JPH03169001A - Dry-process stabilization of metal powder - Google Patents

Dry-process stabilization of metal powder

Info

Publication number
JPH03169001A
JPH03169001A JP1307516A JP30751689A JPH03169001A JP H03169001 A JPH03169001 A JP H03169001A JP 1307516 A JP1307516 A JP 1307516A JP 30751689 A JP30751689 A JP 30751689A JP H03169001 A JPH03169001 A JP H03169001A
Authority
JP
Japan
Prior art keywords
oxygen
temperature
gas
magnetic powder
metal magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1307516A
Other languages
Japanese (ja)
Inventor
Masahiro Miyauchi
雅弘 宮内
Tadashi Ishiguro
忠 石黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1307516A priority Critical patent/JPH03169001A/en
Publication of JPH03169001A publication Critical patent/JPH03169001A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/061Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder with a protective layer

Abstract

PURPOSE:To secure and stabilize a high sigmas (magnetic saturation) while a good stability against oxidation is being kept by a method wherein the surface is oxidized uniformly up to a metastable state and, after that, heated and annealed. CONSTITUTION:A magnetic metal powder which is composed mainly of iron is made to flow by using an inert gas at a constant temperature of room temperature to 120 deg.C; oxygen gas is mixed continuously in such a way that an increase rate in the concentration of oxygen is 10 to 2000ppm/min. When a temperature inside a fluid layer reaches its peak and/or when oxygen is detected in a gas at the exit side, a supply operation of oxygen is stopped. After that, the temperature inside the layer is heated up to 150 to 600 deg.C and is held for 0.2 to 24hrs; after that, the layer is cooled; the oxygen is mixed continuously by the same method. When the temperature inside the fluid layer reaches its peak and/or when the oxygen is detected in the gas at the exit side, the Concentration of oxygen is held. When the concentration of oxygen at the exit side and at the entrance side becomes equal and/or when the temperature inside the layer is lowered to a temperature at a start of a stabilization operation, the layer is cooled down to room temperature and the stabilization operation is finished. Thereby, a uniform and dense film is formed and a high sigmas and a high stability against oxidation are obtained.

Description

【発明の詳細な説明】 産業上の利用分野 この発明はSi02で表面処理された鉄を主体とする磁
気記録用、金属磁性粉末の乾式安定化処理に関するもの
である. 従来の技術 鉄を主体とする磁気記録用金属磁性粉末は保磁力(Hc
).飽和磁化(σS)が大きく高密度記録が可能であり
、今後の磁気記録の中核を威す材料として注目されてい
る.しかしながらこの金属磁性粉末は酸化安定性が劣る
という最大の欠点を有する.即ち,比表面積が大きく化
学的に極めて活性であるために、発火の危険性や酸化に
よる経時劣化が大きい.またこれらの欠点は微粒子化し
た場合やSiモで表面処理した場合に顕著になって〈る
. L,かしながら今後、磁気記録用金属磁性粉末は記録′
pE度向上やノイズ低減のために微粒子化する傾向にあ
り、酸化安定性の問題がさらにクローズアップされてく
ることが容易に予想される.そこで、微粒子化しても高
σSを保持し、かつ大気中に取り出しても発火せず,ま
た経時劣化を抑制する安定化処理技術の確立が待ち望ま
れている.これまでに様々な安定化方法が提案されてお
り、その中でも不活性ガス中で加熱焼鈍することで酸化
皮膜を結晶化させ、安定性を向上させる方法が知られて
いるが(特開昭81− 154112、特開昭82− 
112702、特開昭82一目2703など),加熱焼
鈍中に酸化皮膜が再活性化されるため、再び安定化が必
要となり、σSが必要以上に低下する.そのため微粒子
金属磁性粉末の安定化処理方法として満足できる方法と
はいい難い. 発明が解決しようとする課題 従来の方法では、不活性ガス中で加熱焼鈍する事により
安定性は向上するものの,再安定化によるσSの低下は
避けられず、微粒子化した場合に酸化安定性とσSを両
立させることは極めて困難となってくる. 本発明は微粒子金属磁性粉末において、表面を準安定化
状態まで均一に酸化した後に、加熱焼鈍することでこの
問題を解決し,酸化安定性を良好に保ったまま高σSを
確保できる磁気記録用、微粒子金属磁性粉末の安定化方
法を提供するものである. 課題を解決するための手段 本発明は、鉄を主体とする金属磁性粉末を常温〜120
℃の一定温度で不活性ガスで流動させ、酸素濃度の増加
率が毎分10〜2000ppmとなるように酸素ガスを
混合し続け、流動層内の温度がピークに達した時点およ
び/または出側ガス中に酸素を検出した時点で酸素の供
給を遮断する.その後、層内温度を150〜600℃ま
で加熱し0.2〜24時間保持した後に冷却し、前述と
同様の方法で酸素を混合し続ける. 流動層内の温度がピークに達した時点および/または出
側ガス中に酸素を検出した時点で酸素濃度を保持し、出
側、入側の酸素濃度が等しくなった時点および/または
層内温度が安定化開始時の温度まで低下した時点で,室
温まで冷却し安定化を終了する. その結果、均一かつ緻密な酸化皮膜を形威し、高σS、
高酸化安定性を付与する磁気記録用微粒子金属磁性粉末
の安定化方法である. 以下に本発明を詳細に説明する. 本発明において,金属磁性粉末を均一に酸化するために
は、適正な流動状態にあることが大切であり、そのため
金属磁性粉末は造粒物を用いることが望ましい.この金
属磁性粉末の造粒物の粒度範囲は0.1〜5s+一が適
切である.すなわち粒度が0.1■未満では流動層外へ
の飛散が著しく、逆に5■超では流動化の状態が悪く均
一な酸化が出来ない.金属磁性粉末を流動化する際に使
用する不活性ガスはHe. Xs, Ar.(:02 
, N2等があるが、通常は西ガスを用いるのが実用的
である.次に流動層内の温度が常温〜120℃で一定と
なるように流動層外周の温度を制御する.この時の温度
が安定化開始温度であり、金属磁性粉末表面の酸化量を
決定し、σSをコントロールする上で極めて重要である
.この際の温度が常温より低くなると表面酸化が充分に
行なわれず、この後の加熱焼鈍による結晶化の効果が十
分発揮されない.またこの時の温度が120℃超では表
面酸化が必要以上に進み高いσSは得られない.ここで
常温とはO〜30℃である. 次に、金属磁性粉末の造粒物を不活性ガスで流動化させ
,ここに酸素ガスあるいは空気を混合していき金属磁性
粉末表面を徐酸化する.この酸化方法が木発明の第1工
程である.すなわち、流動層外周の温度を一定に保ちな
がら,酸素濃度の増加率が一定となるように、不活性ガ
スに酸素ガスまたは空気を混合していく. ここで酸素濃度増加率は毎分10〜200OPP雪とす
るのが好ましい.酸素濃度増加率が毎分topp口未満
では安定化に長時間を要し実用的ではない.逆に酸素濃
度増加率が毎分2000ppm超では酸化にむらが生じ
て効果的な安定化ができず、高いσSが得られない. このようにして徐酸化を続けて行くと、その温度におい
て金属磁性粉末が準安定化するに要する酸化皮膜を形威
したところで,S化速度は自動的に減速する.つまり上
昇してきた流動層内の温度が低下し、同時に出側ガス中
に酸素が検出されるため、準安定化状態に達したことが
極めて容易に判断できる. この準安定化状態とは、ほとんどの酸化皮膜は完威して
いるが,部分的に活性点が残存している状態である.大
気中に安定に取り出すためにはさらに酸化が必要であり
、この傾向は金属磁性粉末がSi02で表面処理されて
いる場合に顕著に現れる. 準安定化状態まで酸化した後に不活性ガス中で加熱焼鈍
することが本発明の第2工程であり、酸化安定性を高く
保ち、σSを向上することができる.すなわち、焼鈍前
の初wJ酸化が不十分の場合、つまり準安定化状態とな
る前に初期酸化を終了した場合は,加熱焼鈍により得ら
れる安定性の向上効果が小さい.逆に初期酸化が過剰の
場合、つまり準安定化状態よりも酸化が進んでから加熱
焼鈍した場合は,酸化安定性は向上するが,加熱焼鈍後
の再安定化のためにσSが低下してしまう. 加熱焼鈍温度は150〜600℃が適当である.150
℃未満では加熱焼鈍の効果が得られ難く,逆に600℃
超では粒子が焼結し、形状を悪化させてしまう.加熱焼
鈍時間は温度によって決定されるが、0.2〜24時間
が適当である.これが0.2時間未満では加熱焼鈍の効
果が現れにくく、逆に24時間超では実用的ではない. 加熱焼鈍することで金属磁性粉末の酸化皮膜は結晶化す
るが、酸素の拡散等が起こり再び活性になるため、加熱
焼鈍後に再安定化する第3工程が必要である.この再酸
化は加熱焼鈍後、常温〜120℃まで冷却したのち第1
工程と同様の方法で行ない、温度ピークおよび/または
出側ガス中に酸素を検出した時点で入側酸素濃度を保定
し、出側酸素濃度が入側酸素濃度と等しくなった時点で
,流動層の温度を常温まで冷却し安定化処理を終了する
.この工程によりσSを高く保つことができる. 尚、第l工程の酸化が不十分でも、第3工程を完全に行
えば、本発明の目的が達或される. このように準安定化状態まで初期安定化し、その後不活
性ガス中で加熱焼鈍後,再安定化することにより、均一
かつ緻密な酸化皮膜を有しσSが高く、酎食性の良好な
金属磁性粉末を製造することができる. 実施例l 安定化に用いた流動層は内径40mmのバイレックスガ
ラス製であり,目皿にはガラスフィルターを使用してあ
る.この流動層は2重管になっており、外側にジャケッ
トを設け、恒温水槽より温水を循環させることで流動層
内の温度制御を行なラ. 還元直後の粒度範囲0.25〜0.5s■の金属磁性粉
末の造粒物28gを,大気に触れさせることなく安定化
に用いる流動層に移送した.ここで使用した金属磁性粉
末は長袖0.15gmの微粒子であり,Si%で表面処
理し,480℃で還元したものである.この金属磁性粉
末の安定化処理前の磁気特性は、トルエンに浸漬し,自
然風乾した状態で、Hcl7140e、cr s 14
4emu/g、角型比0.52であった.まず第1工程
として,流動層内の温度を80℃に保ち、10 fL 
/winで窒素ガスを吹き込むことで強磁性金属粉末を
良好な流動状態とした.次いで,この窒素ガスに空気を
毎分10+aQ/sin (酸素濃度増加=11K0.
02%/sin)で混合し続けた.安定化開始後2B分
で流gh層内の温度は73℃でピークに達し、出側の酸
素濃度が検出された.この時の入側酸素濃度は0.52
%であった. この時点で空気の導入を中止し、第2工程として、流動
層の温度を400℃まで昇温し1時間加熱焼鈍した. その後,再び流動層の温度を80℃とし、第3工程とし
て前記第l工程と同様の方法で再安定化を行なった.再
安定化開始後12分で流動層内の温度は64℃でピーク
に達し、出側の酸素濃度が検出された.この時の入{I
I酸稟濃度は0.24%であった.この時点で入側酸素
濃度を0.24%で10分保定し,出側酸素濃度が0.
22%となったところで流動層を室温(15℃)まで冷
却し安定化処理を終えた.実施例2 加熱焼鈍温度を300℃とした以外は実施例1と同様の
方法で安定化処理を行なった. 実施例3 初期酸化を酸化開始後15分(酸素濃度0.3%)で打
ち切った以外は、実施例1と同様の方法で安定化処理を
行なった.この時、再安定化には2l分を要した. 実施例4 安定化開始温度を24℃とした以外は、実施例lと同様
の方法で安定化処理を行なった.この時、初期安定化に
は20分、再安定化には17分を要した. 比較例1 実施例lの第1工程と同様の方法で安定化を行い、温度
ピークに達したところで入側酸素濃度を一定に保ち、出
側酸素濃度入側酸素濃度と等しくなった後に流動層を室
温まで冷却し安定化を終了した. 第l表に、各実施例および比較例の方法で得られた、酸
化皮膜を有する金属磁性粉末のVSMによる最大印加磁
場1 0kOeでの磁気特性、DTAを用いた昇温速度
10℃/winでの発火点、および60℃、相対温度9
0%、1週1’lJl後のσSを示した.発明の効果 本発明の方法により,微粒子化された金属磁性粉末にお
いても、高σS、かつ高酸化安定性を付与する安定化処
理が可能となり、発火の危険性がなく、磁気特性が優れ
、経時劣化の少ない酸化皮膜を有する金属磁性粉末が得
られた.また本発明による方法は安定化処理の終点判定
が極めて容易であり、しかも短時間で処理を終了できる
ために工業的スケールでの実施においても実用的な方法
である.
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to dry stabilization treatment of metal magnetic powder for magnetic recording, mainly made of iron whose surface has been treated with Si02. Conventional technology The metal magnetic powder for magnetic recording mainly made of iron has a coercive force (Hc
). It has a large saturation magnetization (σS) and enables high-density recording, and is attracting attention as a material that will play a central role in future magnetic recording. However, this metal magnetic powder has the biggest drawback of poor oxidation stability. In other words, because it has a large specific surface area and is extremely chemically active, it poses a high risk of ignition and deteriorates over time due to oxidation. Furthermore, these drawbacks become more noticeable when the particles are made into fine particles or when the surface is treated with SiMo. However, in the future, metal magnetic powder for magnetic recording will not be used for recording.
There is a trend toward finer particles in order to improve the pE degree and reduce noise, and it is easy to predict that the problem of oxidation stability will become more of a focus. Therefore, there is a need for the establishment of a stabilizing treatment technology that maintains a high σS even after being reduced to fine particles, does not ignite even when taken out into the atmosphere, and suppresses deterioration over time. Various stabilization methods have been proposed so far, and among them, a method is known in which the stability is improved by crystallizing the oxide film by heating and annealing it in an inert gas (Japanese Unexamined Patent Publication No. 81 - 154112, JP-A-1982-
112702, Japanese Unexamined Patent Publication No. 112702, JP-A-1982-112 Ichimoku 2703, etc.), the oxide film is reactivated during heat annealing, so stabilization is required again, and σS decreases more than necessary. Therefore, it is difficult to say that this is a satisfactory method for stabilizing fine-grained metal magnetic powder. Problems to be Solved by the Invention In the conventional method, although the stability is improved by heating and annealing in an inert gas, a decrease in σS due to restabilization is unavoidable, and when the particles are made into fine particles, the oxidation stability It becomes extremely difficult to achieve both σS. The present invention solves this problem by uniformly oxidizing the surface of fine-grained metal magnetic powder to a quasi-stable state and then annealing it by heating. , provides a method for stabilizing fine particle metal magnetic powder. Means for Solving the Problems The present invention provides metal magnetic powder mainly composed of iron at room temperature to 120°C.
Fluidize with inert gas at a constant temperature of ℃, continue to mix oxygen gas so that the rate of increase in oxygen concentration is 10 to 2000 ppm per minute, and when the temperature in the fluidized bed reaches its peak and/or at the exit side When oxygen is detected in the gas, the oxygen supply is cut off. Thereafter, the temperature inside the layer is heated to 150 to 600°C, held for 0.2 to 24 hours, and then cooled, and oxygen is continued to be mixed in the same manner as described above. The oxygen concentration is maintained at the time when the temperature in the fluidized bed reaches its peak and/or when oxygen is detected in the outlet gas, and the time when the oxygen concentrations on the outlet and inlet sides become equal and/or the temperature in the bed is maintained. When the temperature has decreased to the temperature at the start of stabilization, it is cooled to room temperature and stabilization is completed. As a result, a uniform and dense oxide film is formed, with high σS,
This is a method for stabilizing fine-grain metal magnetic powder for magnetic recording that provides high oxidation stability. The present invention will be explained in detail below. In the present invention, in order to uniformly oxidize the metal magnetic powder, it is important that the metal magnetic powder be in an appropriate fluid state, and therefore it is preferable to use granules as the metal magnetic powder. The appropriate particle size range of the granulated metal magnetic powder is 0.1 to 5s+1. That is, if the particle size is less than 0.1 sq., scattering outside the fluidized bed is significant, whereas if it exceeds 5 sq., fluidization is poor and uniform oxidation cannot be achieved. The inert gas used to fluidize the metal magnetic powder is He. Xs, Ar. (:02
, N2, etc., but it is usually practical to use Western gas. Next, the temperature around the fluidized bed is controlled so that the temperature within the fluidized bed remains constant between room temperature and 120°C. The temperature at this time is the stabilization start temperature, which is extremely important in determining the amount of oxidation on the surface of the metal magnetic powder and controlling σS. If the temperature at this time is lower than room temperature, sufficient surface oxidation will not occur, and the crystallization effect of subsequent heat annealing will not be fully demonstrated. Furthermore, if the temperature at this time exceeds 120°C, surface oxidation will proceed more than necessary, making it impossible to obtain a high σS. Here, normal temperature is 0 to 30°C. Next, the granulated metal magnetic powder is fluidized with an inert gas, and oxygen gas or air is mixed therein to slowly oxidize the surface of the metal magnetic powder. This oxidation method is the first step in wood invention. In other words, while keeping the temperature around the fluidized bed constant, oxygen gas or air is mixed with the inert gas so that the rate of increase in oxygen concentration remains constant. Here, it is preferable that the oxygen concentration increase rate is 10 to 200 OPP snow per minute. If the rate of increase in oxygen concentration is less than TOPP per minute, it will take a long time to stabilize, which is not practical. On the other hand, if the oxygen concentration increase rate exceeds 2000 ppm per minute, oxidation becomes uneven and effective stabilization cannot be achieved, making it impossible to obtain a high σS. If gradual oxidation is continued in this manner, the rate of sulfurization will automatically slow down once the oxide film required to make the metal magnetic powder metastable at that temperature is formed. In other words, the temperature inside the fluidized bed, which has been rising, decreases, and at the same time oxygen is detected in the outlet gas, making it extremely easy to determine that a metastable state has been reached. This metastable state is a state in which most of the oxide film is completely destroyed, but some active sites remain. Further oxidation is necessary for stable extraction into the atmosphere, and this tendency is noticeable when the metal magnetic powder is surface-treated with Si02. The second step of the present invention is to oxidize to a quasi-stable state and then heat and anneal in an inert gas, which makes it possible to maintain high oxidation stability and improve σS. That is, if the initial wJ oxidation before annealing is insufficient, that is, if the initial oxidation is completed before a metastable state is reached, the effect of improving stability obtained by heat annealing is small. On the other hand, if initial oxidation is excessive, that is, if heating and annealing is performed after oxidation has progressed beyond the metastable state, oxidation stability will improve, but σS will decrease due to restabilization after heating and annealing. Put it away. The suitable heating annealing temperature is 150 to 600°C. 150
It is difficult to obtain the effect of heat annealing below 600°C.
If the temperature is too high, the particles will sinter and the shape will deteriorate. The heating annealing time is determined by the temperature, but 0.2 to 24 hours is appropriate. When this time is less than 0.2 hours, the effect of heat annealing is difficult to appear, and on the other hand, when it is more than 24 hours, it is not practical. Although the oxide film of the metal magnetic powder crystallizes by heating and annealing, it becomes active again due to oxygen diffusion, etc., so a third step of restabilizing it is necessary after heating and annealing. This reoxidation is carried out after heating and annealing, and after cooling from room temperature to 120℃,
The process is carried out in the same manner as in the process, and the inlet oxygen concentration is maintained when the temperature peak and/or oxygen is detected in the outlet gas, and when the outlet oxygen concentration becomes equal to the inlet oxygen concentration, the fluidized bed is The temperature is cooled down to room temperature and the stabilization process is completed. This process allows σS to be kept high. Incidentally, even if the oxidation in the first step is insufficient, the object of the present invention can be achieved as long as the third step is performed completely. In this way, by initially stabilizing to a quasi-stable state and then restabilizing after heating and annealing in an inert gas, a metal magnetic powder with a uniform and dense oxide film, high σS, and good corrosion resistance is produced. can be manufactured. Example 1 The fluidized bed used for stabilization was made of Virex glass with an inner diameter of 40 mm, and a glass filter was used for the perforated plate. This fluidized bed is a double pipe, with a jacket installed on the outside, and the temperature inside the fluidized bed is controlled by circulating hot water from a constant temperature water tank. Immediately after reduction, 28 g of granulated metal magnetic powder with a particle size range of 0.25 to 0.5 s<2> was transferred to a fluidized bed used for stabilization without exposure to the atmosphere. The metal magnetic powder used here was a long sleeve 0.15 gm fine particle, surface treated with Si% and reduced at 480°C. The magnetic properties of this metal magnetic powder before stabilization treatment were as follows: Hcl7140e, cr s 14
It was 4 emu/g and the squareness ratio was 0.52. First, in the first step, the temperature in the fluidized bed was maintained at 80°C, and 10 fL
The ferromagnetic metal powder was brought into a good fluid state by blowing nitrogen gas at /win. Next, air was added to this nitrogen gas at a rate of 10+aQ/sin per minute (oxygen concentration increase=11K0.
02%/sin). 2B minutes after the start of stabilization, the temperature in the flowing GH layer reached a peak of 73°C, and the oxygen concentration on the outlet side was detected. At this time, the inlet oxygen concentration is 0.52
%Met. At this point, the introduction of air was stopped, and in the second step, the temperature of the fluidized bed was raised to 400°C and heat annealing was performed for 1 hour. Thereafter, the temperature of the fluidized bed was raised to 80° C. again, and as a third step, restabilization was performed in the same manner as in the first step. Twelve minutes after the start of restabilization, the temperature within the fluidized bed reached a peak of 64°C, and the oxygen concentration on the outlet side was detected. At this time {I
The I acid concentration was 0.24%. At this point, the inlet oxygen concentration was held at 0.24% for 10 minutes, and the outlet oxygen concentration was 0.24%.
When the concentration reached 22%, the fluidized bed was cooled to room temperature (15°C) to complete the stabilization treatment. Example 2 Stabilization treatment was carried out in the same manner as in Example 1 except that the heating annealing temperature was 300°C. Example 3 Stabilization treatment was carried out in the same manner as in Example 1, except that the initial oxidation was stopped 15 minutes after the start of oxidation (oxygen concentration 0.3%). At this time, it took 2 liters to restabilize. Example 4 Stabilization treatment was carried out in the same manner as in Example 1, except that the stabilization start temperature was 24°C. At this time, initial stabilization took 20 minutes and re-stabilization took 17 minutes. Comparative Example 1 Stabilization was performed in the same manner as in the first step of Example 1, and when the temperature peak was reached, the inlet oxygen concentration was kept constant, and after the outlet oxygen concentration became equal to the inlet oxygen concentration, the fluidized bed Stabilization was completed by cooling to room temperature. Table 1 shows the magnetic properties of metal magnetic powders with oxide films obtained by the method of each example and comparative example at a maximum applied magnetic field of 10 kOe using VSM, and at a heating rate of 10°C/win using DTA. ignition point of and 60°C, relative temperature 9
0%, σS after 1 week and 1'lJl. Effects of the Invention The method of the present invention makes it possible to perform stabilization treatment that imparts high σS and high oxidation stability even to finely divided metal magnetic powders.There is no risk of ignition, excellent magnetic properties, and stability over time. Metal magnetic powder with an oxide film with little deterioration was obtained. Furthermore, the method according to the present invention makes it extremely easy to determine the end point of the stabilization treatment, and the treatment can be completed in a short time, making it a practical method even when implemented on an industrial scale.

Claims (1)

【特許請求の範囲】  以下の工程により鉄を主体とする磁気記録用、微粒子
金属磁性粉末を安定化することを特徴とする磁気記録用
、微粒子金属磁性粉末の乾式安定化方法。 (イ)常温〜120℃の一定温度で金属磁性粉末を不活
性ガスで流動させ、前記不活性ガス中に濃度の増加率が
毎分10〜2,000ppmとなるように酸素ガスを混
合し、流動層内の温度がピークに達した時点および/ま
たは出側ガス中に酸素を検出した時点で酸素の供給を遮
断する第一工程、 (ロ)次いで、不活性ガスによる流動状態で、流動層の
温度を150〜600℃まで加熱し0.2〜24時間保
持したのち、常温〜120℃まで冷却する第二工程、 (ハ)次いで、前記不活性ガス中に濃度の増加率が毎分
10〜2,000ppmとなるよう酸素ガスを混合し、
流動層内の温度がピークに達した時点および/または出
側ガス中に酸素を検出した時点で酸素濃度をその時点の
混合酸素濃度に保持し、出側、入側の酸素濃度が等しく
なった時点および/または層内温度が前記酸素ガス混合
開始時の温度まで低下した時点で流動層の温度を常温ま
で冷却する第三行程。
[Scope of Claims] A method for dry stabilizing fine-grained metal magnetic powder for magnetic recording, characterized by stabilizing iron-based fine-grained metal magnetic powder for magnetic recording by the following steps. (a) Fluidizing the metal magnetic powder with an inert gas at a constant temperature of room temperature to 120°C, and mixing oxygen gas in the inert gas so that the concentration increase rate is 10 to 2,000 ppm per minute, The first step is to cut off the supply of oxygen when the temperature in the fluidized bed reaches its peak and/or when oxygen is detected in the outlet gas. (c) a second step of heating the inert gas to a temperature of 150 to 600°C, holding it for 0.2 to 24 hours, and then cooling it to room temperature to 120°C; Mix oxygen gas to ~2,000 ppm,
When the temperature in the fluidized bed reaches its peak and/or when oxygen is detected in the outlet gas, the oxygen concentration is maintained at the mixed oxygen concentration at that point, and the oxygen concentrations on the outlet and inlet sides are equal. A third step in which the temperature of the fluidized bed is cooled to room temperature at the point in time and/or at the point in time when the temperature in the bed has decreased to the temperature at the start of oxygen gas mixing.
JP1307516A 1989-11-29 1989-11-29 Dry-process stabilization of metal powder Pending JPH03169001A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1307516A JPH03169001A (en) 1989-11-29 1989-11-29 Dry-process stabilization of metal powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1307516A JPH03169001A (en) 1989-11-29 1989-11-29 Dry-process stabilization of metal powder

Publications (1)

Publication Number Publication Date
JPH03169001A true JPH03169001A (en) 1991-07-22

Family

ID=17970023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1307516A Pending JPH03169001A (en) 1989-11-29 1989-11-29 Dry-process stabilization of metal powder

Country Status (1)

Country Link
JP (1) JPH03169001A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5735969A (en) * 1996-03-07 1998-04-07 Imation Corp. Method of producing acicular magnetic alloy particles
EP1376625A2 (en) * 2002-05-31 2004-01-02 Fuji Photo Film Co., Ltd. Magnetic particle and its production method
US7384449B2 (en) 2001-09-05 2008-06-10 Fujifilm Corporation Ferromagnetic nanoparticles, material coated with dispersion of ferromagnetic nanoparticles, and magnetic recording medium using the material
US7473469B2 (en) 2005-12-23 2009-01-06 Dowa Electronics Materials Co., Ltd. Ferromagnetic powder for a magnetic recording medium, method of producing the powder, and magnetic recording medium using the powder
JP2011047025A (en) * 2009-08-28 2011-03-10 Toda Kogyo Corp Method for producing ferromagnetic metal grain powder, ferromagnetic metal grain powder, and magnetic recording medium

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60128202A (en) * 1983-12-13 1985-07-09 Toyo Soda Mfg Co Ltd Production of magnetic metallic powder
JPS62112702A (en) * 1985-11-09 1987-05-23 Chisso Corp Production of ferromagnetic metallic powder having oxide film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60128202A (en) * 1983-12-13 1985-07-09 Toyo Soda Mfg Co Ltd Production of magnetic metallic powder
JPS62112702A (en) * 1985-11-09 1987-05-23 Chisso Corp Production of ferromagnetic metallic powder having oxide film

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5735969A (en) * 1996-03-07 1998-04-07 Imation Corp. Method of producing acicular magnetic alloy particles
US7384449B2 (en) 2001-09-05 2008-06-10 Fujifilm Corporation Ferromagnetic nanoparticles, material coated with dispersion of ferromagnetic nanoparticles, and magnetic recording medium using the material
EP1376625A2 (en) * 2002-05-31 2004-01-02 Fuji Photo Film Co., Ltd. Magnetic particle and its production method
EP1376625A3 (en) * 2002-05-31 2006-03-15 Fuji Photo Film Co., Ltd. Magnetic particle and its production method
US7244287B2 (en) 2002-05-31 2007-07-17 Fujifilm Corporation Magnetic particle, its production method, magnetic recording medium and its production method
EP1850355A1 (en) * 2002-05-31 2007-10-31 FUJIFILM Corporation Magnetic particle and its production method
US7335393B2 (en) 2002-05-31 2008-02-26 Fujifilm Corporation Magnetic particle, its production method, magnetic recording medium and its production method
US7473469B2 (en) 2005-12-23 2009-01-06 Dowa Electronics Materials Co., Ltd. Ferromagnetic powder for a magnetic recording medium, method of producing the powder, and magnetic recording medium using the powder
JP2011047025A (en) * 2009-08-28 2011-03-10 Toda Kogyo Corp Method for producing ferromagnetic metal grain powder, ferromagnetic metal grain powder, and magnetic recording medium

Similar Documents

Publication Publication Date Title
JPH02138443A (en) Fe-co-type sintered magnetic material and its production
JPH03169001A (en) Dry-process stabilization of metal powder
US4318735A (en) Process for preparing magnetic particles with metallic region therein, and magnetic particles prepared by the process
JPS5948935B2 (en) Manufacturing method of low iron loss unidirectional electrical steel sheet
JPS62112702A (en) Production of ferromagnetic metallic powder having oxide film
JP2731603B2 (en) Stabilization method of metal magnetic powder
JPS60128202A (en) Production of magnetic metallic powder
JPH0620008B2 (en) Method for producing ferromagnetic metal powder having oxide film
JPH01172501A (en) Manufacture of metal magnetic powder
JPH0270003A (en) Method for treating ferromagnetic iron powder
JPH08153613A (en) Stabilizing method for metal magnetic powder
JPS6187302A (en) Manufacture of magnetic recording medium
JPH02192103A (en) Manufacture of ferromagnetic metal powder having oxide film
JP2744641B2 (en) Method for producing ferromagnetic metal powder
JPS6364482B2 (en)
JPS5852522B2 (en) Production method of metallic iron or alloy magnetic powder mainly composed of iron
JPS59197506A (en) Preparation of metal powder for magnetic recording
JPH0239504A (en) Manufacture of metallic magnetic powder for magnetic record
JPS5562105A (en) Production of magnetic alloy powder
JPS58161711A (en) Production of magnetic metallic powder
JPS61216306A (en) Magnetic metal powder and manufacture thereof
JP3248936B2 (en) Method for producing low loss manganese zinc ferrite
JPS5959801A (en) Method for stabilizing metallic magnetic powder
JPS62112703A (en) Production of ferromagnetic metallic powder having oxide film
JPH01241801A (en) Manufacture of ferromagnetic iron powder