JPH03168431A - Valve device of hydraulic shock absorber - Google Patents

Valve device of hydraulic shock absorber

Info

Publication number
JPH03168431A
JPH03168431A JP30655489A JP30655489A JPH03168431A JP H03168431 A JPH03168431 A JP H03168431A JP 30655489 A JP30655489 A JP 30655489A JP 30655489 A JP30655489 A JP 30655489A JP H03168431 A JPH03168431 A JP H03168431A
Authority
JP
Japan
Prior art keywords
valve
leaf
port
leaf valve
main leaf
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30655489A
Other languages
Japanese (ja)
Inventor
Toshihiro Mizobuchi
溝渕 利博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYB Corp
Original Assignee
Kayaba Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kayaba Industry Co Ltd filed Critical Kayaba Industry Co Ltd
Priority to JP30655489A priority Critical patent/JPH03168431A/en
Publication of JPH03168431A publication Critical patent/JPH03168431A/en
Pending legal-status Critical Current

Links

Landscapes

  • Vehicle Body Suspensions (AREA)
  • Fluid-Damping Devices (AREA)

Abstract

PURPOSE:To prevent generation of knocking noise due to vibration of a piston rod by composing a leaf valve of a main leaf valve and a subleaf valve, overlapped across the back surface of the main leaf valve, and forming a small hole, opposed to a port, in the main leaf valve. CONSTITUTION:An extension side leaf valve 10 is composed of three sheets of piston side main leaf valves (a), (b), (c) and one sheet of subleaf valve (d), brought into contact with the back surface of the main leaf valve (c), and a sufficiently small hole (e), opposed to one of extension ports 6, is formed respectively in each of main leaf valves (a), (b), (c). Each piston insertion hole (f) of D-shaped side surface is formed in each of main leaf valves (a), (b), (c), a piston rod 3 of D-shaped section is inserted to this hole (f), and position displacement of each of leaf valves (a), (b), (c) is prevented. That is, each small hole (e) is surely opposed to the extension port 6.

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、自動車等の小両の車体と車軸間に介装されて
路而からの振動を減衰する油圧緩衝4に関し、特に油室
の圧力変動によってピストンロットの振動に起因するコ
トコト汗の発生を防止する袖FE緩衝器に関する。 [従来の技術] 最近の自動車は低騒音化か進みエンシン音風切り音など
車室内に入り込む騒音は減少している.この為、従来は
問題とならなかったレベルの音でもクローブアップされ
るようになってきた。 油圧M衝器より発せられる音の種類としては叩き(コト
コト音)とスウィッシュ音(シ1ーシュー音)などがあ
る. コトコト音は少し荒れた筒易M装路などを10〜30k
m/tlの低速て車両か走行している蒔に発生する室内
音てあり、これは油圧#I衝器の伸・圧切換時に生ずる
油室の圧力変動かピストンロッドを加振し、車両のばね
上側マウント(インシュレータ〉を介して車体へ伝達さ
れ,車体か共振して発生する. 一方、スウィッシュ音は凹凸の大きい悪路などを車両か
20〜511k■711で走行するときに発生する室内
脅てある。即ち、油圧緩衝器内で作動袖かハルフの絞り
部分を通過するとき,高速噴流となって圧力か低下し、
抽中に溶け込んでいるガスか気泡となる.この気泡か下
流にいって周囲圧力か高くなると崩壊し、消減するかこ
の気泡の発生、消滅の過程において高い脈正と騒音か生
ずる。 しかして,1;記のような異音において、従来はスウィ
ッシュ音対策かいろいろなされているか、コトコト音対
策については今た十分てないのか現状てある。 この種、従来の油圧mI#器として,例えば、第9図に
示すものか開発されている. これは.シリンダl内に隔g部材たるピストン2を介し
てピストンロット3か移動自立に挿入され、ピストン2
はシリンダl内に上下二つの油室4,5を区画している
。ピストン2には二つの油室4,5を連通する伸ポート
6と正ポート7を形成し,伸ポート6の出口には間座8
を介してストッパ9で支持された伸側リーフバルツlO
か開閉自在に設けられ、圧ポート7の出口にも同座を介
してストツバl3て支持されたチェックハルブ11が開
閉自在に設けられ,チェックバルブl1には切欠きl2
か形威されている.シリンダlの下部にはベースハルブ
l4が設けられ,これは隔壁部材たるハルブケースl5
と,バルブケース15に形成した伸ポートl5と圧ポー
ト17と、伸ポートl6の出口に設けたチェックバルフ
2lとルポート17の出口に設けた圧側リーフハルブl
8とを有している。 チェックハルブ2lを支えるシートの頭部には打刻オリ
フィス22か形成され,チェックハルツ2lには圧ポー
トl7と対向する孔23が形成されている. 圧側リーフバルブl8は間座19を介してストツバ20
で支持されている. 下部油室5は各ポート16.17とチェックバルツ2l
と圧側リーフバルブl8を介してリザーハ側油室24に
開閉される. 伸側時にはピストン2か左行し、上部袖室4の油が下部
油室5に流れ、リザーバ側油室24の油も下部油室5に
吸い込まれる。 この際、低速域では切欠き12より圧ポート7を介して
上部油室4の油か下部油室5に流れ、切欠きl2と圧ポ
ート7の流動抵抗て低速城の減衰力を発%する。 中速域では伸ポート6より伸側リーフハルブlOを押し
開いて流れ、リーフバルブ10の撓み作用で中速域の減
衰力を発生する。 更に高速になると,伸ポート6を流れる流動抵抗も発生
して高速域の減衰力が発生する.力、伸側時におけるベ
ースバルブl4ては,低速域において1抽室24の油か
オソフィス22を介して下部油室5へ流れ、中・高速域
になるとチェックハルブ6を押し開いて下部抽室5に流
れる。ピストン2が右行する圧縮行程では、低速時下部
油室5の油か打刻オリフィス22と圧ポート16を介し
て油室24に流れて低速域の減衰力か発生し、中逮域て
は孔23及び伸ポートl7よりIE側リーフバルブl8
を介して油室24に流れ,圧側リーフハルブ18のtA
み作用て中速域の減衰力か発生し、高速城では圧ポート
17の流動抵抗も発生して高速城の減衰力か発生する.
一方ピストン2側では下部油室5の油か圧ポート7より
切欠きI2を介して、又チェヅクバルブl6を押し開い
てL部油室4に流出する. [発明か解決しようとする課題〕 上記のような油圧緩衝器では伸長作動時にリーフバルブ
[Industrial Application Field] The present invention relates to a hydraulic shock absorber 4 which is interposed between the body and axle of a small vehicle such as an automobile and dampens vibrations from the road, and in particular damps vibrations of a piston rod due to pressure fluctuations in an oil chamber. This invention relates to a sleeve FE shock absorber that prevents sweating caused by sweating. [Conventional technology] Modern automobiles have become less noisy, and the amount of noise that enters the vehicle interior, such as engine noise and wind noise, has decreased. For this reason, even sounds at levels that would not have been a problem in the past are now being clobbered. The types of sounds emitted by hydraulic M-impulsors include tapping and swishing sounds. There was a thudding sound for 10 to 30km on the slightly rough Tsutsuyoshi M road.
There is an indoor noise generated by a vehicle running at low speeds of m/tl, and this is caused by pressure fluctuations in the oil chamber that occur when the hydraulic #I shocker switches between extension and pressure, or by exciting the piston rod and causing the vehicle to move at low speeds. The sound is transmitted to the car body via the sprung upper mount (insulator) and is generated when the car body resonates.On the other hand, swish noise is generated when the car is traveling at speeds of 20 to 511km/711km on rough roads with large bumps. In other words, when it passes through the throttle part of the operating sleeve or half in the hydraulic shock absorber, it becomes a high-speed jet and the pressure decreases.
This becomes gas or bubbles dissolved in the extraction. When these bubbles go downstream and the ambient pressure increases, they collapse and disappear, or in the process of generation and disappearance of these bubbles, high pulses and noise are generated. However, in the past, various measures have been taken to deal with the abnormal noises described in 1., such as swishing noises, but at present, there are not enough countermeasures for the clicking noises. As a conventional hydraulic mI# device of this kind, for example, the one shown in Fig. 9 has been developed. this is. A piston rod 3 is movably inserted into the cylinder l via a piston 2 which is a spacer g member, and the piston 2
The cylinder 1 is divided into two upper and lower oil chambers 4 and 5. The piston 2 is formed with an extension port 6 and a normal port 7 that communicate the two oil chambers 4 and 5, and a spacer 8 is provided at the outlet of the extension port 6.
The extension side leaf bulge lO supported by the stopper 9 via
A check valve 11 is also provided at the outlet of the pressure port 7 so that it can be opened and closed, and a check valve 11 supported by a stopper l3 via the same seat is also provided in the outlet of the pressure port 7, and a notch l2 is provided in the check valve l1.
It is a form of authority. A base hull l4 is provided at the bottom of the cylinder l, and this is a hull case l5 which is a partition wall member.
, the expansion port l5 and the pressure port 17 formed in the valve case 15, the check valve 2l provided at the outlet of the expansion port l6, and the pressure side leaf hull l provided at the outlet of the pressure port 17.
8. A stamped orifice 22 is formed in the head of the sheet supporting the check hull 2l, and a hole 23 facing the pressure port 17 is formed in the check hull 2l. The pressure side leaf valve l8 is connected to the stop valve 20 via the spacer 19.
It is supported by The lower oil chamber 5 has each port 16.17 and check valve 2l.
and is opened and closed to the reservoir side oil chamber 24 via the pressure side leaf valve l8. When on the expansion side, the piston 2 moves to the left, oil in the upper sleeve chamber 4 flows into the lower oil chamber 5, and oil in the reservoir side oil chamber 24 is also sucked into the lower oil chamber 5. At this time, in the low speed range, the oil in the upper oil chamber 4 flows from the notch 12 through the pressure port 7 to the lower oil chamber 5, and the damping force of the low speed castle is generated by the flow resistance of the notch 12 and the pressure port 7. . In the medium speed range, the flow pushes open the expansion side leaf valve 10 from the expansion port 6, and the bending action of the leaf valve 10 generates a damping force in the medium speed range. As the speed increases further, flow resistance flowing through the expansion port 6 also occurs, generating a damping force in the high speed range. When the base valve l4 is on the power and expansion side, oil in the first extraction chamber 24 flows to the lower oil chamber 5 via the orifice 22 in the low speed range, and in the middle and high speed range, the check hub 6 is pushed open and the oil flows into the lower extraction chamber. It flows to 5. During the compression stroke in which the piston 2 moves to the right, oil in the lower oil chamber 5 flows into the oil chamber 24 via the stamped orifice 22 and the pressure port 16 at low speeds, generating a damping force in the low speed region, and in the middle damping region. IE side leaf valve l8 from hole 23 and extension port l7
tA of the pressure side leaf hull 18.
As a result, a damping force in the medium speed range is generated, and at a high speed castle, the flow resistance of the pressure port 17 is also generated, and a damping force in the high speed castle is generated.
On the other hand, on the piston 2 side, oil in the lower oil chamber 5 flows out from the pressure port 7 into the L oil chamber 4 through the notch I2 and by pushing open the check valve l6. [Problem to be solved by the invention] In the above-mentioned hydraulic shock absorber, the leaf valve is

【0が開くが、このリーフバルブlOか開口した瞬間に
おいてはリーフバルブIOは一時的に設定開度よりも開
きすぎてオーバシュートし,上部油室4から下部油室5
への通路面積は一瞬急拡大する.同じく圧縮作動時には
圧側リーフバルブl8が才一バシュートし,下部油室5
からの通路而積か急激に拡大する.この九上下油室4,
5の圧力が急変し,この圧力変動がピストンロッド3を
振動させ、車体のばね上側マウント(インシュレータ)
を介して車体へ伝達され、車体を共振させて通常コトコ
ト音と称する異音か発生する. 1二記のコトコト含は通常は余程集中しないと聞えない
含てあるか、現在はかなり大きな問題となっており,運
転者に不快をケえたり、危険を感しさせたりしている。 そこで、本発明の[I的は,伸・圧作動時にリーフハル
ブか開いても、リーフバルブはオーハシュートせず、よ
って流路而積も急拡大せず、珪つ油室の圧力変動を防I
ヒシ、ピストンロッドの振動に起因するコトコト音の発
生を肪止した油圧緩衝器を提供することである. [課題を解決するための手段] 上記の目的を達成するため,本発明の4lll&は、シ
リンダ内に隔壁部材を介して上下二つの油室を区喝し、
隔壁部材には二つの油室を連通ずるポートを設け、当該
ポートの出口端に複数のリーフバルブを積層させたバル
ブを開閉自作に設けた油圧緩衝器に於て、前記複数のリ
ーフハルブはメインリーフバルブとメインリーフハルツ
の背面に重ねたサブリーフバルブとからなり、メインリ
ーフバルブには前記ポートに対向する小孔を形成したこ
とを特徴とするものである。 [作 用] 伸長作動時又はFEW作動時にリーフパルブか開くとき
、先ずメインリーフハルプの小孔より油J.Eがサツリ
ーフハルノに作用してサブリーフハルフのみを鳩わませ
る。更にピストン速度か早くなるとリーフバルブ全部を
挑わませる.小孔を通る流量は少なく、サプリーフバル
ブか聞いても流路而積は急拡大せず,油室の圧力変動も
生しず、よってピストンロッドを振動させない [実施例] 以下本発明の実施例を図面にもとづいて説11する。 第1図は本発明の一実施例を示す。 油圧緩衝器自体の基本的構造は,例えば:JS9図の従
来技術と同じである。 以下詳細に説明する. シリンダl内に隔壁部材たるピストン2を介してピスト
ンロット3が移動自在に挿入され、ピストン2はシリン
ダ1内に上下二つの油室4,5を区画している.ピスト
ン2には二つの油室4,5を連通する伸ポート6と圧ボ
ー7を形成し、伸ポート6の出口には間座8を介してス
トツバ9とナットNで支持された伸偏り一フバルブIO
が開閉自在に設けられ、圧ポート7の出口にも間座を介
してストツバl3で支持されたノンリターンバルブたる
チェックバルブl1が開閉自在に設けられ,チェックバ
ルブHには切欠きl2が形或されている.切欠きIZの
代りにシートに打刻オリフィスを設けてもよい. シリンダlの下部にはベースバルブl4が設けられ、こ
れは隔壁部材たるバルブケース】5と、バルブケースI
5に形成した伸ポートl6と圧ポートI7と、伸ポート
llIの出口に設けたノンリターンバルブたるチェック
バルブ2lと圧ポートl7の出口に設けた圧側リーフバ
ルブ18とを有している。チェックハルブ2lを支える
シートのyA部には打刻オリブイス22が形成され、チ
ェックバルブ21には圧ポートl7と対向する孔23が
形成されている。 圧側リーフバルブI8は間座19を介してストッパ20
で支持されている。 f部油室5は各ポート16.17とチェックハルブ2l
と圧側ソーフバルブl8を介してリザーバ側油室24に
開閉される. 伸偏り一フバルブIO又は圧側リーフハルブ】8は複数
のリーフバルブを積層させたハルツて構成されている. 第1図のバルブは伸側リーフバルブIOを示しているが
、このバルブの構造はそのま\ベースバルブ■4のバル
ブケースl5に設けた圧側リーフバルフ18として利用
てきる。 伸側リーフバルブIOは三枚のピストン側メインリーブ
バルブa,b,cと当該メインリーフバルブCの背面に
当接させる一枚のサブリーフハルブdとで構成し,各メ
インリーフバルブa,b,cは伸ポート6の一つに対向
するP分小さい小孔eかそれぞれ形成されている。 各メインリーフバルブa,b,ccは側而D形のピスト
ン神大孔fをそれぞれ形戊し、この孔fには断而D形の
ピストンロット3をl=T1人して各リーフハルブa,
b,cの位置ずれを防ILしている。即ち、各小孔eか
必ず伸ポート6と対向させている。孔fは図示のものに
限定されず、その他、矩形、多角形状てもよい。 伸側侍にはピストン2か左行し、上部油室4の柚か下部
抽室5に流れ、リザーバ側h!+室24の袖もF部抽室
5に吸い込まれる. この際,低速域では切欠き12よりIEポート7を介し
て七部油室4の油か下゛部抽室5に流れ、切欠き12と
圧ポート7の流動抵抗で低速域の減衰力を発生する。 この時の特性は第2図のグラフ0て示される。速度か速
くなると伸ポート6よりメインリーフバルブa.b.c
の各小孔eを介してサブリーフハルブdを押し開かせて
特性pで示す減衰力を発生する。この場合小孔eは十分
小さく.サツリーフハルブdか開いても流路面積は急激
に拡大せず、しかもサブリーフハルブdは小孔eに対応
ずる部分から開き才一ハシュートせず,よって下部油室
5の圧力も急激に変動しない。 史に高速になると、伸ポート6より全体の伸側リーフハ
ルブ10を押し開いて流れ、リーフバルブ10全体の撓
み作用で特性9の減衰力を発生する.,総合特性はクラ
フrて示され、オリフィス領域からバルブ領域へのつな
がりか滑らかになる。 ピストン2か右行する圧縮行程では、低速時下部油室5
の油か打刻オリフィス22と圧ポート16を介して油室
24に流れて低速域の減衰力か発生し、中速域では孔2
ゴ及び仲ポートl7より圧側リーフハルツl8を介して
油室24に流れ、圧側リーフハルブl8の撓み作用で中
速域の減衰力が発生し高速域ては圧ポート17の流動抵
抗も発生して高速城の減衰力が発生する. 圧側リーフハルツI8に上記伸側リーフハルブ10と同
じ構成を作用すれば,回し作用効果か得られる。 更に、L記ソーフバルブの41成はピストン側又はベー
スハlレブ偶のチェックハルツI+, 21に採fIJ
 L,て油室4,5の圧力変動を防11:することか+
IT f@である。 :53図は未発Illに係り、リーフハルフの他の’t
’A例を示す。 これは第1図のリーフバルブを変1(jし,ピストン寄
りの二つのメインソークバルブa,bに他の小孔gをそ
れぞれ付加したものであるゆこの場合には、小孔eを介
してサブソーフハルフdをffJ,わませるi1段目の
減衰力4キ性と、小孔gを介してメインリーフバルブC
とサフソーフハルブdを撓ねませる第2段目の減衰力特
性と、伸ポート6からソープバルブIO全体をtAねま
せる第3段目の減衰力特性か得られる。 メインリーフバルブとサブワーフバルブの数を選択し,
これらのリーフバルブに設ける小孔の数を選択すること
により減衰力特性を何段てら設定できる. 第41Aは本発明の他の実施例に係り、これは第1図の
ソーフハルブを女形し、3枚目のメインリーフバルブC
の小孔を長孔e゛に変更したものである. この場合にはリーフバルブIO全体の撓みによる減衰力
特性は同じであるか、小孔eと長孔C′からの圧力でサ
ブリーフハルブdを撓わませるとき、長孔e′の面積に
対応して受圧面積が大きくなり、サブリーフバルブdか
開き易くなる。 更に第5図は本発明の他の実施例に係り、これは第4図
のリーフバルブを変形し,サソリーフバルブdに小孔e
に対向し且つこの小孔eより小径のオリフィスkを形成
したものである。 この場合には長孔C′によりサブリーフハルブdか開き
易くなると共に、オリフィスkかチェックハルブI1の
切欠き12と同じ作用をさせることかuT能となる.即
ち,切欠き12を廃止して才ソフィスkのみにするか、
又は両者の孔径に応じて圃慟させることが可能である。 :tS6 [:Jは本発明の他の実施例に係り、これは
サプリーフバルブをスライト式にしたものてある。 即ち、伸ポート6の出口端に小孔eを形威した複数のメ
インリーフバルブa,b,cとメインリーフハルッCの
背面にガイトを介してヒ下スライト自在に当接するサフ
リーフハルブd゜とて伸偏りーフバルブ10′ をa成
し、サッソーフハルツd′の背面にはスプリング押えi
に支持されたスプリンクhか設けられ、サブリーフハル
ブd゛か常時閉じ方向に付勢されたものである。 作用、効果は第i図の実施例と実質的に同してある. 上記の伸側リーフバルブ10’はベースハルブ14側の
圧倒リーフパルプ】8に採用してもよく、又はチェック
バルブ1■又は21に採用してもよい. 第7図(A)(B)(C)は本発明の他の実施例に係る
リーフバルブを示す。 これは中央に通孔f゛を設けた二枚のメインリーフバル
ブl.blと中央に通孔f″を形虞したサブリーフハル
ブd゜とから構成している.第1のピストン側メインリ
ーフハルフa′には小孔eが形成され、中間のメインリ
ーフバルフb゜には等間隔に円周方向に沿って三つの長
孔e”を形成し,サブリーフバルッd゜には通孔f”か
形成されている. 伸長時又は圧縮時に小孔e,l孔e”を介して作用する
油圧てサブリーフハルブd゜を撓わませる点は実質的に
第4図の実施例と同してある。 メインリーフバルブ*’ ,b’は通孔f゜を介して油
を通過させるとl(に4;ドスライト自在にピストン2
やハルツケース15に取り付けられる。 メインリーフバルブbに三つの長孔f゛を設けているこ
とにより、長孔『゛に対して少なくとも一個の小孔eか
対向しており、取り付け時に位置合わせする必要かない
。 第8図は本発明の他の実施例に係り、これは第7図のリ
ーフバルブをピストン側の上面に設けた例を示すもので
ある。 ピストン2′には伸ポート6゛と圧ポート7゛を設け,
伸ポート6′の下部出口に伸側バルブ3oを設け、圧ポ
ート7′の上部出口に圧側リーフハルブlO″を設け、
圧倒リーフバルブlO″はメインリーフバルブa′と中
間のメインリーフハルッb゜とサツリーフバルッd゛と
で構成し、通孔『′は伸ポート6゛を介して伸側バルブ
30に対向しているものである.サブリーフバルブd′
はスプリング31て閉じ方向に付勢されている. 圧縮時にはピストン2゛の切欠きを介して上部油室4に
下部油室5の油が流れ、次いて小孔C“、長孔e”を介
してサブリーフバルブd′に圧油が作用してリーフバル
ブd′を開き,高速になると全体のリーフ八ルブIO″
を開かせるものてある. [発明の効果] 本発明によれば、メインリーフハルツとサブリーフバル
ブを重ね、メインリーフバルブに小孔を設けたから,ピ
ストンの低速域ては小孔より油圧かサソリーフバルブに
作用してサブリーフハルブを開かせるたけであり、しか
も小孔を流れる油量は少なく流路而積は急拡大せず,油
室の圧力変動か急激に変化しない。この為、ピストンロ
ッドは振動せず、よってピストンロフトの振動に起因す
る車体側のコトコト音の発生か防11二てきる。 サブリーフハルフは小孔に対応する部分から開くから、
オーパシェー卜することも防出てきる.
0 opens, but at the moment when this leaf valve IO opens, the leaf valve IO temporarily opens too much than the set opening and overshoots, causing the oil chamber 5 to open from the upper oil chamber 4 to the lower oil chamber 5.
The area of the passageway suddenly expands for a moment. Similarly, during compression operation, the pressure-side leaf valve l8 basutes, and the lower oil chamber 5
The passageway from the beginning expands rapidly. This nine upper and lower oil chambers 4,
5 suddenly changes, and this pressure fluctuation causes the piston rod 3 to vibrate, causing the sprung upper mount (insulator) of the car body to vibrate.
The noise is transmitted to the car body through the noise, causing the car body to resonate and producing an abnormal noise usually called a clicking sound. The murmuring of the words in Chapter 12 is usually difficult to hear without much concentration, and it is currently a fairly serious problem, causing discomfort to drivers and making them feel at risk. Therefore, the main objective of the present invention is that even if the leaf valve opens during expansion/compression operation, the leaf valve does not overshoot, and therefore the flow path volume does not expand rapidly, preventing pressure fluctuations in the oil chamber.
It is an object of the present invention to provide a hydraulic shock absorber which suppresses the generation of rattling noise caused by vibrations of caltrops and piston rods. [Means for Solving the Problems] In order to achieve the above object, the 4llll& of the present invention separates two upper and lower oil chambers in the cylinder via a partition member,
The bulkhead member is provided with a port that communicates the two oil chambers, and at the outlet end of the port, a plurality of leaf valves are stacked to open and close the valve. It consists of a valve and a sub-leaf valve stacked on the back side of a main leaf valve, and is characterized in that the main leaf valve is formed with a small hole facing the port. [Function] When the leaf valve opens during extension or FEW operation, oil first flows through the small hole in the main leaf halp. E acts on the Satreef Haruno and makes only the Subleaf Half fly. Furthermore, if the piston speed increases, all the leaf valves will be challenged. The flow rate passing through the small hole is small, and the volume of the flow path does not expand rapidly even if the supplement valve is used, and there is no pressure fluctuation in the oil chamber, so the piston rod does not vibrate [Example] The following is an implementation of the present invention. An example will be explained based on the drawings. FIG. 1 shows an embodiment of the invention. The basic structure of the hydraulic shock absorber itself is the same as that of the prior art shown in Figure JS9, for example. This will be explained in detail below. A piston rod 3 is movably inserted into the cylinder 1 via a piston 2 which is a partition wall member, and the piston 2 defines two upper and lower oil chambers 4 and 5 within the cylinder 1. The piston 2 is formed with an expansion port 6 and a pressure bow 7 that communicate the two oil chambers 4 and 5, and an expansion bias unit supported by a stop collar 9 and a nut N is provided at the outlet of the expansion port 6 via a spacer 8. Fubarb IO
is provided so as to be openable and closable, and a check valve l1 which is a non-return valve supported by a stopper l3 via a spacer is also provided at the outlet of the pressure port 7 so as to be openable and closable. It has been done. An embossing orifice may be provided in the sheet instead of the notch IZ. A base valve 14 is provided at the bottom of the cylinder 1, which is comprised of a valve case 5, which is a partition wall member, and a valve case I.
5, a check valve 2l serving as a non-return valve provided at the outlet of the extension port III, and a pressure-side leaf valve 18 provided at the outlet of the pressure port I7. A stamping olive chair 22 is formed in the yA portion of the seat supporting the check valve 2l, and a hole 23 facing the pressure port 17 is formed in the check valve 21. The pressure side leaf valve I8 is connected to the stopper 20 via the spacer 19.
It is supported by F part oil chamber 5 has each port 16.17 and check hull 2l
and is opened and closed to the reservoir side oil chamber 24 via the pressure side sof valve l8. Expansion-biased one-leaf valve IO or compression-side leaf valve] 8 is composed of a stack of multiple leaf valves. Although the valve in FIG. 1 shows the expansion side leaf valve IO, the structure of this valve can be used as is as the compression side leaf valve 18 provided in the valve case 15 of the base valve 4. The expansion-side leaf valve IO is composed of three piston-side main leaf valves a, b, and c and one sub-leaf valve d that is brought into contact with the back surface of the main leaf valve C, and each main leaf valve a, b , c are each formed with a small hole e which is smaller by P and faces one of the expansion ports 6. Each of the main leaf valves a, b, and cc has a large hole f with a D-shaped piston on the side, and a D-shaped piston rod 3 is inserted into this hole f by l=T1 people, and each leaf valve a,
IL is prevented from shifting the positions of b and c. That is, each small hole e is always opposed to the extension port 6. The hole f is not limited to the one shown in the figure, but may also have a rectangular or polygonal shape. On the expansion side, the piston 2 moves to the left, and the oil in the upper oil chamber 4 flows into the lower extraction chamber 5, and the reservoir side h! The sleeve of the + chamber 24 is also sucked into the F section drawing chamber 5. At this time, in the low speed range, the oil in the seventh oil chamber 4 flows from the notch 12 through the IE port 7 to the lower extraction chamber 5, and the damping force in the low speed range is reduced by the flow resistance of the notch 12 and the pressure port 7. Occur. The characteristics at this time are shown by graph 0 in FIG. When the speed increases, the main leaf valve a. b. c.
The sub-leaf hull d is pushed open through each small hole e to generate a damping force having a characteristic p. In this case, the small hole e is sufficiently small. Even if the sub-leaf hull d opens, the flow path area does not expand rapidly, and the sub-leaf hull d does not open from the portion corresponding to the small hole e, so the pressure in the lower oil chamber 5 does not fluctuate rapidly. When the speed increases, the flow pushes open the entire extension side leaf valve 10 from the extension port 6, and the damping force of characteristic 9 is generated by the deflection action of the entire leaf valve 10. , the overall characteristic is shown as rough, and the connection from the orifice region to the valve region is smooth. During the compression stroke in which the piston 2 moves to the right, the lower oil chamber 5 at low speed
The oil flows into the oil chamber 24 through the stamped orifice 22 and the pressure port 16, generating a damping force in the low speed range, and in the medium speed range, the oil in the hole 2
It flows from the engine and middle ports 17 to the oil chamber 24 via the compression side leaf hull 18, and the bending action of the compression side leaf hull 18 generates a damping force in the medium speed range. A damping force of is generated. If the same configuration as the above-mentioned growth side leaf hull 10 is applied to the compression side leaf hull I8, a turning effect can be obtained. In addition, the 41 configuration of the L sawf valve is adopted for the piston side or base hull rev joint check Harz I+, 21 fIJ
L, to prevent pressure fluctuations in oil chambers 4 and 5.
IT f@. :Figure 53 is related to unreleased Ill, and other 't' of Leaf Half.
'A example is shown. This is a modification of the leaf valve in Fig. 1 (j), with another small hole g added to the two main soak valves a and b near the piston. The sub-soaf half d is deflected by ffJ, the first stage damping force is 4-ki, and the main leaf valve C is inserted through the small hole g.
The damping force characteristics of the second stage which causes the suf soap valve d to flex and the damping force characteristics of the third stage which causes the entire soap valve IO to fall asleep from the extension port 6 by tA are obtained. Select the number of main leaf valves and sub-warf valves,
By selecting the number of small holes provided in these leaf valves, the damping force characteristics can be set in several stages. No. 41A relates to another embodiment of the present invention, which is a female version of the saw valve of FIG. 1, and has a third main leaf valve C.
The small hole was changed to a long hole e゛. In this case, the damping force characteristics due to the deflection of the entire leaf valve IO are the same, or when the sub-leaf valve d is deflected by the pressure from the small hole e and the long hole C', it corresponds to the area of the long hole e'. This increases the pressure receiving area and makes it easier to open the sub-leaf valve d. Furthermore, FIG. 5 relates to another embodiment of the present invention, in which the leaf valve of FIG. 4 is modified, and a small hole e is provided in the scorpion leaf valve d.
An orifice k is formed opposite to the small hole e and having a smaller diameter than the small hole e. In this case, the elongated hole C' makes it easier to open the subleaf hull d, and the orifice k has the same effect as the notch 12 of the check hull I1. In other words, do you abolish the notch 12 and use only the sophistic K?
Alternatively, it is possible to irrigate the field depending on the pore size of both. :tS6 [:J relates to another embodiment of the present invention, in which the supplementary valve is of a slite type. That is, a plurality of main leaf valves a, b, and c each having a small hole e formed at the outlet end of the extension port 6, a subleaf hull d° that freely contacts the back surface of the main leaf hull C via a guide, and The expansion valve 10' is formed with a spring retainer i on the back of the Sassoufharz d'.
The sub-leaf hull d' is always biased in the closing direction. The operation and effect are substantially the same as the embodiment shown in FIG. The above expansion side leaf valve 10' may be adopted as the overwhelming leaf pulp [8] on the base hull 14 side, or may be adopted as the check valve 1■ or 21. FIGS. 7(A), 7(B), and 7(C) show leaf valves according to other embodiments of the present invention. This consists of two main leaf valves with a through hole f in the center. bl and a sub-leaf hull d゜ with a through hole f'' in the center.A small hole e is formed in the first piston side main leaf half a', and an intermediate main leaf valve b゜Three elongated holes e" are formed along the circumferential direction at equal intervals, and a through hole f" is formed in the subleaf valve d. During expansion or compression, small holes e and l holes e" are formed. The hydraulic pressure applied thereto to deflect the sub-leaf hull d° is substantially the same as in the embodiment shown in FIG. The main leaf valve *', b' allows oil to pass through the through hole f゜, allowing the piston 2 to move freely.
It can be attached to the HARTZ Case 15. By providing the three long holes f' in the main leaf valve b, at least one small hole e faces the long holes f, and there is no need for alignment during installation. FIG. 8 relates to another embodiment of the present invention, and shows an example in which the leaf valve of FIG. 7 is provided on the upper surface on the piston side. The piston 2' is provided with an extension port 6' and a pressure port 7',
An expansion side valve 3o is provided at the lower outlet of the expansion port 6', a compression side leaf valve lO'' is provided at the upper outlet of the pressure port 7',
The overwhelming leaf valve lO'' is composed of a main leaf valve a', an intermediate main leaf hull b゜, and a subleaf leaf valve d゛, and the through hole ``'' faces the expansion side valve 30 via the expansion port 6''. This is the sub-leaf valve d'
is biased in the closing direction by a spring 31. During compression, oil in the lower oil chamber 5 flows into the upper oil chamber 4 through the notch in the piston 2'', and then pressure oil acts on the sub-leaf valve d' through the small hole C'' and the long hole e''. to open the leaf valve d', and when the speed increases, the entire leaf valve d'
There is something that opens it. [Effects of the Invention] According to the present invention, since the main leaf valve and the sub-leaf valve are overlapped and the main leaf valve is provided with a small hole, in the low speed range of the piston, the hydraulic pressure acts on the sub-leaf valve through the small hole and the sub-leaf valve is activated. The leaf hull is simply opened, and the amount of oil flowing through the small hole is small, so the volume of the flow path does not expand rapidly, and the pressure in the oil chamber does not change suddenly. Therefore, the piston rod does not vibrate, which prevents rattling noise on the vehicle body side caused by the vibration of the piston loft. Because the sub-reef half opens from the part corresponding to the small hole,
It also prevents overshaping.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のー¥施例に係るハルブ装置の分解斜視
図,第2図は第1図のハルフ装置による減衰力特性を示
すグラフ,第3図、第4図,第5図は他の実施例に係る
バルブ装置の分解斜視図,第613は他の実施例に係る
ピストン部におけるバルブ装置の縦断正面図、第7図(
A) (R) (C)は他の実施例に係るリーフハルブ
の平面図、第8図は第7図のリーフハルツを利用したピ
ストン部バルブ装置の縦断正面図、第9図は従来の油圧
緩#i冴の縦断正而図てある.[符号の説明] l・・・シリンタ 22゜・・・隔壁部材たるピストン 4.5・・・油室 6,6゜・・・ポート 7.7′・・・ポート 1口,10’, 10″・・・リーフハルブl5・・・
隔壁部材たるハルブケース l8・・・リーフバルブ a,a“,b,b’ ,c・・・メインリーフバルブd
,d’・・・サブリーフバルブ e・・・小孔 e’,e  ・・・長孔 k・・・オリフィス
Fig. 1 is an exploded perspective view of a hull device according to an embodiment of the present invention, Fig. 2 is a graph showing damping force characteristics by the half device of Fig. 1, and Figs. 3, 4, and 5 are FIG. 613 is an exploded perspective view of a valve device according to another embodiment, and FIG.
A) (R) (C) is a plan view of a leaf hull according to another embodiment, FIG. 8 is a longitudinal sectional front view of a piston valve device using the leaf hull of FIG. 7, and FIG. 9 is a conventional hydraulic valve device. Isae's vertical history is shown. [Description of symbols] l...Cylinder 22°...Piston serving as a partition wall member 4.5...Oil chamber 6,6°...Port 7.7'...Port 1 port, 10', 10 ″...Leaf Halb l5...
Hull case l8, which is a partition wall member...Leaf valves a, a", b, b', c...Main leaf valve d
, d'... Sub-leaf valve e... Small hole e', e... Long hole k... Orifice

Claims (1)

【特許請求の範囲】[Claims] シリンダ内に隔壁部材を介して上下二つの油室を区画し
、隔壁部材には二つの油室を連通するポートを設け、当
該ポートの出口端に複数のリーフバルブを積層させたバ
ルブを開閉自在に設けた油圧緩衝器に於て、前記複数の
リーフバルブはメインリーフバルブとメインリーフバル
ブの背面に重ねたサブリーフバルブとからなり、メイン
リーフバルブには前記ポートに対向する小孔を形成した
ことを特徴とする油圧緩衝器のバルブ装置。
Two oil chambers are divided into upper and lower oil chambers within the cylinder via a partition member, a port is provided in the partition member to communicate the two oil chambers, and a valve with multiple leaf valves stacked at the outlet end of the port can be opened and closed. In the hydraulic shock absorber provided in the hydraulic shock absorber, the plurality of leaf valves are composed of a main leaf valve and a sub-leaf valve stacked on the back side of the main leaf valve, and the main leaf valve has a small hole facing the port. A hydraulic shock absorber valve device characterized by:
JP30655489A 1989-11-28 1989-11-28 Valve device of hydraulic shock absorber Pending JPH03168431A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30655489A JPH03168431A (en) 1989-11-28 1989-11-28 Valve device of hydraulic shock absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30655489A JPH03168431A (en) 1989-11-28 1989-11-28 Valve device of hydraulic shock absorber

Publications (1)

Publication Number Publication Date
JPH03168431A true JPH03168431A (en) 1991-07-22

Family

ID=17958445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30655489A Pending JPH03168431A (en) 1989-11-28 1989-11-28 Valve device of hydraulic shock absorber

Country Status (1)

Country Link
JP (1) JPH03168431A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6672436B1 (en) * 2000-04-19 2004-01-06 Tenneco Automotive Operating Company Inc. Variable bleed orifice valving
WO2014125974A1 (en) * 2013-02-15 2014-08-21 カヤバ工業株式会社 Solenoid valve

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6672436B1 (en) * 2000-04-19 2004-01-06 Tenneco Automotive Operating Company Inc. Variable bleed orifice valving
WO2014125974A1 (en) * 2013-02-15 2014-08-21 カヤバ工業株式会社 Solenoid valve
JP2014156883A (en) * 2013-02-15 2014-08-28 Kayaba Ind Co Ltd Solenoid valve
US10458506B2 (en) 2013-02-15 2019-10-29 Kyb Corporation Solenoid valve

Similar Documents

Publication Publication Date Title
JPH07217692A (en) Valve structure for buffer
JP2958333B2 (en) Hydraulic shock absorber valve device
JPH03168431A (en) Valve device of hydraulic shock absorber
JP3992087B2 (en) Damping force generation structure
JP2000283207A (en) Valve structure of hydraulic shock absorber
JP3066994B2 (en) Damping force adjustable shock absorber
WO2013145981A1 (en) Damping valve
JPH03199732A (en) Valve device of hydraulic shock absorber
JP2836698B2 (en) Hydraulic shock absorber valve device
WO2021084956A1 (en) Shock absorber
JP4683602B2 (en) Yodan damper for railway vehicles
JPH03172638A (en) Valve device for hydraulic buffer
JP2812963B2 (en) Hydraulic shock absorber damping force generator
JPH03199733A (en) Valve device of hydraulic shock absorber
JPH03163233A (en) Valve device of hydraulic damper
JPH0814306A (en) Damping force variable type hydraulic shock absorber
JP3827178B2 (en) Hydraulic shock absorber
JPH03189435A (en) Valve device of hydraulic buffer
JP2001041271A (en) Hydraulic buffer
CN106536966B (en) Buffer device
JP4426718B2 (en) Damping valve structure
JPH10231879A (en) Hydraulic damper
JP2001165224A (en) Damping force generation structure for hydraulic shock absorber
JP5831980B2 (en) Shock absorber
JP2594411Y2 (en) Pressure side damping force generating valve structure of hydraulic shock absorber