JPH0316896B2 - - Google Patents

Info

Publication number
JPH0316896B2
JPH0316896B2 JP7198885A JP7198885A JPH0316896B2 JP H0316896 B2 JPH0316896 B2 JP H0316896B2 JP 7198885 A JP7198885 A JP 7198885A JP 7198885 A JP7198885 A JP 7198885A JP H0316896 B2 JPH0316896 B2 JP H0316896B2
Authority
JP
Japan
Prior art keywords
electroformed shell
synthetic resin
layer
mounting flange
electroformed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7198885A
Other languages
Japanese (ja)
Other versions
JPS61229527A (en
Inventor
Toshuki Kinugasa
Yoshiki Ishige
Tamio Furuya
Juichi Tsuchimoto
Shoji Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP7198885A priority Critical patent/JPS61229527A/en
Publication of JPS61229527A publication Critical patent/JPS61229527A/en
Publication of JPH0316896B2 publication Critical patent/JPH0316896B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)

Description

【発明の詳細な説明】 A 発明の目的 (1) 産業上の利用分野 本発明は、合成樹脂シートを所定の形状に成形
するために用いられる真空成形型に関する。
DETAILED DESCRIPTION OF THE INVENTION A. Object of the Invention (1) Field of Industrial Application The present invention relates to a vacuum forming mold used for forming a synthetic resin sheet into a predetermined shape.

(2) 従来の技術 本出願人は先に、精密模型の表面に電鋳処理を
施してその模型に忠実で通気性を有する電鋳殻よ
りなる真空成形型を開発した(特願昭60−2669号
参照)。
(2) Prior art The present applicant previously developed a vacuum forming mold made of an electroformed shell that is faithful to the model and has air permeability by performing electroforming on the surface of a precision model (patent application filed in 1983- (See No. 2669).

上記電鋳殻は、それを精密模型から離型した後
所定の支持枠に取付けられて成形作業に供され
る。
After the electroformed shell is released from the precision model, it is attached to a predetermined support frame and subjected to a molding operation.

(3) 発明が解決しようとする問題点 しかしながら前記電鋳殻は肉厚が非常に薄く低
剛性である上に電鋳工程で内部応力が生じている
ので、離型時に変形するといつた問題がある。こ
の変形は車両用インストルメントパネルを成形す
る電鋳殻のように大型で複雑な成形部を持つもの
において生じ易い。
(3) Problems to be Solved by the Invention However, the electroformed shell has a very thin wall thickness and low rigidity, and internal stress is generated during the electroforming process, so there are problems such as deformation during demolding. be. This deformation is likely to occur in products that have large and complicated molded parts, such as electroformed shells used to mold vehicle instrument panels.

また取付フランジ部の肉厚が薄いので、それを
支持枠にボルト、ナツトにより締着する場合取付
フランジ部が変形するといつた問題もある。
Furthermore, since the wall thickness of the mounting flange is thin, there is a problem in that the mounting flange may be deformed when it is fastened to the support frame with bolts or nuts.

本発明は前記問題を解消し得る前記真空成形型
を提供することを目的とする。
An object of the present invention is to provide the vacuum forming mold that can solve the above problems.

B 発明の構成 (1) 問題を解決するための手段 本発明は、合成樹脂シートを所定の形状に成形
する成形部の外周に、支持枠に取付けられる取付
フランジ部を連設した通気性を有する電鋳殻と、
前記取付フランジ部の背面全体に接合される繊維
強化合成樹脂体とより構成したことを特徴とす
る。
B. Structure of the Invention (1) Means for Solving the Problem The present invention has an air-permeable structure in which a mounting flange section attached to a support frame is connected to the outer periphery of a molding section in which a synthetic resin sheet is molded into a predetermined shape. electroformed shell,
It is characterized by comprising a fiber-reinforced synthetic resin body joined to the entire back surface of the mounting flange portion.

(2)作 用 成形部の外周に、取付フランジ部とこれに接合
された繊維強化合成樹脂体とより高剛性な複合部
が構成され、この複合部により成形部の変形が抑
制されるのでその変形部の保形性が良好となる。
(2) Function The outer periphery of the molded part is composed of a mounting flange part and a fiber-reinforced synthetic resin body joined to this, and a composite part with higher rigidity, and this composite part suppresses the deformation of the molded part. The shape retention of the deformed part is improved.

また前記複合部は優れた変形抵抗性を有するの
で、電鋳殻を支持枠に取付ける場合その複合部が
変形することがない。
Moreover, since the composite part has excellent deformation resistance, the composite part will not be deformed when the electroformed shell is attached to the support frame.

(3) 実施例 第1、第2図は、車両用インストルメントパネ
ルを成形するために用いられる真空成形型1を示
し、その型1は、平面において長方形をなすと共
に通気性を有するニツケル製電鋳殻2と、その電
鋳殻2の外周部に接合された繊維強化合成樹脂体
3とよりなる。電鋳殻2はその厚さが0.6〜3mm
程度であり、また合成樹脂シートをインストルメ
ントパネルの形状に成形する凹凸部分を備えた成
形部2aと、その外周に連設されて後述する支持
枠に取付けられる取付フランジ部2bとより構成
される。電鋳殻2の前面、即ち第2図において下
向きのシート重合面4には第3図に示すように牛
革に忠実な凹凸模様pが形成される。また第4図
に示すように電鋳殻2にはその厚さ方向に無数の
通気孔5が全体に亘つて均一に分布するように形
成され、それら通気孔5は真空吸引孔として用い
られる。それら通気孔5のシート重合面4におけ
る開口部5aは縦および横方向に約0.2mmのピツ
チで配列しており、それらの直径は0.03〜0.05mm
である。このように通気孔5の開口部5aは極め
て小型であるため凹凸模様pを何等損なうことが
ない。
(3) Embodiment Figures 1 and 2 show a vacuum forming mold 1 used for molding a vehicle instrument panel. It consists of a cast shell 2 and a fiber-reinforced synthetic resin body 3 joined to the outer periphery of the electroformed shell 2. The electroformed shell 2 has a thickness of 0.6 to 3 mm.
It is composed of a molding part 2a having an uneven part for molding a synthetic resin sheet into the shape of an instrument panel, and a mounting flange part 2b connected to the outer periphery of the molding part 2a and attached to a support frame described later. . As shown in FIG. 3, an uneven pattern p faithful to cowhide is formed on the front surface of the electroformed shell 2, that is, the sheet overlapping surface 4 facing downward in FIG. 2. Further, as shown in FIG. 4, numerous ventilation holes 5 are formed in the electroformed shell 2 so as to be uniformly distributed throughout the thickness thereof, and these ventilation holes 5 are used as vacuum suction holes. The openings 5a of the ventilation holes 5 on the sheet overlapping surface 4 are arranged at a pitch of about 0.2 mm in the vertical and horizontal directions, and their diameter is 0.03 to 0.05 mm.
It is. Since the opening 5a of the ventilation hole 5 is thus extremely small, it does not damage the uneven pattern p in any way.

電鋳殻2の成形部2a背面には、第1図に示す
ように多数のナツト部材61が成形部2a全体に
亘つて分散するように縦横に配列されたスタツド
溶接により溶着される。また取付フランジ部2b
の背面にも、多数のナツト部材62が取付フラン
ジ部2b全体に亘つて分散するようにスタツド溶
接により溶着される。これらナツト部材61,62
は電鋳殻2を後述する支持枠に吊持するために用
いられる。
As shown in FIG. 1, a large number of nut members 61 are welded to the back surface of the molded part 2a of the electroformed shell 2 by stud welding, which are arranged vertically and horizontally so as to be distributed over the entire molded part 2a. Also, the mounting flange part 2b
A large number of nut members 62 are also welded to the rear surface of the mounting flange portion 2b by stud welding so as to be distributed over the entire mounting flange portion 2b. These nut members 6 1 , 6 2
is used to suspend the electroformed shell 2 on a support frame which will be described later.

このようにスタツド溶接法を適用すると、多数
のナツト部材61,62を極薄の電鋳殻2に溶着し
てもその電鋳殻2に溶接歪を生じないという利点
がある。
When the stud welding method is applied in this way, there is an advantage that even if a large number of nut members 6 1 and 6 2 are welded to the extremely thin electroformed shell 2, no welding distortion occurs in the electroformed shell 2.

前記繊維強化合成樹脂体3は取付フランジ部2
bの背面全体に接合されている。この繊維強化合
成樹脂体3は強化用繊維とそれに充填複合される
熱硬化性合成樹脂とよりなり、強化用繊維として
はガラス繊維、炭素繊維、金属繊維等よりなる長
繊維またはこれら繊維の1つ以上を用いて形成さ
れる不織布等が該当し、また熱硬化性合成樹脂と
してはエポキシ樹脂等が該当する。
The fiber-reinforced synthetic resin body 3 has a mounting flange portion 2
It is joined to the entire back surface of b. This fiber-reinforced synthetic resin body 3 is made of reinforcing fibers and a thermosetting synthetic resin filled and composited with the reinforcing fibers, and the reinforcing fibers are long fibers made of glass fibers, carbon fibers, metal fibers, etc., or one of these fibers. Non-woven fabrics formed using the above materials fall under this category, and thermosetting synthetic resins include epoxy resins and the like.

繊維強化合成樹脂体3の作製に当たつては、電
鋳殻2の取付フランジ部2b背面全体に、前記ナ
ツト部材62を溶着した後前記繊維を所定の厚さ
および配向を以て配設し、これに前記熱硬化性合
成樹脂液を含浸させてその樹脂を加熱硬化するも
ので、この繊維強化合成樹脂体3の作製と同時に
それは取付フランジ部2bと一体に接合される。
In producing the fiber-reinforced synthetic resin body 3, the nut member 62 is welded to the entire back surface of the mounting flange portion 2b of the electroformed shell 2, and then the fibers are arranged with a predetermined thickness and orientation. This is impregnated with the thermosetting synthetic resin liquid and the resin is cured by heating, and at the same time as this fiber-reinforced synthetic resin body 3 is produced, it is integrally joined to the mounting flange portion 2b.

この繊維強化合成樹脂体3の作製は、電鋳殻2
を離型する前、即ち電鋳殻2が精密模型M上にあ
るときに行われる。
The production of this fiber-reinforced synthetic resin body 3 consists of the electroformed shell 2
This is done before the mold is released, that is, when the electroformed shell 2 is on the precision model M.

このように成形部2aの外周に、取付フランジ
部2bとこれに接合された繊維強化合成樹脂体3
とより高剛性な複合部7を形成すると、この複合
部7により成形部2aの変形が抑制されるので、
電鋳殻2の保形性が良好となり、離型時において
電鋳工程で生じた内部応力に起因する電鋳殻2の
変形を防止することができる。
In this way, the mounting flange 2b and the fiber-reinforced synthetic resin body 3 are attached to the outer periphery of the molded part 2a.
When a more rigid composite part 7 is formed, deformation of the molded part 2a is suppressed by this composite part 7.
The shape retention of the electroformed shell 2 is improved, and deformation of the electroformed shell 2 due to internal stress generated in the electroforming process during mold release can be prevented.

前記真空成形型1は、第5、第6図に示すよう
に支持枠8に取付けられて昇降自在な第1可動部
1を構成し、その第1可動部91はそれの下方に
おいて昇降自在に配設された第2可動部92と共
にインストルメントパネルの製造に供される。
As shown in FIGS. 5 and 6, the vacuum forming mold 1 constitutes a first movable part 91 that is attached to a support frame 8 and can be raised and lowered, and the first movable part 91 is raised and lowered below it. Together with the freely disposed second movable part 92 , it is used for manufacturing an instrument panel.

第1可動部91において、支持枠8は、天壁1
0を備えた平面長方形の箱状をなす枠本体8a
と、その枠本体8aの下向き開口部近傍において
その長手方向と直交するように等間隔に配設され
て両端部を枠本体8a内面に溶着された複数のア
ングル形桟材8bと、上端面を天壁10に、また
下端面を各桟材8bに溶着された支持板8cとよ
りなる。
In the first movable part 9 1 , the support frame 8 is connected to the top wall 1
A frame body 8a having a plane rectangular box shape with 0
A plurality of angle-shaped crosspieces 8b are arranged at equal intervals perpendicular to the longitudinal direction of the frame body 8a in the vicinity of the downward opening of the frame body 8a, and have both ends welded to the inner surface of the frame body 8a. It consists of a support plate 8c whose lower end surface is welded to the top wall 10 and to each crosspiece 8b.

枠本体8aの下向き開口部は電鋳殻2の成形部
2aにより覆われ、下向き開口部周縁に突設され
た支持フランジ部11は電鋳殻2における取付フ
ランジ部2bの背面、したがつて複合部7におけ
る繊維強化合成樹脂体3に当て板12を介して重
合され、両フランジ部2b,11は枠本体8aの
周囲に沿つて多数の締付ボルト13およびナツト
14により連結される。この場合複合部7は優れ
た変形抵抗性を有するので、締付ボルト13等に
より締付けられても変形することがない。当て板
12の内側において支持フランジ部11と複合部
7間には真空シール材15が介装される。
The downward opening of the frame body 8a is covered by the molded part 2a of the electroformed shell 2, and the support flange 11 protruding from the periphery of the downward opening is the back surface of the mounting flange 2b of the electroformed shell 2, and therefore the composite It is superimposed on the fiber-reinforced synthetic resin body 3 in the section 7 via the backing plate 12, and both the flange sections 2b, 11 are connected by a large number of tightening bolts 13 and nuts 14 along the periphery of the frame body 8a. In this case, since the composite portion 7 has excellent deformation resistance, it will not deform even if it is tightened with the tightening bolt 13 or the like. A vacuum sealing material 15 is interposed between the support flange portion 11 and the composite portion 7 on the inside of the backing plate 12 .

電鋳殻2の成形部2aに溶着されたナツト部材
1において第1図の各横列のナツト部材61は各
桟材8bに対向するように配設されており、各ナ
ツト部材61と各桟材8b間には筒状スペーサ1
1が介装され、桟材8bおよび筒状スペーサ1
1を貫通する吊持ボルト181がナツト部材61
に螺着される。筒状スペーサ171は吊持ボルト
181の締付力を所定量に規制して取付フランジ
部2bの変形を防止する機能を有する。
In the nut member 6 1 welded to the molded part 2 a of the electroformed shell 2 , the nut members 6 1 in each row in FIG. A cylindrical spacer 1 is provided between each crosspiece 8b.
7 1 is interposed, the crosspiece 8b and the cylindrical spacer 1
The suspension bolt 18 1 passing through 7 1 is the nut member 6 1
is screwed onto. The cylindrical spacer 17 1 has the function of regulating the tightening force of the suspension bolt 18 1 to a predetermined amount to prevent deformation of the mounting flange portion 2b.

枠本体8aの内面には、電鋳殻2の取付フラン
ジ部2b背面に溶着された各ナツト部材62に対
応してアングル材16が溶着される。各ナツト部
材62と各アングル材16間には筒状スペーサ1
2が介装され、アングル材16および筒状スペ
ーサ172を貫通する吊持ボルト182がナツト部
材62に螺着される。
Angle members 16 are welded to the inner surface of the frame body 8a in correspondence with the respective nut members 62 welded to the back surface of the mounting flange portion 2b of the electroformed shell 2. A cylindrical spacer 1 is provided between each nut member 6 2 and each angle member 16.
7 2 is interposed, and a suspension bolt 18 2 passing through the angle member 16 and the cylindrical spacer 17 2 is screwed onto the nut member 6 2 .

支持枠8内には、主として電鋳殻2の成形部2
aを補強するバツクアツプ体19が収容され、電
鋳殻2と一体に接合される。そのバツクアツプ体
19は、電鋳殻2側に配設されてステンレス鋼等
の耐食性に優れた無数の鋼球の相隣るもの相互間
をエポキシ樹脂等の熱硬化性合成樹脂により部分
接合した通気性を有する第1層191と、その第
1層191に積層されて無数のガラス粒子の相隣
るもの相互間を前記同様の熱硬化性合成樹脂によ
り部分接合した通気性を有する第2層192とよ
りなる。
Inside the support frame 8, there is mainly a molded part 2 of the electroformed shell 2.
A back-up body 19 for reinforcing a is housed and is integrally joined to the electroformed shell 2. The back-up body 19 is made up of a number of adjacent steel balls made of stainless steel or the like having excellent corrosion resistance, which are disposed on the side of the electroformed shell 2, and are partially bonded with thermosetting synthetic resin such as epoxy resin for ventilation. a first layer 19 1 with air permeability, and a second layer 19 1 with air permeability, in which numerous adjoining glass particles laminated on the first layer 19 1 are partially bonded with the same thermosetting synthetic resin as described above; Layer 19 consists of 2 layers.

このように電鋳殻2の背面側にバツクアツプ体
19を設けても、電鋳殻2の取付フランジ部2
b、したがつて複合部7が支持枠8の支持フラン
ジ部11に重合連結され、また複合部7および成
形部2aが多数のの吊持ボルト181,182によ
り各桟材8bおよびアングル材16に吊持されて
いるので、電鋳殻2がバツクアツプ体19の重量
により垂れ下がつて変形するといつた問題を生じ
ることがない。
Even if the backup body 19 is provided on the back side of the electroformed shell 2 in this way, the mounting flange portion of the electroformed shell 2
b. Therefore, the composite part 7 is overlaid and connected to the support flange part 11 of the support frame 8, and the composite part 7 and the molded part 2a are connected to each crosspiece 8b and the angle member by a large number of suspension bolts 18 1 and 18 2 . Since the electroformed shell 2 is suspended by the back-up body 16, problems such as sagging and deformation of the electroformed shell 2 due to the weight of the back-up body 19 do not occur.

第1層191を形成する場合には、電鋳殻2の
背面において天壁10のない枠本体8b内に、第
7図に示すように表面に薄い前記熱硬化性合性樹
脂よりなる樹脂層R1を有する70〜150μの鋼球2
0を所定量注入し、その後鋼球20および樹脂層
R1を70〜80℃に加熱して樹脂層R1の相隣る鋼球
20間の接点に位置する部位を接合し、各接合点
で囲まれる空隙V1を形成するものである。この
空隙V1により第1層191に連続気孔が形成され
る。この鋼球20相互間の接合時に第1層191
と電鋳殻2間も前記樹脂層R1より接合される。
When forming the first layer 19 1 , a thin resin made of the thermosetting synthetic resin is placed on the surface of the frame body 8b without the top wall 10 on the back side of the electroformed shell 2, as shown in FIG. 70-150μ steel balls with layer R 1 2
0 is injected in a predetermined amount, and then the steel balls 20 and the resin layer are injected.
R 1 is heated to 70 to 80° C. to bond portions of the resin layer R 1 located at the contact points between adjacent steel balls 20, thereby forming a void V 1 surrounded by each bond point. Continuous pores are formed in the first layer 19 1 by this void V 1 . When the steel balls 20 are joined together, the first layer 19 1
and the electroformed shell 2 are also joined by the resin layer R1 .

また第2層192を形成する場合には、軽量化
のために凹部19aを形成すべくそれと同形の部
材(図示せず)を枠本体8b内に吊持し、第1層
191の上に第8図に示すように表面に薄い前記
樹脂層R2を有する400〜600μのガラス粒子21を
所定量注入し、その後、ガラス粒子21および樹
脂層R2を70〜80℃に加熱して樹脂層R2の相隣る
ガラス粒子21間の接点に位置する部位を接合
し、各接合点で囲まれる空隙V2を形成するもの
である。この空隙V2により第2層192に連続気
孔が形成される。このガラス粒子21相互間の接
合時に第1層191と第2層192間も前記樹脂層
R2によりそれぞれ接合される。
In addition, when forming the second layer 19 2 , a member (not shown) having the same shape as the recess 19 a is suspended within the frame body 8 b to form the recess 19 a to reduce weight. As shown in FIG. 8, a predetermined amount of glass particles 21 of 400 to 600 μm having the thin resin layer R 2 on the surface is injected, and then the glass particles 21 and the resin layer R 2 are heated to 70 to 80°C. The parts of the resin layer R 2 located at the contact points between adjacent glass particles 21 are bonded to form a void V 2 surrounded by each bond point. These voids V 2 form continuous pores in the second layer 19 2 . When bonding the glass particles 21 to each other, the resin layer is also applied between the first layer 191 and the second layer 192 .
Each is joined by R 2 .

支持板8cには、複数の窓22が形成され、こ
れら窓22によりガラス粒子21の注入時その流
れが支持板8cにより妨げられないようになつて
いる。
A plurality of windows 22 are formed in the support plate 8c, and these windows 22 prevent the flow of the glass particles 21 from being obstructed by the support plate 8c when the glass particles 21 are injected.

第1層191には、成形部2aを全域に亘り均
等に冷却し得るように冷却管23が蛇行して埋設
される。この場合第1層191は鋼球20を主体
とするので熱伝導性が良好であり、したがつて成
形部2aを効率良く冷却することができる。また
冷却管23の蛇行埋設により第1層191が補強
される。
A cooling pipe 23 is embedded in the first layer 19 1 in a meandering manner so as to uniformly cool the entire molded part 2a. In this case, since the first layer 19 1 is mainly composed of the steel balls 20, it has good thermal conductivity and can therefore efficiently cool the molded part 2a. Furthermore, the first layer 19 1 is reinforced by embedding the cooling pipe 23 in a meandering manner.

支持枠8内は切換弁24を介して真空ポンプ2
1およびフロア26に接続される。
A vacuum pump 2 is connected to the inside of the support frame 8 via a switching valve 24.
5 1 and the floor 26.

第2可動部92は下記のように構成される。 The second movable part 92 is configured as follows.

底壁27を備えた平面長方形の支持枠28の上
向き開口部には成形部2aと嵌合関係にある押圧
型29が固着される。その押圧型29の上面には
芯材Cを嵌め込むための凹部30が形成され、ま
た押圧型29において、成形部2aと対向する部
分にはその部分を貫通するように複数の真空吸引
孔31が形成される。支持枠28内は真空ポンプ
252に接続される。
A pressing mold 29 is fixed to an upward opening of a planar rectangular support frame 28 provided with a bottom wall 27 and is fitted into the molding part 2a. A recess 30 for fitting the core material C is formed on the upper surface of the pressing mold 29, and a plurality of vacuum suction holes 31 are formed in the portion of the pressing mold 29 facing the molding portion 2a so as to penetrate through that portion. is formed. The inside of the support frame 28 is connected to a vacuum pump 25 2 .

インストルメントパネルは合成樹脂シートSと
芯材Cとよりなり、その合成樹脂シートSとして
は、ポリ塩化ビニル等よりなるシート単体、また
はそのシートを表皮層とし、これにポリプロピレ
ン発泡シートをクツシヨン層として貼合わせた積
層シートが該当する。
The instrument panel consists of a synthetic resin sheet S and a core material C, and the synthetic resin sheet S can be a single sheet made of polyvinyl chloride or the like, or the sheet can be used as a skin layer, and a polypropylene foam sheet can be used as a cushion layer. This applies to laminated sheets that have been bonded together.

また芯材Cは、ABS樹脂等よりなる板に複数
の小径真空吸引孔32を形成し、この板を押圧型
29の凹部30に合致するように形成したもので
ある。
Further, the core material C is a plate made of ABS resin or the like, in which a plurality of small-diameter vacuum suction holes 32 are formed, and this plate is formed so as to fit into the recesses 30 of the pressing die 29.

次に、インストルメントパネルの製造について
説明する。
Next, manufacturing of the instrument panel will be explained.

芯材Cの表面に接着剤としてホツトメルト接着
剤を塗布し、その接着剤を加熱軟化する。
A hot melt adhesive is applied as an adhesive to the surface of the core material C, and the adhesive is softened by heating.

第5図に示すように第1可動部91を上昇させ、
また第2可動部92を下降させて電鋳殻2と押圧
型29を開き、その押圧型29の凹部30に前記
芯材Cをその接着剤塗布面を外側に向けて嵌め込
み、その各真空吸引孔32を押圧型29の各真空
吸引孔31に合致させる。
As shown in FIG. 5, raise the first movable part 91 ,
Further, the second movable part 9 2 is lowered to open the electroformed shell 2 and the pressing mold 29, and the core material C is fitted into the recess 30 of the pressing mold 29 with its adhesive coated surface facing outward. The suction hole 32 is matched with each vacuum suction hole 31 of the press die 29.

表皮層aおよびクツシヨン層bよりなる合成樹
脂シートSを略180℃に高温加熱して軟化させ、
その表皮層aを上にして合成樹脂シートSを第1
および第2可動部91,92間に配設する。
A synthetic resin sheet S consisting of a skin layer a and a cushion layer b is heated to approximately 180°C to soften it,
The synthetic resin sheet S is placed first with its skin layer a facing up.
and disposed between the second movable parts 9 1 and 9 2 .

第9図に示すように第1可動部91を下降させ、
また第2可動部92を上昇させて電鋳殻2と押圧
型29間に合成樹脂シートSを挟着する。合成樹
脂シートSは押圧型29により電鋳殻2の表面に
押圧されるので、その表面に対するなじみ性が良
い。
As shown in FIG. 9, lower the first movable part 91 ,
Further, the second movable portion 9 2 is raised to sandwich the synthetic resin sheet S between the electroformed shell 2 and the pressing die 29 . Since the synthetic resin sheet S is pressed against the surface of the electroformed shell 2 by the pressing mold 29, it has good conformability to the surface.

第1可動部91の支持枠8内を切換弁24を介
して真空ポンプ251に接続し、その真空ポンプ
251により合成樹脂シートSを真空吸引する。
電鋳殻2の成形部2aは、その全体に亘つて無数
の微細通気孔5を有し、また合成樹シートSは成
形部2aの表面に押圧型29により充分になじま
せられているので、そのシートSは成形部2aの
表面全体に強く密着し、これによりシートSの表
面には凹凸模様pが正確且つ明瞭に転写され、同
時にシートSは成形部2aの形状に成形される。
成形部2aは冷却管23により冷却されているの
で、シートSは直ちに冷却され、凹凸模様pおよ
び形状の崩れが防止される。
The inside of the support frame 8 of the first movable part 9 1 is connected to a vacuum pump 25 1 via the switching valve 24, and the synthetic resin sheet S is vacuum-suctioned by the vacuum pump 25 1 .
The molded part 2a of the electroformed shell 2 has countless fine ventilation holes 5 throughout it, and the synthetic resin sheet S is sufficiently blended into the surface of the molded part 2a by the press die 29, so that The sheet S tightly adheres to the entire surface of the molding section 2a, whereby the uneven pattern p is accurately and clearly transferred to the surface of the sheet S, and at the same time, the sheet S is molded into the shape of the molding section 2a.
Since the forming part 2a is cooled by the cooling pipe 23, the sheet S is immediately cooled, and the uneven pattern p and shape collapse are prevented.

第2可動部92側の真空ポンプ252を作動させ
て前記シートSより成形された成形体を押圧型2
9および芯材Cの表面に真空吸引すると共に第1
可動部91の支持枠8内を切換弁24を介しブロ
ア26側に切り換えて成形体にブロー圧をかけ
る。
The vacuum pump 25 2 on the second movable part 9 2 side is operated to press the molded body formed from the sheet S into the press mold 2.
9 and the surface of the core material C, and the first
The inside of the support frame 8 of the movable part 9 1 is switched to the blower 26 side via the switching valve 24 to apply blow pressure to the molded article.

これにより成形体は成形部2aより離型すると
共に芯材Cに密着してそれと一体に接合される。
成形体は成形部2aに強く密着しているので前記
真空吸引作用およびブロー圧を併用することは、
成形体の離型を促進するために極めて有利な手段
である。
As a result, the molded body is released from the molded part 2a and is closely attached to the core material C to be integrally joined thereto.
Since the molded body is in close contact with the molded part 2a, the combination of the vacuum suction action and the blow pressure is
This is an extremely advantageous means for promoting mold release of the molded article.

ブロア26を停止し、また第2可動部92の支
持枠28内を大気に切換え、その後第1可動部9
を上昇させ、また第2可動部92を上昇させて押
圧型29よりインストルメントパネルを外す。
The blower 26 is stopped, and the inside of the support frame 28 of the second movable part 9 2 is switched to the atmosphere, and then the first movable part 9
1 and the second movable part 9 2 are also raised to remove the instrument panel from the press die 29.

このインストルメントパネルの表面には、凹凸
模様pが流れることなく明瞭に付され、また合成
樹脂シートSよりなる成形体と芯材Cとの接合強
度も大きく、耐久性に優れている。
The surface of this instrument panel has a concavo-convex pattern P clearly formed thereon without running off, and the bonding strength between the molded body made of the synthetic resin sheet S and the core material C is high, resulting in excellent durability.

前記製造時において、電鋳殻2の成形部2aに
はそれが押圧型29と嵌合する際衝撃力が作用す
るが、その成形部2aは背面側をバツクアツプ体
19により補強されているので成形部2aが変形
するようなことはない。
During the manufacturing process, an impact force is applied to the molded part 2a of the electroformed shell 2 when it fits into the press die 29, but since the molded part 2a is reinforced on the back side by the back-up body 19, the molding is not possible. There is no possibility that the portion 2a will be deformed.

次に第10図の原理図により前記電鋳殻2の製
造について説明する。
Next, the production of the electroformed shell 2 will be explained with reference to the principle diagram shown in FIG.

(a) 工程 牛革よりエポキシ樹脂を用いて前記凹凸模様
pを有する精密模型Mを作製する。
(a) Process A precision model M having the uneven pattern p is produced from cowhide using an epoxy resin.

(b) 工程 精密模型Mの凹凸模様pを有する表面に銀鏡
処理を施して銀よりなる薄い導電層Coを形成
し、その導電層Coの表面全体に凹凸模様pを
現出させる。
(b) Process The surface of the precision model M having the uneven pattern p is subjected to silver mirror treatment to form a thin conductive layer Co made of silver, and the uneven pattern p is made to appear on the entire surface of the conductive layer Co.

(c) 工程 精密模型Mの周囲を絶縁筒体Tで囲み、導電
層Coの表面全体に溶出可能で微細な粒子とし
て直径0.2mmの無数のポリスチレン粒子Psを積
層して層lを形成し、その上にガラス粒子をナ
イロン製の網に入れた浮き上がり防止体Wを載
せて最下層のポリスチレン粒子Psを導電層Co
の表面に密着させる。これにより最下層の各ポ
リスチレン粒子Psは導電装置Coの表面に点接
触状態で密着する。
(c) Process The precision model M is surrounded by an insulating cylinder T, and countless polystyrene particles Ps with a diameter of 0.2 mm are laminated as fine particles that can be eluted over the entire surface of the conductive layer Co to form a layer L. On top of that, an anti-lifting body W containing glass particles in a nylon net is placed, and the bottom layer of polystyrene particles Ps is covered with a conductive layer Co.
adhere to the surface of the As a result, each polystyrene particle Ps in the lowermost layer is brought into close contact with the surface of the conductive device Co in a point-contact state.

(d) 工程 前記精密模型Mを電鋳槽Taのニツケルメツ
キ液So中に入れて導電層Coを電源Esの(+)
極に、また浮き上がり防止体Wと対向する電極
Eを電源Esの(−)極にそれぞれ接続して精
密模型Mに電鋳処理を施す。この電鋳処理工程
中に、析出したニツケルnが導電層Coのポリ
スチレン粒子Psとの密着部を除く導電層Coと
ポリスチレン粒子Ps間および相隣るポリスチ
レン粒子Ps間の空間を満たし、これにより凹
凸模様pを有する電鋳殻2を得る。この電鋳殻
2の厚さは、最上層のポリスチレン粒子Psの
上部周面が電鋳殻2より僅かに露出する程度と
なるように前記粒子の層lよりも薄く設定され
る。
(d) Process The precision model M is placed in the nickel plating solution So of the electroforming tank Ta, and the conductive layer Co is connected to the (+) side of the power source Es.
The precision model M is subjected to electroforming by connecting the electrode E facing the anti-lifting body W to the (-) pole of the power source Es. During this electroforming process, the precipitated nickel n fills the spaces between the conductive layer Co and the polystyrene particles Ps and between the adjacent polystyrene particles Ps, excluding the parts of the conductive layer Co that are in close contact with the polystyrene particles Ps. An electroformed shell 2 having a pattern p is obtained. The thickness of the electroformed shell 2 is set to be thinner than the layer l of the particles so that the upper circumferential surface of the uppermost layer of polystyrene particles Ps is slightly exposed from the electroformed shell 2.

上記工程を経て得られた電鋳殻2を離型、し
たがつて電鋳殻2を導電層Coより剥離した後、
トルエン、塩化メチレン等の溶剤中に浸漬して
ポリスチレン粒子Psを電鋳殻2より溶出し、
第4図に示す通気孔5を形成する。この場合電
鋳殻2の凹凸模様pを有する表面および裏面に
は粒子の層lの一部が露出しているので、それ
ら露出部分からポリスチレン粒子Psが溶解し
て開口部5a,5bが形成され、また電鋳殻2
内部にはポリスチレン粒子Ps溶出後の空孔5
cおよび相隣るポリスチレン粒子Ps等の接点
であつたところに相隣る空孔5c間を連通する
連通孔5dが形成される。
After releasing the electroformed shell 2 obtained through the above steps and peeling the electroformed shell 2 from the conductive layer Co,
The polystyrene particles Ps are eluted from the electroformed shell 2 by immersion in a solvent such as toluene or methylene chloride,
A ventilation hole 5 shown in FIG. 4 is formed. In this case, since a part of the particle layer l is exposed on the front and back surfaces of the electroformed shell 2 having the uneven pattern p, the polystyrene particles Ps are dissolved from these exposed parts to form the openings 5a and 5b. , also electroformed shell 2
Inside are pores 5 after elution of polystyrene particles Ps
A communicating hole 5d that communicates between the adjacent holes 5c is formed at the point of contact between the polystyrene particles Ps and the adjacent polystyrene particles Ps.

これにより表裏両面に極めて小径の開口部5
a,5bを有する無数の通気孔5を持つた電鋳
殻2が得られる。
This results in extremely small diameter openings 5 on both the front and back sides.
An electroformed shell 2 having numerous ventilation holes 5 having holes 5a and 5b is obtained.

溶出可能な粒子としては、前記ポリスチレン
粒子Psの外にパラフイン粒子、アルミニウム
粒子等の使用が困難であり、パラフイン粒子の
場合は加熱により電鋳殻2より溶出し、またア
ルミニウム粒子の場合は加熱または化学エツチ
ング処理により電鋳殻2より溶出する。
As particles that can be eluted, it is difficult to use paraffin particles, aluminum particles, etc. in addition to the polystyrene particles Ps. Paraffin particles can be eluted from the electroformed shell 2 by heating, and aluminum particles can be eluted by heating or It is eluted from the electroformed shell 2 by chemical etching treatment.

次に電鋳殻2の離型作業について説明する。 Next, the demolding operation of the electroformed shell 2 will be explained.

第11図に示すように精密模型M上の電鋳殻
2の背面に多数のナツト部材61,62を前記の
ように溶着する。また取付フランジ部2bの背
面全体に前記のように繊維強化合成樹脂体3を
接合する。
As shown in FIG. 11, a large number of nut members 6 1 and 6 2 are welded to the back surface of the electroformed shell 2 on the precision model M as described above. Further, the fiber-reinforced synthetic resin body 3 is joined to the entire back surface of the mounting flange portion 2b as described above.

次いで、第12図に示すように天壁10を溶
着していない支持枠8を電鋳殻2に被せ、前記
のように電鋳殻2を各桟材8bおよび各アング
ル材16に筒状スペーサ171,172および吊
持ボルト181,182を介して吊持する。
Next, as shown in FIG. 12, the electroformed shell 2 is covered with the support frame 8 to which the top wall 10 is not welded, and the electroformed shell 2 is attached to each crosspiece 8b and each angle member 16 with a cylindrical spacer as described above. It is suspended via 17 1 , 17 2 and suspension bolts 18 1 , 18 2 .

その後支持枠8を引き上げて電鋳殻2を精密
模型Mより離型する。
Thereafter, the support frame 8 is pulled up and the electroformed shell 2 is released from the precision model M.

この離型時において、複合部7および支持枠
8により電鋳殻2が保形されているので、電鋳
工程で生じた内部応力に起因する電鋳殻2の変
形が防止される。
During this mold release, the shape of the electroformed shell 2 is maintained by the composite portion 7 and the support frame 8, so that deformation of the electroformed shell 2 due to internal stress generated during the electroforming process is prevented.

第13図は電鋳殻2の背面に多数の吊持ボル
ト183,184をスタツド溶接により溶着し、
各ボルト183,184にナツト331,332
螺着するようにした変形例を示す。
FIG. 13 shows a large number of suspension bolts 18 3 and 18 4 welded to the back of the electroformed shell 2 by stud welding.
A modification is shown in which nuts 33 1 and 33 2 are screwed onto each bolt 18 3 and 18 4 .

C 発明の効果 本発明によれば、電鋳殻の取付フランジ部背面
全体に繊維強化合成樹脂体を接合したので、成形
部の外周には取付フランジ部および繊維強化合成
樹脂体よりなる高剛性な複合部が形成され、この
複合部により成形部の変形が抑制される。したが
つて成形部の保形性が良好となり、離型作業前に
前記複合部を形成することにより電鋳工程で生じ
た内部応力に起因する電鋳殻の変形を防止するこ
とができる。
C. Effects of the Invention According to the present invention, since the fiber-reinforced synthetic resin body is joined to the entire back surface of the mounting flange portion of the electroformed shell, the outer periphery of the molded portion is provided with a highly rigid structure made of the mounting flange portion and the fiber-reinforced synthetic resin body. A composite portion is formed, and deformation of the molded portion is suppressed by this composite portion. Therefore, the shape retention of the molded part is improved, and by forming the composite part before the mold release operation, deformation of the electroformed shell due to internal stress generated in the electroforming process can be prevented.

また前記複合部は優れた変形抵抗性を有するの
で、電鋳殻を支持枠に取付ける場合その複合部が
変形することがない。
Moreover, since the composite part has excellent deformation resistance, the composite part will not be deformed when the electroformed shell is attached to the support frame.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は真空成形型の背面図、第2図は第1図
−線断面図、第3図は電鋳殻の正面図、第4
図は第3図−線断面図、第5図はインストル
メントパネル製造装置における製造作業前の縦断
面図、第6図は第5図−線断面図、第7図は
バツクアツプ体における第1層の一部の拡大断面
図、第8図はバツクアツプ体における第2層の一
部の拡大断面図、第9図は前記装置における製造
作業中の縦断面図、第10図は電鋳殻の製造工程
説明図、第11図は電鋳殻と精密模型の関係を示
す縦断面図、第12図は電鋳殻の離型作業を示す
縦断面図、第13図は電鋳殻の吊持構造の変形例
の要部縦断面図である。 S……合成樹脂シート、2……電鋳殻、2a…
…成形部、2b……取付フランジ部、3……繊維
強化合成樹脂体。
Figure 1 is a back view of the vacuum forming mold, Figure 2 is a sectional view taken along the line shown in Figure 1, Figure 3 is a front view of the electroformed shell, and Figure 4 is a front view of the electroformed shell.
The figures are a cross-sectional view taken along lines taken from FIG. 3, FIG. 5 is a vertical cross-sectional view taken before manufacturing work in the instrument panel manufacturing equipment, FIG. 6 is a cross-sectional view taken taken along lines taken from FIG. 5, and FIG. 8 is an enlarged sectional view of a part of the second layer in the backup body, FIG. 9 is a longitudinal sectional view of the apparatus during manufacturing operation, and FIG. 10 is an electroformed shell manufacturing process. Process explanatory drawings, Fig. 11 is a longitudinal sectional view showing the relationship between the electroformed shell and the precision model, Fig. 12 is a longitudinal sectional view showing the mold release work of the electroformed shell, and Fig. 13 is the suspension structure of the electroformed shell. FIG. 3 is a vertical cross-sectional view of a main part of a modified example of FIG. S...Synthetic resin sheet, 2...Electroformed shell, 2a...
...Molded part, 2b...Mounting flange part, 3...Fiber reinforced synthetic resin body.

Claims (1)

【特許請求の範囲】[Claims] 1 合成樹脂シートを所定の形状に成形する成形
部の外周に、支持枠に取付けられる取付フランジ
部を連設した通気性を有する電鋳殻と、前記取付
フランジ部の背面全体に接合される繊維強化合成
樹脂体とよりなる真空成形型。
1. A breathable electroformed shell with a mounting flange attached to a support frame connected to the outer periphery of a molding part that molds a synthetic resin sheet into a predetermined shape, and fibers bonded to the entire back surface of the mounting flange. Vacuum molding mold made of reinforced synthetic resin body.
JP7198885A 1985-04-05 1985-04-05 Mold for vacuum molding Granted JPS61229527A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7198885A JPS61229527A (en) 1985-04-05 1985-04-05 Mold for vacuum molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7198885A JPS61229527A (en) 1985-04-05 1985-04-05 Mold for vacuum molding

Publications (2)

Publication Number Publication Date
JPS61229527A JPS61229527A (en) 1986-10-13
JPH0316896B2 true JPH0316896B2 (en) 1991-03-06

Family

ID=13476349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7198885A Granted JPS61229527A (en) 1985-04-05 1985-04-05 Mold for vacuum molding

Country Status (1)

Country Link
JP (1) JPS61229527A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62292408A (en) * 1986-06-12 1987-12-19 Konan Tokushu Sangyo Kk Electroformed mold

Also Published As

Publication number Publication date
JPS61229527A (en) 1986-10-13

Similar Documents

Publication Publication Date Title
US4714424A (en) Vacuum mold
US5034178A (en) Process for manufacturing embossed articles of synthetic resin with an undercut
JPH0334454B2 (en)
JPH0316896B2 (en)
JPH081690A (en) Production of perforated face plate made of composite material
EP0238628A1 (en) Molding apparatus utilizing memory metal alloy springs
JPH0151554B2 (en)
JP2632297B2 (en) Laminated body and method for producing the same
JPH0310492B2 (en)
JPS61104820A (en) Mold with embossed pattern for synthetic resin sheet
JPS61272126A (en) Molding of grained synthetic resin molded body equipped with undercuts and device therefor
JP4371289B2 (en) Manufacturing method of vacuum mold
JPH0464851B2 (en)
JPH0669737B2 (en) Method for manufacturing lightweight blanket for solar cell panel
JPH0468132B2 (en)
JPH0825229B2 (en) Synthetic resin sheet for transferring uneven patterns
JP2009132005A (en) Vacuum forming device
JPH01176548A (en) Method for molding honeycomb core composite material
JPH05195279A (en) Air penetrative electrocasting mold and its production
JPH03207B2 (en)
US3620877A (en) Method of making electrotype printing plates
JP3989109B2 (en) Vacuum-drawing resin mold
JPS6054601B2 (en) Structures such as inspection gauges and models and their manufacturing methods
JPH09272164A (en) Manufacture of curved-face honeycomb panel
JP2805121B2 (en) Floor bread and method for producing the same