the present invention uses industrially produced low-carbon ferrochrome containing impurities as a starting material, and heats the raw material in a vacuum. , a first step of reducing silica contained in the raw material to metal silicon;
A second step of obtaining nitrided ferrochrome by nitriding the low-carbon ferrochrome that has undergone the above steps by a solid-state nitriding method, and an acid treatment in which the nitrided ferrochrome is crushed to a particle size of one size or less, mixed with an acid solution, and stirred. The method includes a third step of removing iron, and a fourth step of vacuum heating the deironated ferrochrome nitride to denitrify it. The reduction of silica in the raw material in the first step is carried out by heating the raw material in a vacuum and reducing the silica with C in the raw material as described below. SiOz(s)+2C(
S) - St(s) + 2CO(g), in the above formula, (,9) represents solid and (g) represents gas. The same shall apply hereinafter. Ferrochrome nitride obtained by heating in a nitrogen atmosphere in the second step has a nitride phase containing 85 to 95 vt$ of Cr and Fe, S.
i. It consists of a metallic phase containing Co and 5 to 20 wt% Cr. In the third step, Fe contained in the metal phase is removed by acid treatment.
, Si, P, Ni. Impurities such as Co and Mn are removed. In the acid treatment, if reduction is not performed in the first step and a raw material containing many nonmetallic inclusions is used, S+02 will remain together with the nitride phase, and sufficient desiliconization will not be achieved. In the fourth step, the acid-treated ferrochrome nitride is denitrified by the following reaction by heating in vacuum, and C. Impurity precepts such as O are removed. CraN(s) − 2Cr(s) + 1/2
Nz (g), C (s) + 0 (s) −” CO (
g), [Example] In the first step, the low carbon ferrochrome shown in Table 1-(1) was used as a starting material, and it was crushed to a particle size of 3 degrees or less, and 30 kg of the crushed low carbon ferrochrome was In a vacuum heating furnace, the temperature was 0.05 Torr. l150'c24
The silica contained in the starting material is reduced by the carbon also contained in the starting material to form metallic silicon by vacuum heating at 100 hr. After the vacuum heating in the first step, in the second step, nitrogen is introduced into the vacuum heating furnace and heated to 760 Torr.
1150° C. and 24 hours in a nitrogen atmosphere of 1150° C.
Ferrochrome nitride of Table 1-(2) containing = 0.020 wt% was obtained.Subsequently, in the third step, acid treatment was performed as follows using the stirring device shown in Figure 1.Second The figure shows the stirring device used in Comparative Example (1).In Figure 1, 1 is a reaction vessel, 2
is a slurry of ferrochrome nitride and acid solution, 4
is a stirring blade. Yong 21? 50j of water in reaction container 1 of IOOf! and 0.3
The ferrochrome nitride crushed to a size of 1 2 k
g and mixed using a stirrer. The stirrer had an upward flow type blade, and was operated at a rotation speed of 25 Orpm with blade diameter/tank diameter = 0.8. In the stirring method using the above-mentioned stirrer, the entire amount of ferrochrome nitride particles is suspended in the acid solution, and the acid treatment is efficiently performed. Into the reaction vessel, 62.5%. A total amount of 61 H2So4 was added continuously using a metered bomb over 10 hours, and stirring was continued for 16 hours from the beginning of the addition. Thereafter, the slurry containing the acid solution and ferrochrome nitride was filtered, washed with water, and dried to recover 9 kg. Its components are shown in Table 1-(3). Figure 2 shows the stirring device used in Comparative Example (1). In Figure 2, 3 is the ferrochrome nitride deposited on the bottom of the container, 5 is the stirring blade used in the comparative example, and the rest is the same as in Figure 1. In comparative example (1), blade diameter/tank diameter = 0.6, rotation speed; 150
It was operated by rpL. Other conditions for acid treatment and recovery after acid treatment are the same as in the example shown in FIG. In this case, the stirring method has a weak stirring force, and some of the ferrochrome nitride particles are deposited at the bottom of the reaction vessel. Comparative example (1)
Table 1 shows the contents of ferrochrome nitride recovered in
It is shown in (5). Comparing the precepts in Table 1-(5) and Table 1-(3), in the example, compared to comparative example (1),
The Cr content is high (Si. P impurities are reduced. In the fourth step, 0.3 wL% of carbon black is added and mixed to the recovered material obtained in the third step,
1250℃. Denitrification was performed by vacuum heating for 24 hours.
Through the fourth step, as shown in Table 1-(4), Cr
, 88.5wt%, St, 0.02wt%. Other P
, S, Ni, Co, Mn, V, C, Q, and N. 8.0 kg of high purity, high chromium alloy was obtained. Table 1 Comparative Example (2) In the first step, after crushing low carbon ferrochrome to a particle size of 3 degrees or less, the reduction step by heat treatment was not performed, and the second to fourth steps of the above example were carried out. A certain portion of what was obtained in each step is shown in Table 1.
They are shown in Table 2-(2), (3), and (4), respectively. Table 1-(1) and Table 2-(1) have the same starting material components. Table 2 Table 1- (3). Comparing (4) and Table 2-(3), <4) with respect to Si, it is shown that this example is significantly desiliconized compared to comparative example (2). [Effects of the Invention] According to the present invention, after reducing low carbon ferrochrome by vacuum heating, nitrided ferrochrome obtained by nitriding is crushed, mixed with water, and continuously poured into an acid solution while stirring strongly. is added to sufficiently remove iron and impurities, and then vacuum denitrification is performed, so Si is particularly reduced from commercially available low-carbon ferrochrome, and other materials such as P, S, Ni, Co, and M
n,C. The amount of impurities such as N and O is small, and the Cr content is 70 to 9.
A high purity, high chromium alloy of 5wL% can be produced economically.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本実施例の攪拌装置、第2図は比較例(1)の
攪拌装置である.
Figure 1 shows the stirring device of this example, and Figure 2 shows the stirring device of comparative example (1).

Claims (2)

【特許請求の範囲】[Claims] (1)工業的に生産され、不純物を含有する低炭素フェ
ロクロムを出発原料とし、前記原料を真空加熱により、
原料中に含まれるシリカを還元して金属シリコンとする
第1の工程と、前記第1の工程を経た低炭素フェロクロ
ムを、固体窒化法により窒化して窒化フェロクロムを得
る第2の工程と、前記窒化フェロクロムを1mm以下の
粒度に破砕して、酸溶液と混合、攪拌する酸処理により
脱鉄する第3の工程と、脱鉄された前記窒化フェロクロ
ムを真空加熱して脱窒する第4の工程とを含む高純度、
高クロム合金の製造方法。
(1) Using industrially produced low carbon ferrochrome containing impurities as a starting material, the raw material is heated in vacuum,
a first step of reducing silica contained in the raw material to metal silicon; a second step of nitriding the low carbon ferrochrome that has undergone the first step by a solid-state nitriding method to obtain ferrochrome nitride; A third step is to crush the ferrochrome nitride to a particle size of 1 mm or less, mix it with an acid solution, and remove iron by an acid treatment, and a fourth step to denitrify the deironated ferrochrome nitride by vacuum heating. High purity, including
Method for manufacturing high chromium alloys.
(2)第2の工程の酸処理は、破砕された窒化フェロク
ロムが酸溶液の中で全体が浮遊するように攪拌、混合す
ること、および酸溶液を連続的に添加して反応させるこ
と、を含む請求項1の高純度、高クロム合金の製造方法
(2) The acid treatment in the second step involves stirring and mixing the crushed ferrochrome nitride so that it is entirely suspended in the acid solution, and continuously adding the acid solution to cause the reaction. A method for producing a high purity, high chromium alloy according to claim 1.
JP30849889A 1989-11-28 1989-11-28 Manufacture of high purity high chromium alloy Pending JPH03170640A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30849889A JPH03170640A (en) 1989-11-28 1989-11-28 Manufacture of high purity high chromium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30849889A JPH03170640A (en) 1989-11-28 1989-11-28 Manufacture of high purity high chromium alloy

Publications (1)

Publication Number Publication Date
JPH03170640A true JPH03170640A (en) 1991-07-24

Family

ID=17981739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30849889A Pending JPH03170640A (en) 1989-11-28 1989-11-28 Manufacture of high purity high chromium alloy

Country Status (1)

Country Link
JP (1) JPH03170640A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013187347A1 (en) * 2012-06-15 2013-12-19 Jfeマテリアル株式会社 Method for producing ferrochromium, and ferrochromium
CN103937984A (en) * 2014-04-25 2014-07-23 甘肃锦世化工有限责任公司 Method for preparing metallic chromium from chromium-containing cast iron

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013187347A1 (en) * 2012-06-15 2013-12-19 Jfeマテリアル株式会社 Method for producing ferrochromium, and ferrochromium
JPWO2013187347A1 (en) * 2012-06-15 2016-02-04 Jfeマテリアル株式会社 Ferrochrome production method and ferrochrome
CN103937984A (en) * 2014-04-25 2014-07-23 甘肃锦世化工有限责任公司 Method for preparing metallic chromium from chromium-containing cast iron

Similar Documents

Publication Publication Date Title
US3579328A (en) Process for the production of ferro-vanadium directly from slag obtained from vanadium-containing pig iron
JPS63100150A (en) Master alloy for producing titanium alloy and its production
JPH06172916A (en) Manufacturing of stainless steel
US5316723A (en) Master alloys for beta 21S titanium-based alloys
JPH03122205A (en) Manufacture of ti powder
JPH03170640A (en) Manufacture of high purity high chromium alloy
CN108193127A (en) A kind of casting and molding method of rail traffic sleeve type casting
JPH03188229A (en) Manufacture of high purity high chromium alloy
JPH02236238A (en) Production of high-purity high chromium alloy
KR101765465B1 (en) Manufacturing method of ferro-tungsten
US4053307A (en) Process for manufacture of high-chromium iron alloy
JPS63500873A (en) Vanadium slag and its manufacturing method
JPS63161101A (en) Production of low-oxygen metallic chromium power
JP2021519389A (en) Silicon-based alloys, their manufacturing methods, and the use of such alloys
JPH0742528B2 (en) Method for producing high purity, high chromium content alloy
JP2650697B2 (en) Production method of high purity metallic chromium
JPH04231407A (en) Preparation of metal powder
US2991174A (en) Process of producing chromium steel
JPH02133541A (en) Manufacture of low-carbon ferrochrome having high chrome content
JPS60190509A (en) Manufacture of alloy steel
JPS594484B2 (en) Goukintetsunodatsurin Datsutanhouhou
WO2017164898A1 (en) Method of treating unrefined tungstic acid to produce alloy grade tungsten for use in tungsten bearing steels and nickel based superalloys
JPH0570683B2 (en)
JPH03197601A (en) Manufacture of fe-si alloy powder
JPH0499810A (en) Manufacture of steel making composition high speed steel