JPH03170445A - Preparation of acrolein and acrylic acid - Google Patents

Preparation of acrolein and acrylic acid

Info

Publication number
JPH03170445A
JPH03170445A JP1309097A JP30909789A JPH03170445A JP H03170445 A JPH03170445 A JP H03170445A JP 1309097 A JP1309097 A JP 1309097A JP 30909789 A JP30909789 A JP 30909789A JP H03170445 A JPH03170445 A JP H03170445A
Authority
JP
Japan
Prior art keywords
propane
catalyst
oxygen
reaction
acrylic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1309097A
Other languages
Japanese (ja)
Inventor
Tadamitsu Kiyoura
清浦 忠光
Motomasu Kawai
河井 基益
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP1309097A priority Critical patent/JPH03170445A/en
Publication of JPH03170445A publication Critical patent/JPH03170445A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To maintain the amount of oxygen in a fed gas in a state less than the stoichiometric amount of the oxygen required for propane to be converted and re-use the catalyst after again oxidized when the propane is oxidized on a multicomponent oxidation catalyst to prepare the subject substances. CONSTITUTION:When propane is subjected to a gaseous phase oxidation reaction on an oxidized state catalyst containing Bi, Mo and one or more elements selected from V, Ce, Nb, Co, Cr, Fe, Ag, etc., or an oxidized state catalyst containing vanadyl pyrophosphate and one or more elements selected from Ce, Nb, Bi, Mo, Ag, etc., to prepare the subject substances, the amount of oxygen in a fed gas is controlled so as to be less than the stoichiometric amount of the oxygen required for the total amount of the propane. The catalyst thus reduced is separated from the reaction system, thermally oxidized in air and subsequently again employed. The method does not have any danger of explosion because the oxygen required for reaction is supplied from the oxidized state catalyst.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、多戒分系の酸化物触媒上でプロパンからアク
口レインおよびアクリル酸を製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing acutolein and acrylic acid from propane over a multicomponent oxide catalyst.

アクロレインは、メチオニン等の製造原料、またはこれ
を更に酸化してアクリル酸を得るための原料として重要
な化合物である。アクリル酸はエステルとし、各種の合
成樹脂を製造するために大量に使用される.ポリアクリ
ル酸ソーダは吸水性ボリマーとして各種の用途に使用さ
れている。
Acrolein is an important compound as a raw material for producing methionine and the like, or as a raw material for further oxidizing this to obtain acrylic acid. Acrylic acid is converted into an ester and is used in large quantities to produce various synthetic resins. Sodium polyacrylate is used as a water-absorbing polymer for various purposes.

〔従来の技術] プロピレンを原料としてアク口レインおよびアクリル酸
を製造することは広く工業的に実施されており、その収
率も極めて高いレベルに達している。一方、プロピレン
よりもコスト的に安価なプロパンを分子状酸素で酸化し
てアク口レインおよびアクリル酸を製造する方法も種々
試みられているが、生戒するアクロレインおよびアクリ
ル酸の収率は未だ工業的な操業に耐え得るレベルに達し
ていない。
[Prior Art] Production of acrylic acid and acrylic acid using propylene as a raw material is widely practiced industrially, and the yield thereof has reached an extremely high level. On the other hand, various attempts have been made to produce acrolein and acrylic acid by oxidizing propane, which is cheaper than propylene, with molecular oxygen, but the yields of acrolein and acrylic acid, which are bioavailable, are still at an industrial level. It has not reached a level that can withstand regular operations.

例えば、プロパンをTeO(VO)2Ptot触媒の存
在下に空気酸化しアクリル酸を得た例では、プロパンの
転化率30%でアクリル酸の選択率30〜35%の結果
が報告されている(Chem.Commun.,786
(1986) ]すなわち、触媒層の一回通過で、送入
したプロパンのうち10%が目的物に変化するに過ぎず
、大量のC02とCOが副生し、これにより発生する反
応熱の除去も困難である。
For example, in an example in which acrylic acid was obtained by air oxidation of propane in the presence of a TeO(VO)2Ptot catalyst, it has been reported that the conversion of propane was 30% and the selectivity of acrylic acid was 30-35% (Chem. .Commun., 786
(1986) ] That is, in one pass through the catalyst layer, only 10% of the propane fed is converted into the target product, and a large amount of CO2 and CO are produced as by-products, and the reaction heat generated by this is removed. is also difficult.

プロパンをビスマスーモリブデン系触媒の存在下に分子
状酸素で酸化し、プロパンの転化率20%、アク口レイ
ンへの選択率60%程度で目的物を得た結果(Chen
.Lett. , 531 (1989) )も報告さ
れているが、プロパンと酸素とを当モル程度に混合し、
爆発範囲内で反応を実施している等の問題点がある。
Propane was oxidized with molecular oxygen in the presence of a bismuth-molybdenum catalyst, and the desired product was obtained with a conversion rate of propane of 20% and a selectivity to aqueline of about 60% (Chen
.. Lett. , 531 (1989)) has also been reported, but when propane and oxygen are mixed in equimolar amounts,
There are problems such as the reaction being carried out within the explosion range.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明の目的は、プロパンを分子状酸素(酸素含有ガス
)で酸化し効率よくアクロレインおよびアクリル酸を製
造する方法を提供することにある.〔課題を解決するた
めの手段〕 本発明者らは、プロパンを分子状酸素で酸化しアクロレ
インおよびアクリル酸を製造する方法を研究した結果、
ビスマスと、モリブデンとおよび、バナジウム、セリウ
ム、二オブ、タンタル、コバルト、クロム、鉄、ニッケ
ル、ジルコニウム、テルル、銀、銅、および燐からなる
群から選ばれた1種もしくは2種以上の元素とを含有す
る酸化状態にある触媒、またはピロリン酸バナジル( 
(VO) zP toq )と、セリウム、ニオプ、ビ
スマス、モリブデン、テルル、タングステン、鉄、銅お
よび、根からなる選ばれた1種もしくは2種以上の元素
とを含有する酸化状態にある触媒上で、触媒相に供給す
るプロパンを含有する供給ガス中の酸素量を、反応によ
り転化するプロパンに対する化学量論量よりも少なく保
持し、反応により生じる還元状態にある触媒を生或物流
から分離し、これを再びプロパンと接触させる前に再酸
化すれば、効率よく、プロパンからアク口レインおよび
アクリル酸が得られること、およびプロパンを含有する
供給ガスが実質的に酸素を含有しない状態で反応させて
も好結果が得られることを見出して、本発明を完成させ
るに至った。
An object of the present invention is to provide a method for efficiently producing acrolein and acrylic acid by oxidizing propane with molecular oxygen (oxygen-containing gas). [Means for Solving the Problems] As a result of research into a method for producing acrolein and acrylic acid by oxidizing propane with molecular oxygen, the present inventors found that
Bismuth, molybdenum, and one or more elements selected from the group consisting of vanadium, cerium, niobium, tantalum, cobalt, chromium, iron, nickel, zirconium, tellurium, silver, copper, and phosphorus. or vanadyl pyrophosphate (
(VO) zP toq ) and one or more selected elements consisting of cerium, niop, bismuth, molybdenum, tellurium, tungsten, iron, copper, and roots in an oxidized state. , maintaining the amount of oxygen in the propane-containing feed gas fed to the catalyst phase less than the stoichiometric amount for the propane to be converted by the reaction, and separating the catalyst in a reduced state resulting from the reaction from the raw stream; It has been shown that propane can be efficiently obtained by reoxidizing it before contacting it with propane again, and that the reaction can be carried out in a state in which the propane-containing feed gas is substantially oxygen-free. The present invention was completed based on the discovery that good results could also be obtained using the method.

本発明の触媒は、モリプデンービスマス系に上記した群
から選ばれた元素を含有する多或分系触媒、またはビロ
リン酸バナジル系に上記した群から選ばれた元素を含有
する多戒分系触媒である.これらの触媒は実際の反応操
作に用いる際は、流動床または移動床で使用される場合
が多い.従って触媒の機械的強度を向上させたり、摩耗
損失(attrition rate)を低く保つ目的
で、上記した多成分元素に、シリカ、またはアルミナ等
の造粒補助材を添加する場合が多い。
The catalyst of the present invention is a multicomponent catalyst containing an element selected from the above group in a molybdenum-bismuth series, or a multicomponent catalyst containing an element selected from the above group in a vanadyl birophosphate series. It is a catalyst. When these catalysts are used in actual reaction operations, they are often used in a fluidized bed or moving bed. Therefore, in order to improve the mechanical strength of the catalyst and to keep the attrition rate low, granulation aids such as silica or alumina are often added to the above multicomponent elements.

触媒の製造方法は、前述の触媒の構威威分である金属元
素の水酸化物、炭酸塩、硝酸塩、有機酸塩、塩化物、ま
たはリン酸塩等を、所定の比率となる様に混合しシリカ
ゲルまたはアルミナゾル等を添加、スラリーとして噴霧
乾燥する。得られた微小球状の固体を加熱分解し目的と
する金属の混合酸化物触媒とする. ピロリン酸バナジルを含有する触媒の場合には、イソブ
タノール等のアルコール媒体中でv20,を加熱し、V
fOnに還元する。これにリン酸を添加して得た先駆体
(VO) zHaPtOqに所定の金属の塩類を添加、
混合後スラリーとし、噴霧乾燥、次いで焼戒する方法等
により触媒体とする. 本発明は、酸化された形態にある触媒を用いて、プロパ
ンを酸化してアクロレインおよびアクリル酸を得る方法
である。上記した触媒を、空気雰囲気中250〜600
 ’Cに加熱することにより触媒を酸化状態に移行させ
る. 酸化状態にある触媒体に供給する供給ガス中の酸素の量
を、反応中に転化されるプロパンの総量に対して必要な
化学M論量よりも少なくなるように制限する.プロパン
の酸化により還元された触媒を生成物流から分離し、プ
ロパンと再び接触させる前に再び空気雰囲気中で加熱し
触媒を酸化状態とする。反応中に転化されるプロパンの
総量に対して必要な酸素の化学景論量は、プロパンをア
クリル酸に転化するのに必要な酸素の量、すなわち、転
化されるプロパン1モルに対し2モルの酸素である。好
ましくは供給ガス中の酸素の量は、化学量論量の20%
未満、すなわち、転化されるプロパンlモルに対し、酸
素0.4モル未満である。
The catalyst manufacturing method involves mixing the hydroxides, carbonates, nitrates, organic acid salts, chlorides, or phosphates of metal elements, which are the components of the catalyst described above, in a predetermined ratio. Add silica gel or alumina sol, etc., and spray dry as a slurry. The resulting microspherical solid is thermally decomposed to produce the desired metal mixed oxide catalyst. In the case of catalysts containing vanadyl pyrophosphate, heat V20, in an alcoholic medium such as isobutanol, and
Reduce to fOn. Precursor (VO) obtained by adding phosphoric acid to this zHaPtOq and adding salts of specified metals,
After mixing, make a slurry, spray dry it, and then burn it to make a catalyst body. The present invention is a process for oxidizing propane to acrolein and acrylic acid using a catalyst in oxidized form. The above catalyst was heated to 250 to 600 ml in an air atmosphere.
The catalyst is transferred to the oxidized state by heating to 'C. The amount of oxygen in the feed gas fed to the catalyst body in the oxidizing state is limited to less than the stoichiometric amount required for the total amount of propane converted during the reaction. The reduced catalyst from the oxidation of propane is separated from the product stream and heated again in an air atmosphere to bring the catalyst to the oxidized state before contacting it again with propane. The stoichiometric amount of oxygen required for the total amount of propane converted during the reaction is the amount of oxygen required to convert propane to acrylic acid, i.e. 2 moles of oxygen per mole of propane converted. It is oxygen. Preferably the amount of oxygen in the feed gas is 20% of the stoichiometric amount.
less than 0.4 moles of oxygen per mole of propane converted.

プロパンのアクロレインおよびアクリル酸への選択性を
高くするためには、触媒が反応中に過度に還元されない
ならば、供給ガスが実質的に酸素を含まないようにする
ことが好ましい。供給ガスが実質的に酸素を含まないよ
うにするだけでなく、酸化された(空気雰囲気下に焼威
した)触媒をプロパンと再び接触させる前に、気相酸素
を触媒からス1・り・ンピングすることにより、反応の
選択率を高めることができる。この種の反応操作は、プ
ロパンの酸化を1つの反応領域中で行い、還元された触
媒を別の再生領域中で酸化する、再循環固相反応器によ
り実施するのが便利である。この方法は通常、以下の工
程の組合せにより或り立っている。
In order to increase the selectivity of propane to acrolein and acrylic acid, it is preferred that the feed gas be substantially oxygen-free, provided that the catalyst is not reduced excessively during the reaction. In addition to ensuring that the feed gas is substantially oxygen-free, gaseous oxygen is also stripped from the oxidized (burned out in an air atmosphere) catalyst prior to contacting it again with propane. By pumping, the selectivity of the reaction can be increased. This type of reaction operation is conveniently carried out in a recirculating solid phase reactor in which the propane oxidation takes place in one reaction zone and the reduced catalyst is oxidized in another regeneration zone. This method usually consists of a combination of the following steps.

?工程1)約1モル%〜100モル%、好ましくは約5
モル%〜30モル%のプロバンと0〜20モル%の0■
および残部の不活性ガスとを含む供給ガスを、酸化され
た状態にある触媒であって粒径が約20〜200μmに
分布するものと再循環反応器の反応領域で、350″C
〜650 ’Cの温度下で接触させる。
? Step 1) About 1 mol% to 100 mol%, preferably about 5
mol% to 30 mol% of proban and 0 to 20 mol% of 0■
and the balance inert gas, the catalyst in the oxidized state with a particle size distribution of about 20-200 μm in the reaction zone of the recirculation reactor at 350″C.
Contact at a temperature of ~650'C.

反応領域中でのガスの滞留時間は0.5〜30秒、反応
領域中での触媒体の滞留時間は5秒〜10分程度である
The residence time of the gas in the reaction zone is about 0.5 to 30 seconds, and the residence time of the catalyst in the reaction zone is about 5 seconds to 10 minutes.

(工程2)工程1で生成する隘出物を反応領域から除き
、還元された触媒を溢出ガスから分削し、還元された触
媒を再循環固相反応器の再生領域に輸送し、溢出ガスか
ら得られたアク口レインおよびアクリル酸を回収する。
(Step 2) Remove the effluent produced in Step 1 from the reaction zone, scrape the reduced catalyst from the overflow gas, transport the reduced catalyst to the regeneration zone of the recirculating solid phase reactor, and transport the overflow gas The acrylate and acrylic acid obtained from the process are recovered.

(工程3)還元された触媒を、酸素含有ガス(通常は空
気)を用いて、250゜C〜600’Cの温度で再生領
域中で酸化する。再生領域中での触媒の滞留時間は、5
秒〜10分間である。また酸素含有ガスの滞留時間は約
2秒〜30秒の範囲が多用される。
(Step 3) The reduced catalyst is oxidized in a regeneration zone using an oxygen-containing gas (usually air) at a temperature of 250°C to 600'C. The residence time of the catalyst in the regeneration zone is 5
The duration is from seconds to 10 minutes. Further, the residence time of the oxygen-containing gas is often in the range of about 2 seconds to 30 seconds.

?工程4)工程3で得られた酸化された触媒を反応領域
に再循環させる。再循環固相反応器は、通常トランスポ
ーテッド ベッド ( TRANSPORTED BED)またはライザー
( RISER)型反応器として石油精製の分野におい
てよく知られているものと同形式のものが使用される。
? Step 4) Recycle the oxidized catalyst obtained in step 3 to the reaction zone. The recirculating solid phase reactor is generally of the same type as that well known in the field of petroleum refining as a TRANSPORTED BED or RISER type reactor.

工程1〜工程4の反応器圧力は大気圧〜20kg/cJ
Gの範囲が多用される。また反応原料は純度が100%
のプロパンであってもよいし、プロパンとプロピレンま
たはこれらとスチームとの混合物であってもよい. 〔実施例] 実施例−1 第1図に示す再循環同相反応器を用いてプロパンをアク
ロレインに酸化する実験を行った。使用した触媒はBi
o.as l’loo.as Vo.sa Ago.o
+s Oaなる活性戒分1重量部とシリカゾルより調製
したSiO■0.6重量部とからなる微小球で、粒径分
布25〜150μm、平均粒径65μmのものを使用し
た。
The reactor pressure in steps 1 to 4 is atmospheric pressure to 20 kg/cJ.
The G range is often used. In addition, the purity of the reaction raw material is 100%.
It may be propane, propane, propylene, or a mixture of these and steam. [Example] Example 1 An experiment was conducted to oxidize propane to acrolein using a recirculating in-phase reactor shown in FIG. The catalyst used was Bi
o. as l'loo. as Vo. sa Ago. o
Microspheres consisting of 1 part by weight of the active ingredient +s Oa and 0.6 part by weight of SiO2 prepared from silica sol, with a particle size distribution of 25 to 150 μm and an average particle size of 65 μm, were used.

反応器の酸化反応部はAは内径1 incJ+、高さ1
.5m、触媒の再酸化部分Cは内径4inch、高さ6
0cmであり、A−Cに入る触媒の充填量は4 kgで
あった。
The oxidation reaction part of the reactor has an inner diameter of 1 incJ+ and a height of 1
.. 5 m, the reoxidation part C of the catalyst has an inner diameter of 4 inches, and a height of 6
0 cm, and the amount of catalyst packed into A-C was 4 kg.

反応領域八の反応ガス(プロパン10%、窒素90%)
の滞留時間は約5秒で、触媒層の温度は500゛Cとし
た。
Reaction gas in reaction zone 8 (propane 10%, nitrogen 90%)
The residence time was about 5 seconds, and the temperature of the catalyst layer was 500°C.

再生領域Cは450゜C〜500 ’Cとし、空気を滞
留時間4秒で注入した。
The regeneration zone C was set at 450°C to 500'C, and air was injected with a residence time of 4 seconds.

プロパンの転化率は80%であり、アクロレインの選沢
率は72%、アクリル酸の選択率は9%であった。
The conversion rate of propane was 80%, the selectivity rate of acrolein was 72%, and the selectivity rate of acrylic acid was 9%.

実施例−2 ビロリン酸バナジルと酸化テルルを9:lに混合した活
性戒分75%とシリカ25%とからなる微小球(平均粒
径60μ)触媒を用い、実施例】と同じ反応器と反応方
法で反応させた。反応領域Aの反応ガス(プロパン10
%、窒素88%、酸素2%)の滞留時間は約4秒で、触
媒層の温度は440゜Cとした。再生領域の温度は38
0〜400 ’Cとし、空気の滞留時間は4秒とした。
Example 2 Using a microsphere catalyst (average particle size 60μ) consisting of a 9:1 mixture of vanadyl birophosphate and tellurium oxide (75% active component) and 25% silica, the reaction was carried out in the same reactor as in Example. method was used to react. Reaction gas in reaction area A (propane 10
%, nitrogen 88%, oxygen 2%), the residence time was about 4 seconds, and the temperature of the catalyst layer was 440°C. The temperature of the playback area is 38
The temperature was 0-400'C, and the air residence time was 4 seconds.

プロパンの転化率は55%、アクリル酸の選択率は65
%、アクロレインの選択率は7%であった.〔発明の効
果〕 本発明によれば、反応領域中の気相酸率を低く保つこと
により、または酸素を実質的に存在させないことにより
、従来報告されている反応或績より高い転化率と選択率
でプロパンからアクロレインおよびアクリル酸を得るこ
とができる。反応に必要な酸素が酸化状態にある触媒に
より供給されるので、爆発の危険も無い.反応器出口ガ
ス中の目的物濃度も高い値が得られる。
Propane conversion rate is 55%, acrylic acid selectivity is 65%
%, and the selectivity for acrolein was 7%. [Effects of the Invention] According to the present invention, by keeping the gas phase acid rate in the reaction zone low or by substantially eliminating the presence of oxygen, a higher conversion rate and selectivity than previously reported reaction results can be achieved. Acrolein and acrylic acid can be obtained from propane at a similar rate. Since the oxygen necessary for the reaction is supplied by the catalyst in an oxidized state, there is no risk of explosion. A high concentration of the target substance in the reactor outlet gas can also be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はライザー型反応器部分Aと、気固分離器Bとお
よび、流動床型の触媒再酸化器Cとからなる再循環型反
応器の構成を示す. 1  プロパンの流入部 2  反応生成物の流出部 3  再酸化用空気流入部 4  排出ガス出口
Figure 1 shows the configuration of a recirculation reactor consisting of a riser type reactor section A, a gas-solid separator B, and a fluidized bed type catalytic reoxidizer C. 1 Propane inflow section 2 Reaction product outflow section 3 Reoxidation air inflow section 4 Exhaust gas outlet

Claims (2)

【特許請求の範囲】[Claims] (1)ビスマスと、モリブデンとおよび、バナジウム、
セリウム、ニオブ、タンタル、コバルト、クロム、鉄、
ニッケル、ジルコニウム、テルル、銀、銅、および燐か
らなる群から選ばれた1種もしくは2種以上の元素とを
含有する酸化状態にある触媒、またはピロリン酸バナジ
ルと、セリウム、ニオブ、ビスマス、モリブデン、テル
ル、タングステン、鉄、銅、および銀からなる群から選
ばれた1種もしくは2種以上の元素とを含有する酸化状
態にある触媒上で、プロパンをアクロレインおよびアク
リル酸に気相酸化する方法において、プロパンを含有す
る供給ガス中の酸素量を、反応により転化するプロパン
に対する化学量論量よりも少なく保持し、反応により生
じる還元状態にある触媒を生成物流から分離し、これを
再びプロパンと接触させる前に再酸化することを特徴と
するアクロレインおよびアクリル酸の製造法。
(1) Bismuth, molybdenum, and vanadium,
Cerium, niobium, tantalum, cobalt, chromium, iron,
A catalyst in an oxidized state containing one or more elements selected from the group consisting of nickel, zirconium, tellurium, silver, copper, and phosphorus, or vanadyl pyrophosphate and cerium, niobium, bismuth, and molybdenum. A method for vapor phase oxidation of propane to acrolein and acrylic acid over a catalyst in an oxidized state containing one or more elements selected from the group consisting of tellurium, tungsten, iron, copper, and silver. In this process, the amount of oxygen in the propane-containing feed gas is kept below the stoichiometric amount for the propane to be converted by the reaction, and the reduced catalyst resulting from the reaction is separated from the product stream and converted back into propane. A method for producing acrolein and acrylic acid, characterized by reoxidation before contacting.
(2)プロパンを含有する供給ガスが実質的に酸素を含
有しない請求項1に記載の方法。
2. The method of claim 1, wherein the propane-containing feed gas is substantially oxygen-free.
JP1309097A 1989-11-30 1989-11-30 Preparation of acrolein and acrylic acid Pending JPH03170445A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1309097A JPH03170445A (en) 1989-11-30 1989-11-30 Preparation of acrolein and acrylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1309097A JPH03170445A (en) 1989-11-30 1989-11-30 Preparation of acrolein and acrylic acid

Publications (1)

Publication Number Publication Date
JPH03170445A true JPH03170445A (en) 1991-07-24

Family

ID=17988852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1309097A Pending JPH03170445A (en) 1989-11-30 1989-11-30 Preparation of acrolein and acrylic acid

Country Status (1)

Country Link
JP (1) JPH03170445A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06199731A (en) * 1993-01-05 1994-07-19 Mitsui Toatsu Chem Inc Production of alpha,beta-unsaturated aldehyde
US5380933A (en) * 1993-01-28 1995-01-10 Mitsubishi Kasei Corporation Method for producing an unsaturated carboxylic acid
JPH1057813A (en) * 1996-08-22 1998-03-03 Mitsubishi Chem Corp Manufacture of mixed metal oxide catalyst and acrylic acid production using thereof
WO2000039065A1 (en) * 1998-12-23 2000-07-06 E.I. Du Pont De Nemours And Company Vapor phase oxidation of acrolein to acrylic acid
US6180825B1 (en) 1998-05-21 2001-01-30 Rohm And Haas Company Oxidation of alkanes to unsaturated aldehydes and carboxylic acids using a catalyst containing Mo, V, Te and Nb
US6281384B1 (en) 1998-06-26 2001-08-28 E. I. Du Pont Nemours And Company Vapor phase catalytic oxidation of propylene to acrylic acid
US6337424B1 (en) 2000-04-28 2002-01-08 Saudi Basic Industries Corporation Catalysts oxidation of lower olefins to unsaturated aldehydes, methods of making and using the same
SG89327A1 (en) * 1999-05-13 2002-06-18 Nippon Catalytic Chem Ind Catalysts for production of unsaturated aldehyde and unsaturated carboxylic acid and a process for producing unsaturated aldehyde and unsaturated carboxylic acid using the catalysts
US6437193B1 (en) 1997-07-15 2002-08-20 E. I. Du Pont De Nemours And Company Vapor phase oxidation of propylene to acrolein
JP2005314314A (en) * 2004-04-30 2005-11-10 Mitsubishi Chemicals Corp Manufacturing method of (meth)acrylic acid or (meth)acrolein
US7282604B2 (en) * 2002-09-10 2007-10-16 Arkema Method for the production of acrylic acid from propane, in the absence of molecular oxygen
US7285679B2 (en) 2005-06-22 2007-10-23 Exxonmobil Chemical Patents Inc. Oxidation of alkanes
US8470289B2 (en) 2007-07-16 2013-06-25 Exxonmobil Chemical Patents Inc. Manganese oxides and their use in the oxidation of alkanes
CN103769172A (en) * 2012-10-24 2014-05-07 中国石油化工股份有限公司 Preparation method of catalyst for partial oxidation of propane to prepare acrolein

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS516647A (en) * 1974-06-27 1976-01-20 Ibm
JPS5567335A (en) * 1978-11-17 1980-05-21 Showa Denko Kk Regeneration of oxidizing catalyst

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS516647A (en) * 1974-06-27 1976-01-20 Ibm
JPS5567335A (en) * 1978-11-17 1980-05-21 Showa Denko Kk Regeneration of oxidizing catalyst

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06199731A (en) * 1993-01-05 1994-07-19 Mitsui Toatsu Chem Inc Production of alpha,beta-unsaturated aldehyde
US5380933A (en) * 1993-01-28 1995-01-10 Mitsubishi Kasei Corporation Method for producing an unsaturated carboxylic acid
JPH1057813A (en) * 1996-08-22 1998-03-03 Mitsubishi Chem Corp Manufacture of mixed metal oxide catalyst and acrylic acid production using thereof
US6437193B1 (en) 1997-07-15 2002-08-20 E. I. Du Pont De Nemours And Company Vapor phase oxidation of propylene to acrolein
US6514903B2 (en) 1998-05-21 2003-02-04 Rohm And Haas Company Process for preparing a catalyst
US6180825B1 (en) 1998-05-21 2001-01-30 Rohm And Haas Company Oxidation of alkanes to unsaturated aldehydes and carboxylic acids using a catalyst containing Mo, V, Te and Nb
US6281384B1 (en) 1998-06-26 2001-08-28 E. I. Du Pont Nemours And Company Vapor phase catalytic oxidation of propylene to acrylic acid
US6310240B1 (en) 1998-12-23 2001-10-30 E. I. Du Pont De Nemours And Company Vapor phase oxidation of acrolein to acrylic acid
WO2000039065A1 (en) * 1998-12-23 2000-07-06 E.I. Du Pont De Nemours And Company Vapor phase oxidation of acrolein to acrylic acid
SG89327A1 (en) * 1999-05-13 2002-06-18 Nippon Catalytic Chem Ind Catalysts for production of unsaturated aldehyde and unsaturated carboxylic acid and a process for producing unsaturated aldehyde and unsaturated carboxylic acid using the catalysts
US6337424B1 (en) 2000-04-28 2002-01-08 Saudi Basic Industries Corporation Catalysts oxidation of lower olefins to unsaturated aldehydes, methods of making and using the same
US6620973B2 (en) 2000-04-28 2003-09-16 Saudi Basic Industries Corporation Catalysts for oxidation of lower olefins to unsaturated aldehydes, methods of making and using the same
US7282604B2 (en) * 2002-09-10 2007-10-16 Arkema Method for the production of acrylic acid from propane, in the absence of molecular oxygen
WO2005105714A1 (en) * 2004-04-30 2005-11-10 Mitsubishi Chemical Corporation Process for producing (meth)acrylic acid or (meth)acrolein
JP2005314314A (en) * 2004-04-30 2005-11-10 Mitsubishi Chemicals Corp Manufacturing method of (meth)acrylic acid or (meth)acrolein
US7388107B2 (en) 2004-04-30 2008-06-17 Mitsubishi Chemical Corporation Process for producing (meth)acrylic acid or (meth)acrolein
US7285679B2 (en) 2005-06-22 2007-10-23 Exxonmobil Chemical Patents Inc. Oxidation of alkanes
US8470289B2 (en) 2007-07-16 2013-06-25 Exxonmobil Chemical Patents Inc. Manganese oxides and their use in the oxidation of alkanes
US8658844B2 (en) 2007-07-16 2014-02-25 Exxonmobil Chemical Patents Inc. Manganese oxides and their use in the oxidation of alkanes
CN103769172A (en) * 2012-10-24 2014-05-07 中国石油化工股份有限公司 Preparation method of catalyst for partial oxidation of propane to prepare acrolein
CN103769172B (en) * 2012-10-24 2016-03-02 中国石油化工股份有限公司 A kind of preparation method of propane partial oxidation acrolein catalyst

Similar Documents

Publication Publication Date Title
KR950009710B1 (en) Catalyst and process for producing phthalic anhydride
JP3287066B2 (en) Method for producing acrylic acid
JPH03170445A (en) Preparation of acrolein and acrylic acid
EP2830758B1 (en) Process for making ethylene and acetic acid
NL7908630A (en) PROCESS FOR THE PREPARATION OF PHTALIC ACID ANHYDRIDE AND CATALYST FOR A SIMILAR PROCESS
JPH0582261B2 (en)
KR100972944B1 (en) Method for reactivating catalyst for production of methacrylic acid
US20080139844A1 (en) Method Of Preparing Acrylic Acid From Propane In The Absence
JP4969727B2 (en) Production of phosphorus / vanadium maleic anhydride catalyst
JP2587488B2 (en) Method for regenerating catalyst for oxidative dehydrogenation of isobutyric acid
JPH10128112A (en) Catalyst for vapor phase contact oxidation reaction of isobutane and its preparation
TWI332000B (en) Preparation of maleic anhydride
JP3855298B2 (en) Process for producing alkene and / or oxygen-containing compound
JP3482476B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JPS62132832A (en) Production of methacrylic acid and/or methacrolein
JPH05115783A (en) Catalyst for producing maleic anhydride and preparation of the same
KR101802566B1 (en) Method for continous acrylic acid by partial oxidation of propane and appratus for manufacturing of continous acrylic acid
JPH0463139A (en) Catalyst for production of methacrylic acid
JP4207531B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP3036938B2 (en) Method for oxidizing saturated hydrocarbons
JPH0924277A (en) Catalyst and process for preparing methacrylic acid
JP4067316B2 (en) Catalyst preparation method
US6699999B2 (en) Process for producing pyromellitic anhydride
CN116981653A (en) Method and system for producing target compounds
JP3800676B2 (en) Method for producing glyoxylic acid