JPH0316930A - Production of optical fiber having complicate refractive index distribution - Google Patents

Production of optical fiber having complicate refractive index distribution

Info

Publication number
JPH0316930A
JPH0316930A JP14850389A JP14850389A JPH0316930A JP H0316930 A JPH0316930 A JP H0316930A JP 14850389 A JP14850389 A JP 14850389A JP 14850389 A JP14850389 A JP 14850389A JP H0316930 A JPH0316930 A JP H0316930A
Authority
JP
Japan
Prior art keywords
tube
glass
refractive index
glass tube
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14850389A
Other languages
Japanese (ja)
Inventor
Taiichiro Tanaka
大一郎 田中
Suehiro Miyamoto
宮本 末広
Ryozo Yamauchi
良三 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP14850389A priority Critical patent/JPH0316930A/en
Publication of JPH0316930A publication Critical patent/JPH0316930A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • C03B37/0146Furnaces therefor, e.g. muffle tubes, furnace linings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01211Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01486Means for supporting, rotating or translating the preforms being formed, e.g. lathes
    • C03B37/01493Deposition substrates, e.g. targets, mandrels, start rods or tubes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/22Radial profile of refractive index, composition or softening point
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/36Dispersion modified fibres, e.g. wavelength or polarisation shifted, flattened or compensating fibres (DSF, DFF, DCF)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To surely produce a preform having high dimensional accuracy and giving an optical fiber having a complicate refractive index distribution with excellent dispersion characteristics. etc., by using an outside axial deposition process and rod-in-tube process and forming only the outermost layer by the outer deposition process. CONSTITUTION:A glass soot layer 2 having a refractive index lower than that of a high purity quartz glass tube 1 is deposited on the outer circumference of the glass tube l by outside axial deposition process. An end of the glass tube 1 is closed, a gas-feeding pipe 3 is connected to the other end via a connector and the tube is introduced into a uniform-heating furnace 6. The glass tube is heated while applying inner pressure to the tube with an inert gas supplied through the gas-feeding pipe 3 to convert the glass soot layer 2 into a transparent glass layer. A transparent quartz glass rod having a core clad structure is inserted into the glass tube 1 and the components are melted and integrated by rod-in-tube process. The objective optical fiber having complicate refractive index distribution can be formed by drawing the preform produced by the above procedures.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、分散フラットファイバのような複雑屈折率
分布を有する光ファイバの製造方法に関するもので、光
学的特性の向上ならびに生産性の向上を図ったものであ
る。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method of manufacturing an optical fiber having a complex refractive index distribution such as a dispersion flat fiber, which improves optical characteristics and productivity. It was planned.

(従来の技術) ?来のこの種のファイバの屈折率分布として例えば第5
、6、7図に示すものが知られている。そしてこれらの
場合、中心コアおよびその外側に位置する高屈折率部分
における屈折率の調整はSiO■にGeO■をドーブす
ることで行い、両者の間の低屈折率部分における屈折率
の調整は純粋Sin■かもしくはSiO■にFをドーブ
することで対応している。
(Conventional technology)? For example, the refractive index distribution of this type of fiber in the past is
, 6 and 7 are known. In these cases, the adjustment of the refractive index in the central core and the high refractive index part located outside it is done by doping SiO■ with GeO■, and the adjustment of the refractive index in the low refractive index part between the two is done by pure doping. This is handled by doping F into Sin■ or SiO■.

しかしながら、その製造方法はいずれの場合においても
最終的にコアとなる透囮ガラスロツドの回りに外付け法
により順次所定の屈折率、所定の厚さを有するガラス微
粒子層を積層させ、次いでこのガラス微粒子層を透明ガ
ラス化してブリフォームとなし、このブリフォームを一
端から溶融線引きして所望の複雑屈折率分布を有するフ
ァイバとするものである。
However, in any case, the manufacturing method is to sequentially laminate layers of glass fine particles having a predetermined refractive index and a predetermined thickness around a transparent glass rod, which ultimately becomes the core, by an external method. The layer is made into a transparent vitrification to form a preform, and this preform is melt-drawn from one end to form a fiber having a desired complex refractive index distribution.

(発明が解決しようとする課題) ところがこの方法では屈折率の異なる各ガラス層はガラ
ス微粒子層を経て形成されるため、カサ密度のバラツキ
等により必ずしもその厚さを所定のものとするのは困難
であり、得られるファイバの分散特性にばらつきが生し
るという問題があった。また、得られるファイバの特性
は最終ブリフォームの状態になって始めて判断しつるた
め、製造途中で不具合であっても最後まで作るというこ
とになってしまい生産性の点で問題があった。
(Problem to be Solved by the Invention) However, in this method, each glass layer with a different refractive index is formed through a glass fine particle layer, so it is difficult to always maintain a predetermined thickness due to variations in bulk density, etc. Therefore, there was a problem in that the dispersion characteristics of the obtained fibers varied. Furthermore, since the properties of the resulting fiber can only be determined after it is in the final preformed state, even if there is a problem during production, the process must be continued until the end, which poses a problem in terms of productivity.

(課題を解決するための手段) この発明は、以上の観点から分散特性の安定したこの種
ファイバを生産性良く得る方法を提供するもので、その
特徴とするところは高純度石英系ガラス管の外周に、外
付け法により前記ガラス管の屈折率よりも低い屈折率の
ガラス微粒子層を堆積させ、次いでこのガラス管を均一
加熱炉内に収容し、管内に内圧をかけつつ前記ガラス微
粒子層を透明ガラス化し、しかるのち管内にコア−クラ
ッド型の透明な石英系ガラスロンドを挿入してロッド−
イン−チューブ法によりファイバ化することにある。
(Means for Solving the Problems) From the above points of view, the present invention provides a method for obtaining this type of fiber with stable dispersion characteristics with high productivity. A glass fine particle layer having a refractive index lower than that of the glass tube is deposited on the outer periphery by an external method, and then this glass tube is placed in a uniform heating furnace, and the glass fine particle layer is heated while applying internal pressure inside the tube. It is made into transparent glass, and then a core-clad type transparent quartz glass iron is inserted into the tube to form a rod.
The purpose is to make the fiber into a fiber using the in-tube method.

なお、この発明において、ガラス管内に内圧をかけつつ
、その回りに形成されたガラス微粒子層を透明ガラス化
するのは、その際の加熱によってガラス管が半径方向お
よび長さ方向に収縮し、予め設定した寸法が狂い所定の
径比が得られなくなるのを防止するためである。高純度
石英系ガラス管内に内圧をかける手段としては、例えば
ガラス管の開放端の一方を閉しるか、もしくは縮径して
細孔になし、他方からAr等のガスを送込む等が挙げら
れ、その際のガラス管内圧とその回りに位置される炉心
管内圧との差圧の程度はガラス管の軟化温度が1400
〜1550℃程度の場合、2〜2 0 mmaq程度と
される。
In addition, in this invention, the glass fine particle layer formed around the glass tube is transformed into transparent vitrification while applying internal pressure inside the glass tube. This is to prevent the set dimensions from going out of order and making it impossible to obtain a predetermined diameter ratio. Examples of means for applying internal pressure inside the high-purity quartz glass tube include closing one of the open ends of the glass tube or reducing the diameter to form a pore, and introducing a gas such as Ar from the other side. At that time, the degree of differential pressure between the internal pressure of the glass tube and the internal pressure of the reactor core tubes located around it is such that the softening temperature of the glass tube is 1400°C.
When the temperature is about 1550°C, it is about 2 to 20 mmaq.

(作用) 最外層のみを外付け法により得るとともに、この外付け
法により得られたガラス微粒子層の透明ガラス化に際し
ては、ガラス管を均一炉内に入れて、ガラス管内に内圧
をかけつつ行うようにしたので全ての層を外付け法で形
成することによる寸法制御性の低下、ならびにガラス管
の収縮による寸法のズレが防止され予め設定したとおり
のものとなる。
(Function) Only the outermost layer is obtained by the external coating method, and when the glass fine particle layer obtained by this external coating method is turned into transparent vitrification, the glass tube is placed in a uniform furnace and internal pressure is applied inside the glass tube. This prevents deterioration in dimensional controllability due to forming all layers by the external attachment method, as well as dimensional deviations due to shrinkage of the glass tube, and achieves the preset values.

(実施例) ?径1 5 mm .  外径2 0 mmのGe0 
2ドーブSl02(△=0.2%)の高純度ガラス管を
6 O rpmで回転させつつ、このガラス管に直交し
て酸水素バナを対峙させ、バーナ内にH210  f2
/分、o2l8℃/分、SiCl< 4 0 0 cc
/分、カーテンガスとしてArを8 0 0 cc/分
供給させつつ、ガラス管の軸方向に添って2 0 mm
/分の速度でトラバースさせて、SiO■からなるガラ
ス微粒子層を積層さぜて外径1 0 0 mmとした。
(Example) ? Diameter 15 mm. Ge0 with outer diameter 20 mm
While rotating a 2-dove Sl02 (Δ=0.2%) high-purity glass tube at 6 O rpm, an oxyhydrogen burner was placed perpendicularly to the glass tube, and H210 f2 was placed inside the burner.
/min, o2l8℃/min, SiCl<400cc
20 mm along the axial direction of the glass tube while supplying Ar at 800 cc/min as a curtain gas.
By traversing at a speed of /min, glass fine particle layers made of SiO2 were laminated to have an outer diameter of 100 mm.

このガラス微粒子層が形成されたガラス管を第1図に示
す装置を用いて脱水、透明ガラス化した。図において、
1はGeo2ドーブSiO■ガラス管、2はその上に形
成されたSingからなるガラス微粒子層である。そし
て、ガラス管1の一方の開放端は後述するガラス微粒子
層2の透明ガラス化のために予め酸水素炎で加熱されて
つぶされている。3はガラス管1内に内圧をかけるため
のガス供給管でバイパス4を備えている。5はこのガス
供給管3とガラス管1の開放端とを接続するコネクタで
ある。6は均一加熱炉で、ガラス微粒子層2を長さ方向
に均一に加熱す?ためにガラス微粒子層2よりも十分に
長い発熱体7を備えている。8は発熱体7内に位置され
た石英炉心管で、一端は閉しられ、他端には蓋9が取付
けられており、この蓋9の中心口にガラス管1が挿通さ
れて、ガラス微粒子層2を有ずるガラス管1が石英炉心
管8内に収容される。10は石英炉心管8の側面に設け
られたガス供給口、1)は石英炉心管8の一端に設けら
れたガス排出口である。
The glass tube on which the glass fine particle layer was formed was dehydrated and made into transparent vitrification using the apparatus shown in FIG. In the figure,
1 is a Geo2-doped SiO2 glass tube, and 2 is a glass fine particle layer made of Sing formed thereon. One open end of the glass tube 1 is previously heated and crushed with an oxyhydrogen flame in order to make the glass fine particle layer 2 transparent, which will be described later. 3 is a gas supply pipe for applying internal pressure inside the glass tube 1, and is provided with a bypass 4. A connector 5 connects the gas supply pipe 3 and the open end of the glass tube 1. 6 is a uniform heating furnace that heats the glass fine particle layer 2 uniformly in the length direction. Therefore, the heating element 7 is provided which is sufficiently longer than the glass fine particle layer 2. Reference numeral 8 denotes a quartz furnace core tube located inside the heating element 7, one end of which is closed and a lid 9 attached to the other end. A glass tube 1 with a layer 2 is housed in a quartz furnace tube 8 . 10 is a gas supply port provided on the side surface of the quartz furnace tube 8; 1) is a gas discharge port provided at one end of the quartz furnace tube 8.

以上の構成において、炉心管8内にガス供給口10から
塩素ガスを供給するとともにその内部温度を1000゜
Cに維持して1時間熱処理してガラス微粒子層を脱水し
た。次に石英炉心管8内にガス供給口10からHeガス
を流すとともにその内部温度を1550°Cに上げた。
In the above configuration, chlorine gas was supplied into the furnace core tube 8 from the gas supply port 10, and the internal temperature was maintained at 1000° C., and heat treatment was performed for 1 hour to dehydrate the glass fine particle layer. Next, He gas was flowed into the quartz furnace tube 8 from the gas supply port 10, and the internal temperature was raised to 1550°C.

一方、ガラス管1内にArガスを供給して管内圧力を2
 0 mmaqに維持した。2時間後ガラス管1を取出
したところ、SiO■ガラス微粒子層2は完全に透明ガ
ラス化されており、その厚さは1 5 mmであった。
On the other hand, Ar gas is supplied into the glass tube 1 to reduce the pressure inside the tube to 2.
It was maintained at 0 mmaq. When the glass tube 1 was taken out after 2 hours, the SiO2 glass fine particle layer 2 was completely transformed into transparent glass, and its thickness was 15 mm.

またガラス管1は収縮しておらず最初の内径を維持して
いた。
Furthermore, the glass tube 1 did not shrink and maintained its initial inner diameter.

?予めVAD法により若干のクラッド部を持つGI型で
、コアとなる部分の直径がl O mmおよび比屈折率
差Δが0.8%のGeO■−SiOzガラス、クラッド
となる部分の厚さが1.5 mm、コアとなる最外部の
屈折率との比屈折率差が−0.4%のFドーブSi02
ガラスロッドを用意した。そして透明ガラス化を終え炉
内から取出された前記ガラス管l内にこの日ッドを収容
し、両者の隙間にSF.を1I2/分、0■5 0 0
 cc/分流しながら外部から酸水素炎で加熱して溶融
一休化して光ファイバ母材とした。得られた母材の屈折
率分布を測定したところ第2図のごとくであった。この
母材を一端から溶融線引きして直径125μmのファイ
バとしたところ第3図に示す広帯域で低分散のファイバ
が得られた。またその損失波長特性を調べたところ第4
図に示すように低損失のものであった。
? GeO■-SiOz glass with a slight cladding part formed by the VAD method in advance, the diameter of the core part is 10 mm and the relative refractive index difference Δ is 0.8%, and the thickness of the cladding part is F-dove Si02 with a thickness of 1.5 mm and a relative refractive index difference of -0.4% from the refractive index of the outermost part that becomes the core.
Prepare a glass rod. After transparent vitrification, the glass tube 1 was taken out from the furnace, and the glass tube 1 was taken out. 1I2/min, 0■5 0 0
The mixture was heated from the outside with an oxyhydrogen flame while flowing at cc/split to melt and temporarily suspend the melting process to obtain an optical fiber base material. When the refractive index distribution of the obtained base material was measured, it was as shown in FIG. When this base material was drawn from one end into a fiber having a diameter of 125 μm, a broadband and low dispersion fiber as shown in FIG. 3 was obtained. In addition, when we investigated the loss wavelength characteristics, we found that
As shown in the figure, the loss was low.

因みに、従来の方法で第3図に示す程度にまで広帯域で
低分散のファイバを得るためにはブリフ才一ムを3〜4
本つくって初めて得ることができる。
Incidentally, in order to obtain a fiber with a wide band and low dispersion as shown in Fig. 3 using the conventional method, the brief efficiency must be 3 to 4.
You can only get it by writing a book.

(発明の効果) この発明は、以上のように複雑屈折率分布を有するファ
イバを得るに際し、出発部材として高純度ガラス管を用
意し、寸法制御の困難なガラス微粒子層の形成はこのガ
ラス管の回りの層だけとし、その透明ガラス化に当たっ
てはガラス管が収縮しないように管内に内圧をかけつつ
行うようにしたので、寸法制度の優れた母材が得られ、
以って分散特性に優れたファイバを得ることができる。
(Effects of the Invention) In order to obtain a fiber having a complex refractive index distribution as described above, the present invention prepares a high-purity glass tube as a starting material, and forms a glass fine particle layer whose size is difficult to control using this glass tube. Only the surrounding layer was used, and the process of making it transparent was done while applying internal pressure inside the glass tube to prevent it from shrinking, so a base material with excellent dimensional accuracy was obtained.
Therefore, a fiber with excellent dispersion characteristics can be obtained.

また、この発明方法によると寸法制度の優れた母材を高
確率で得ることができるので歩留りが向上し、以って生
産性の向上を図ることができるという副次的効果が得ら
れる。
Further, according to the method of the present invention, a base material with excellent dimensional accuracy can be obtained with a high probability, so that the yield is improved, and the secondary effect is that productivity can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の方法の一行程を示す説明図、第2図
は、この発明の方法によって得られた光ファイバ母材の
屈折率分布図、第3図は、この発明の方法によって得ら
れた光ファイバの分散波長特性図、第4図はこの発明方
法によって得られた光ファイバの損失波長特性図、第5
〜7図は複雑屈折率分布ファイバの屈折率分布図。
FIG. 1 is an explanatory diagram showing one step of the method of the present invention, FIG. 2 is a refractive index distribution diagram of the optical fiber preform obtained by the method of the present invention, and FIG. Figure 4 shows the dispersion wavelength characteristic diagram of the optical fiber obtained by the method of this invention, and Figure 5 shows the loss wavelength characteristic diagram of the optical fiber obtained by the method of the present invention.
Figures 7 to 7 are refractive index distribution diagrams of complex refractive index distribution fibers.

Claims (1)

【特許請求の範囲】[Claims] (1)高純度石英系ガラス管の外周に、外付け法により
前記ガラス管の屈折率よりも低い屈折率のガラス微粒子
層を堆積させ、次いでこのガラス管を均一加熱炉内に収
容し、管内に内圧をかけつつ前記ガラス微粒子層を透明
ガラス化し、しかるのち管内にコア−クラッド型の透明
な石英系ガラスロッドを挿入してロッド−イン−チュー
ブ法によりファイバ化することを特徴とする複雑屈折率
分布を有する光ファイバの製造方法。
(1) A layer of glass fine particles having a refractive index lower than that of the glass tube is deposited on the outer periphery of a high-purity quartz-based glass tube by an external method, and then this glass tube is placed in a uniform heating furnace, and inside the tube. The complex refraction method is characterized in that the glass fine particle layer is made into transparent glass while applying internal pressure to the tube, and then a core-clad type transparent quartz glass rod is inserted into the tube to make it into a fiber by the rod-in-tube method. A method of manufacturing an optical fiber having a rate distribution.
JP14850389A 1989-06-13 1989-06-13 Production of optical fiber having complicate refractive index distribution Pending JPH0316930A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14850389A JPH0316930A (en) 1989-06-13 1989-06-13 Production of optical fiber having complicate refractive index distribution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14850389A JPH0316930A (en) 1989-06-13 1989-06-13 Production of optical fiber having complicate refractive index distribution

Publications (1)

Publication Number Publication Date
JPH0316930A true JPH0316930A (en) 1991-01-24

Family

ID=15454218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14850389A Pending JPH0316930A (en) 1989-06-13 1989-06-13 Production of optical fiber having complicate refractive index distribution

Country Status (1)

Country Link
JP (1) JPH0316930A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0835227A1 (en) * 1996-04-29 1998-04-15 Corning Incorporated Method of making optical fibers
WO2001032572A1 (en) * 1999-11-02 2001-05-10 Heraeus Quarzglas Gmbh & Co. Kg Method for producing a quartz glass blank for optical waveguides and quartz glass blank produced according to this method
EP1496023A1 (en) * 2002-04-16 2005-01-12 Sumitomo Electric Industries, Ltd. Optical fiber preform producing method, optical fiber producing method, and optical fiber
JP2007292758A (en) * 2006-04-24 2007-11-08 Verigy (Singapore) Pte Ltd Device, system, and method for processing signal between tester and plurality of devices to be tested by one-time touchdown of probe at high temperature
WO2012163644A1 (en) * 2011-05-27 2012-12-06 J-Plasma Gmbh Method for producing a semifinished part for the manufacture of an optical fiber which is optimized in terms of bending

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0835227A1 (en) * 1996-04-29 1998-04-15 Corning Incorporated Method of making optical fibers
EP0835227A4 (en) * 1996-04-29 1998-08-19 Corning Inc Method of making optical fibers
WO2001032572A1 (en) * 1999-11-02 2001-05-10 Heraeus Quarzglas Gmbh & Co. Kg Method for producing a quartz glass blank for optical waveguides and quartz glass blank produced according to this method
EP1496023A1 (en) * 2002-04-16 2005-01-12 Sumitomo Electric Industries, Ltd. Optical fiber preform producing method, optical fiber producing method, and optical fiber
EP1496023A4 (en) * 2002-04-16 2011-06-22 Sumitomo Electric Industries Optical fiber preform producing method, optical fiber producing method, and optical fiber
JP2007292758A (en) * 2006-04-24 2007-11-08 Verigy (Singapore) Pte Ltd Device, system, and method for processing signal between tester and plurality of devices to be tested by one-time touchdown of probe at high temperature
WO2012163644A1 (en) * 2011-05-27 2012-12-06 J-Plasma Gmbh Method for producing a semifinished part for the manufacture of an optical fiber which is optimized in terms of bending

Similar Documents

Publication Publication Date Title
US4157906A (en) Method of drawing glass optical waveguides
JPS5945609B2 (en) Optical fiber manufacturing method
JPS61155225A (en) Manufacture of optical wave guide tube
US3933453A (en) Flame hydrolysis mandrel and method of using
US4528009A (en) Method of forming optical fiber having laminated core
JPS61219729A (en) Manufacture of optical waveguide tube
RU2236386C2 (en) Method of manufacturing optic fiber intermediate product
EP0024412B1 (en) Optical fiber fabrication process
JPH0316930A (en) Production of optical fiber having complicate refractive index distribution
JP2005092211A (en) Low loss optical fiber and manufacturing method of optical fiber preform
JPH0761831A (en) Production of porous glass preform for optical fiber
JPS591221B2 (en) Method for manufacturing rod-shaped base material for optical transmission fiber
JP4104558B2 (en) Manufacturing method of glass tube
JPH07230015A (en) Dispersion shift type single-mode optical fiber, and preform for the same and its manufacture
JPH04231336A (en) Production of optical fiber preform
JPH0769665A (en) Optical fiber preform, optical fiber and production thereof
JPS6356178B2 (en)
JPS63248733A (en) Production of single-mode optical fiber base material
JPS59141436A (en) Manufacture of optical fiber preform
JPH0460930B2 (en)
JP2618260B2 (en) Method for producing intermediate for optical fiber preform
JPH0798671B2 (en) Method for manufacturing preform for optical fiber
JPH0327491B2 (en)
JPS62162639A (en) Production of preform for w-type single mode optical fiber
JPH04119940A (en) Production of glass body