JPH03164474A - Production of sintered body of silicon nitride - Google Patents

Production of sintered body of silicon nitride

Info

Publication number
JPH03164474A
JPH03164474A JP1302987A JP30298789A JPH03164474A JP H03164474 A JPH03164474 A JP H03164474A JP 1302987 A JP1302987 A JP 1302987A JP 30298789 A JP30298789 A JP 30298789A JP H03164474 A JPH03164474 A JP H03164474A
Authority
JP
Japan
Prior art keywords
powder
sintered body
silicon nitride
sintering
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1302987A
Other languages
Japanese (ja)
Other versions
JP2687634B2 (en
Inventor
Shinji Tsuji
慎二 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP1302987A priority Critical patent/JP2687634B2/en
Publication of JPH03164474A publication Critical patent/JPH03164474A/en
Application granted granted Critical
Publication of JP2687634B2 publication Critical patent/JP2687634B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the sintered body of Si3N4 which is less degraded in strength even in a high temp. region of 1400 deg.C by mixing sintering assistant powder consisting of a prescribed weight ratio of Sc2O3 powder and mullite powder with Si3N4 powder and molding the mixture, then sintering the molding in a nonoxidative atmosphere. CONSTITUTION:The sintering assistant powder formed by mixing the Sc2O3 powder and the mullite (3Al2O3.2SiO2) powder at 5/2 to 1/2 ratio is mixed at 1 to 6wt.% with 99 to 94wt.% fine powder of the Si3N4 having preferably <=1.0mum average grain size. This powder mixture is molded to a prescribed shape in a metallic mold and thereafter, a high isostatic pressure is loaded to the molding, by which the molding is produced. The molding is then sintered under an atm. pressure or pressurization at 1750 to 1850 deg.C in the nonoxidative atmosphere consisting of N2, etc. The sintered body of the Si3N4 obtd. in such a manner has the above-mentioned characteristics, is less increased in weight by oxidation and is highly resistant to oxidation; therefore, the use of the sintered body as engine parts is attained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、ガスタービン部品やディーゼルエンジン部品
などの耐熱性の構造材料として使用できる窒化珪素焼結
体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a silicon nitride sintered body that can be used as a heat-resistant structural material for gas turbine parts, diesel engine parts, and the like.

[従来の技術] 従来、耐熱性にすぐれた窒化珪素焼結体は、窒化珪素粉
末にイツトリア、スピネルとイツトリア、イツトリヤと
アルミナなどの焼結助剤を加えて成形し、得られる成形
体をホットプレスや加圧下で窒素雰囲気中で焼結して製
造されている。
[Conventional technology] Conventionally, silicon nitride sintered bodies with excellent heat resistance have been produced by adding sintering aids such as yttria, spinel and yttria, or yttria and alumina to silicon nitride powder, and molding the resulting molded body by hot heating. It is manufactured by sintering in a nitrogen atmosphere under press or pressure.

たとえば特開平1−188471号公報にはムライトお
よび酸化イツトリウムを焼結助剤(0゜8〜6ffif
fi%)として窒化珪素粉末(94〜99゜2型組%)
に添加して成形し、非酸化性雰囲気中で焼結する焼結体
の製造方法の開示がある。
For example, in Japanese Patent Application Laid-Open No. 1-188471, mullite and yttrium oxide are used as sintering aids (0°8 to 6ffif).
silicon nitride powder (94-99°2 type set%)
There is a disclosure of a method for manufacturing a sintered body in which the sintered body is added to a sintered body, molded, and sintered in a non-oxidizing atmosphere.

しかしながら、上記の焼結助剤は焼結時に液相を形成し
て窒化珪素の焼結を促進するが、焼結後はガラス相を形
成して焼結体中の粒界に残存している。このため焼結体
が高温にざらされると粒界に存在する焼結助剤成分が再
度液相を形成するため焼結体の強度を低下させるので、
高温度で使用される部品としての使用は好ましくない。
However, the above-mentioned sintering aids form a liquid phase during sintering to promote the sintering of silicon nitride, but after sintering, they form a glass phase that remains at the grain boundaries in the sintered body. . For this reason, when the sintered body is exposed to high temperatures, the sintering aid component present at the grain boundaries forms a liquid phase again, reducing the strength of the sintered body.
It is undesirable to use it as a component used at high temperatures.

すなわち窒化珪素−ムライト−イツトリア系の焼結体で
は、粒界相がムライト−イツトリアで形成されている。
That is, in a silicon nitride-mullite-yttria-based sintered body, the grain boundary phase is formed of mullite-yttria.

このムライト−イツトリア系の相図によれば1400℃
が液相となる開始温度である。このため1400’Cに
なると焼結体は粒界が軟化するため強度が急激に低下し
てしまう。そこでこの焼結体を1200℃以上の温度領
域で使用するには、粒界の非晶質相を結晶化しないかぎ
り強度の低下を防ぐことができない。
According to this mullite-yttoria phase diagram, 1400℃
is the starting temperature at which it becomes a liquid phase. For this reason, when the temperature reaches 1400'C, the grain boundaries of the sintered body soften, resulting in a sharp decrease in strength. Therefore, if this sintered body is to be used in a temperature range of 1200° C. or higher, a decrease in strength cannot be prevented unless the amorphous phase at the grain boundaries is crystallized.

セラミックス製ガスタービンエンジン部品としては、使
用時の温度が1300〜1400℃の高い温度域となる
。このため1400’Cにおいても強度の低下の少ない
窒化珪素焼結体とすることが必要となる。
As a gas turbine engine component made of ceramics, the temperature during use is in a high temperature range of 1300 to 1400°C. Therefore, it is necessary to provide a silicon nitride sintered body that exhibits little decrease in strength even at 1400'C.

[発明が解決しようとする課題] 本発明は、上記の事情に鑑みてなされたもので、140
0℃の温度域においても強度の低下の少ない窒化珪素焼
結体とすることを目的とする。
[Problem to be solved by the invention] The present invention has been made in view of the above circumstances, and
It is an object of the present invention to provide a silicon nitride sintered body that exhibits little decrease in strength even in a temperature range of 0°C.

[課題を解決するための手段] 本発明の窒化珪素焼結体の製造方法は、窒化珪素粉末と
焼結助剤粉末との混合粉末から成形体を成形する成形工
程と、該成形体を非酸化性雰囲気で焼結して焼結体とす
る焼結工程とからなる窒化珪素焼結体の製造方法におい
て、該成形工程では、該窒化珪素粉末99〜94重量%
に、酸化スカンジウム(SC2O3)粉末とムライト(
3A + 203・2S i 02 )粉末の比率が5
/1〜1/2の割合で混合した該焼結助剤粉末1〜6重
間%を配合して該混合粉末とすることを特徴とする。
[Means for Solving the Problems] The method for producing a silicon nitride sintered body of the present invention includes a forming step of forming a compact from a mixed powder of silicon nitride powder and a sintering aid powder, and a step of forming the compact. In a method for producing a silicon nitride sintered body, which comprises a sintering step of sintering in an oxidizing atmosphere to form a sintered body, in the forming step, the silicon nitride powder is contained in an amount of 99 to 94% by weight.
Then, scandium oxide (SC2O3) powder and mullite (
3A + 203・2S i 02 ) Powder ratio is 5
The mixed powder is characterized by blending 1 to 6% by weight of the sintering aid powder mixed at a ratio of /1 to 1/2.

本発明の窒化珪素焼結体の製造方法は、窒化珪素粉末に
特定の組成割合の焼結助剤を配合して成形体を形成し、
次いでその成形体を焼結する方法である。
The method for producing a silicon nitride sintered body of the present invention includes forming a molded body by blending a sintering aid in a specific composition ratio with silicon nitride powder,
Next, the molded body is sintered.

窒化珪素粉末は、平均粒径が1.0μm以下の微粉末を
用いるのが焼結性を高め緻密な焼結体を形成するために
好ましい。窒化珪素粉末の串は、99〜94M@%であ
る。窒化珪素の量が99重M%を超えると焼結助剤の量
が不足して焼結性が高まらず、かつ粒界結晶相が生成で
きず好ましくない。窒化珪素の間が94重量%未満であ
ると焼結助剤が多くなりすぎて焼結性が高まり相対密度
は高くなるが粒界相が多くなり非晶質相が多く生成する
ため高温度域での強度が低下するので好ましくない。
It is preferable to use fine silicon nitride powder with an average particle size of 1.0 μm or less in order to improve sinterability and form a dense sintered body. The silicon nitride powder skewer is 99-94 M@%. If the amount of silicon nitride exceeds 99% by weight, the amount of the sintering aid will be insufficient and sinterability will not be improved, and grain boundary crystal phases will not be formed, which is not preferable. If the content of silicon nitride is less than 94% by weight, there will be too much sintering aid, which will improve sinterability and increase relative density, but will increase the grain boundary phase and generate a large amount of amorphous phase, so it will not work in high temperature range. This is not preferable because the strength at

焼結助剤は、酸化スカンジウム(SC2O3)粉末とム
ライト粉末の混合物で形成される。その混合比率は、酸
化スカンジウム:ムライトが3=1〜1:1の範囲の割
合とする。酸化スカンジウムの量が多くその比率が3=
1を超えると相対密度が低下し高温度での強度が低下す
るので好ましくない。また酸化スカンジウムの量が少な
くその比率が1:1より小さいと高温度の強度がざらに
低下するので好ましくない。さらにこの焼結助剤の合計
量が1〜6重量%の範囲であることが高温度での強度を
保持するために必要である。焼結助剤の量が1重量%未
満では、1000気圧以上のHIP処理をおこなわなけ
れば、緻密な焼結体が形成できず、6重量%を超えると
粒界相が必要以上に多くなり耐酸化性が低下するため好
ましくない。この焼結助剤は平均粒径が0.5μm以下
の微粉末であることが焼結性を高めるために好ましい。
The sintering aid is formed from a mixture of scandium oxide (SC2O3) powder and mullite powder. The mixing ratio of scandium oxide to mullite is 3=1 to 1:1. The amount of scandium oxide is large and the ratio is 3 =
If it exceeds 1, the relative density decreases and the strength at high temperatures decreases, which is not preferable. Further, if the amount of scandium oxide is small and the ratio is less than 1:1, the strength at high temperatures will be drastically reduced, which is not preferable. Furthermore, it is necessary that the total amount of this sintering aid be in the range of 1 to 6% by weight in order to maintain strength at high temperatures. If the amount of the sintering aid is less than 1% by weight, a dense sintered body cannot be formed unless HIP treatment is performed at 1000 atmospheres or more, and if it exceeds 6% by weight, the grain boundary phase will be larger than necessary, resulting in poor acid resistance. This is not preferable because it reduces the chemical properties. This sintering aid is preferably a fine powder with an average particle size of 0.5 μm or less in order to improve sinterability.

焼結工程は通常の条件、たとえば非酸化j生の窒素雰囲
気中で1750〜1850℃で常圧または加圧下でおこ
なうことができる。焼結温度が1750℃未満では充分
に緻密化した焼結体とならず、1850℃を超えると異
常粒成長により組織が微細化せず曲げ強度が低下するの
で好ましくない。
The sintering process can be carried out under conventional conditions, for example at 1750 DEG -1850 DEG C. in a non-oxidizing raw nitrogen atmosphere at normal or elevated pressure. If the sintering temperature is less than 1,750°C, a sufficiently dense sintered body will not be obtained, and if it exceeds 1,850°C, the structure will not be refined due to abnormal grain growth and the bending strength will decrease, which is not preferable.

また雰囲気のガス圧は、焼結体の緻密性を高めるために
5 Kl f / crtt以上の窒素ガス中でおこな
うのが好ましい。ざらに焼結工程を、窒素カス圧を10
0 K3 f 、/ cm以上のガス圧焼結、HIP焼
結、%Jjこなうことが好ましい。
Further, the gas pressure in the atmosphere is preferably nitrogen gas of 5 Kl f /crtt or more in order to improve the density of the sintered body. Roughly perform the sintering process, and reduce the nitrogen gas pressure to 10
It is preferable to perform gas pressure sintering of 0 K3 f,/cm or more, HIP sintering, and %Jj.

従来の焼結助剤のイツトリア−アルミナ、イツトリア−
ムライト系の場合では1400’Cで表面に酸化膜を形
成して酸化増量を示すが、本発明の製造方法で得られる
焼結体は、酸化増量が少なく耐酸化性の良い炭化珪素焼
結体に近くなる。この理由は充分解明されていないが、
酸化スカンジウムが添加されると、酸化により焼結体の
表面に生成する酸化膜は極めて緻密であり、この酸化膜
はクリストバライトおよび5C203・23 i 02
の結晶相であると同定されいる。したがって焼結体の表
面がポーラスになりにクク酸化の進行が抑制され、その
結果、焼結体の′#4酸化性が向上したと考えられる。
Conventional sintering aids: ittria alumina, ittria
In the case of mullite, an oxide film is formed on the surface at 1400'C and the sintered body exhibits oxidation weight gain, but the sintered body obtained by the manufacturing method of the present invention is a silicon carbide sintered body that exhibits little oxidation weight gain and has good oxidation resistance. It becomes close to. The reason for this is not fully elucidated, but
When scandium oxide is added, the oxide film that is formed on the surface of the sintered body due to oxidation is extremely dense, and this oxide film is similar to cristobalite and 5C203・23 i 02.
It has been identified as a crystalline phase. Therefore, it is considered that the surface of the sintered body became porous and the progress of oxidation was suppressed, and as a result, the oxidation property of the sintered body was improved.

[作用] 本発明の窒化珪素焼結体の製造方法では、酸化スカンジ
ウムとムライトを特定割合で焼結助剤として使用するこ
とにより、得られる焼結体の粒界ては、液相開始温度が
1400℃より上昇するため軟化が抑制でき、高温度域
に於ける焼結体の高度低下は少ないものとなる。
[Function] In the method for producing a silicon nitride sintered body of the present invention, by using scandium oxide and mullite as sintering aids in a specific ratio, the grain boundaries of the obtained sintered body have a liquid phase initiation temperature. Since the temperature rises above 1400°C, softening can be suppressed, and the decrease in height of the sintered body in the high temperature range is small.

ざらに酸化スカンジウムが添加されると酸化により表面
に緻密な結晶相が形成され酸化の進行を抑制するため耐
酸化性が向上する。
When scandium oxide is added, a dense crystalline phase is formed on the surface due to oxidation and the progress of oxidation is suppressed, thereby improving oxidation resistance.

[実施例] 以下実施例により具体的に説明する。[Example] This will be explained in detail below using Examples.

成形工程では、平均粒径が0.5μmの高純度の窒化珪
素粉末と、焼結助剤として平均粒径が0゜2μmの酸化
スカンジウム(SC203)とムライト(3A l 2
03・2SiO2)の粉末を表に示す割合で秤但し、エ
タノール中でボールミル混合をおこなった。エタノール
を除去し乾燥した混合粉末を金型で角棒状に成形した。
In the forming process, high-purity silicon nitride powder with an average particle size of 0.5 μm and scandium oxide (SC203) and mullite (3A l 2 ) with an average particle size of 0.2 μm are used as sintering aids.
Powders of 03.2SiO2) were weighed in the proportions shown in the table, and mixed in a ball mill in ethanol. After removing the ethanol, the mixed powder was dried and molded into a rectangular rod shape using a mold.

得られた成形体を二次成形として3000Kg/Cl7
tの静水圧を負荷して(5X4X50m>の成形体を作
製した。
The obtained molded body was subjected to secondary molding at a rate of 3000 Kg/Cl7.
A molded body (5×4×50 m>) was produced by applying a hydrostatic pressure of t.

焼結工程は、上記の成形体を窒素雰囲気下でガス圧を1
0Kgf/cIiとし1750〜1850℃で焼結した
In the sintering process, the above-mentioned molded body is heated to a gas pressure of 1 in a nitrogen atmosphere.
It was sintered at 1750-1850°C at 0 Kgf/cIi.

表に各試料の原料の組成割合と焼結温度と焼結体の相対
密度および4点曲げ強度(室温、1200℃、1400
℃)を示す。
The table shows the raw material composition ratio, sintering temperature, relative density of the sintered body, and 4-point bending strength (room temperature, 1200℃, 1400℃) of each sample.
°C).

相対密度はアルキメデス法により測定した。Relative density was measured by Archimedes method.

4点曲げ強度は、JIS規格の曲げ試験片(3X4X3
6!nIn>に加工し、JIS規格に基づき室温、12
00℃、1400℃の曲げ強度を測定した。
The 4-point bending strength is measured using a JIS standard bending test piece (3X4X3
6! nIn>, room temperature, 12
The bending strength was measured at 00°C and 1400°C.

実施例のN001〜7は、密度が97.0%TD(焼結
体密度を理論密度で割った%値)以上あり、曲げ強度は
室温で750 (MPa)以上おり、1200℃では7
00〜860 (MPa)あり、1400℃では640
〜720 (MPa)で低下の度合が著しく少ない。特
にNo、4は温度による強度の低下が特に少ない焼結体
である。
Examples No. 001 to 7 have a density of 97.0% TD (% value obtained by dividing the sintered body density by the theoretical density) or more, a bending strength of 750 (MPa) or more at room temperature, and 750 (MPa) or more at 1200°C.
00 to 860 (MPa), and 640 at 1400℃
~720 (MPa), the degree of decrease is extremely small. In particular, Nos. 4 and 4 are sintered bodies with particularly little decrease in strength due to temperature.

比較例No、1では焼結助剤の量が多いため1400℃
の強度低下が著しい。No、2は、酸化スカンジウムを
添加しないムライト単独の場合で、1200.1400
’Cの強度が350.200(MPa)と著しく低下し
ている。No、3はN092の逆で酸化スカンジウム単
独の場合で、この例では室温での強度も低く高温度にお
いても強度は低い。なおN002.3の強度は従来の焼
結助剤を用いたNo、4.5よりも値が低い。N004
.5は従来のスピネルとイツトリアを焼結助剤としその
損と割合を変えた場合で、高温度での強度の低下が箸し
い。
In Comparative Example No. 1, the temperature was 1400℃ due to the large amount of sintering aid.
There is a significant decrease in strength. No. 2 is the case of mullite alone without adding scandium oxide, 1200.1400
The strength of 'C was significantly lowered to 350.200 (MPa). No. 3 is the opposite of N092 and is a case of scandium oxide alone, and in this example, the strength at room temperature is low and the strength is low even at high temperature. Note that the strength of No. 002.3 is lower than that of No. 4.5 using a conventional sintering aid. N004
.. 5 is a case in which the conventional spinel and ittria are used as sintering aids and the loss and ratio thereof are changed, and the strength decreases at high temperatures.

[効果] 本発明の窒化珪素焼結体の製造方法によれば、焼結助剤
に酸化スカンジウムとムライトとを特定組成割合の混合
物を用いて焼結することにより、焼結体中の粒界の液相
開始温度が上昇するので軟化が抑制でき、焼結体の高温
度での強度低下が抑制できる。またこの方法で製造され
た窒化珪素の焼結体は、酸化による増量が少なく耐駿化
性に優れているのでエンジン部品としての使用が可能と
なる。
[Effect] According to the method for producing a silicon nitride sintered body of the present invention, grain boundaries in the sintered body are Since the liquid phase start temperature of the sintered body increases, softening can be suppressed, and a decrease in strength of the sintered body at high temperatures can be suppressed. Furthermore, the silicon nitride sintered body produced by this method has less weight increase due to oxidation and has excellent anti-oxidation properties, so it can be used as engine parts.

Claims (1)

【特許請求の範囲】[Claims] (1)窒化珪素粉末と焼結助剤粉末との混合粉末から成
形体を成形する成形工程と、該成形体を非酸化性雰囲気
で焼結して焼結体とする焼結工程とからなる窒化珪素焼
結体の製造方法において、該成形工程では、該混合粉末
を100重量%とした場合、該窒化珪素粉末99〜94
重量%に、酸化スカンジウム(SC_2O_3)粉末と
ムライト(3Al_2O_3・2SiO_2)粉末の比
率が5/1〜1./2の割合で混合した該焼結助剤粉末
1〜6重量%を配合して該混合粉末とすることを特徴と
する窒化珪素焼結体の製造方法。
(1) Consists of a forming process in which a compact is formed from a mixed powder of silicon nitride powder and sintering aid powder, and a sintering process in which the compact is sintered in a non-oxidizing atmosphere to form a sintered body. In the method for producing a silicon nitride sintered body, in the molding step, when the mixed powder is 100% by weight, the silicon nitride powder is 99 to 94% by weight.
The weight percentage of scandium oxide (SC_2O_3) powder and mullite (3Al_2O_3.2SiO_2) powder is 5/1 to 1. 1. A method for producing a silicon nitride sintered body, characterized in that the mixed powder is prepared by blending 1 to 6% by weight of the sintering aid powder mixed at a ratio of 1/2.
JP1302987A 1989-11-21 1989-11-21 Method for producing silicon nitride sintered body Expired - Fee Related JP2687634B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1302987A JP2687634B2 (en) 1989-11-21 1989-11-21 Method for producing silicon nitride sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1302987A JP2687634B2 (en) 1989-11-21 1989-11-21 Method for producing silicon nitride sintered body

Publications (2)

Publication Number Publication Date
JPH03164474A true JPH03164474A (en) 1991-07-16
JP2687634B2 JP2687634B2 (en) 1997-12-08

Family

ID=17915571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1302987A Expired - Fee Related JP2687634B2 (en) 1989-11-21 1989-11-21 Method for producing silicon nitride sintered body

Country Status (1)

Country Link
JP (1) JP2687634B2 (en)

Also Published As

Publication number Publication date
JP2687634B2 (en) 1997-12-08

Similar Documents

Publication Publication Date Title
JPH03164474A (en) Production of sintered body of silicon nitride
JP2687632B2 (en) Method for producing silicon nitride sintered body
EP0648717A2 (en) Reaction sintered ceramics and method of producing the same
US5545362A (en) Production method of sintered silicon nitride
JP3007732B2 (en) Silicon nitride-mixed oxide sintered body and method for producing the same
JPH01145380A (en) Production of silicon nitride sintered form
JPH025711B2 (en)
JP2746761B2 (en) Method for producing silicon nitride-silicon carbide composite sintered body
JP2687633B2 (en) Method for producing silicon nitride sintered body
JP2671539B2 (en) Method for producing silicon nitride sintered body
JP2631102B2 (en) Method for producing silicon nitride based sintered body
JPH05117032A (en) Production of silicon nitride sintered compact
JP2944787B2 (en) SiC-based oxide sintered body and method for producing the same
JP2694368B2 (en) Method for producing silicon nitride based sintered body
JPH06166569A (en) Production of sintered silicon nitride
JPH0559073B2 (en)
JPH05148035A (en) Production of sintered silicon nitride
JPH04280871A (en) Silicon nitride sintered product and production thereof
JP2890849B2 (en) Method for producing silicon nitride sintered body
JPH07187798A (en) Production of silicon nitride-based sintered compact
JP2003073167A (en) METHOD OF MANUFACTURING Si3N4-SiC SINTERED COMPACT
JPH0477699B2 (en)
JPS6357388B2 (en)
JPH0477363A (en) Manufacture of high strength silicon nitride sintered body in high temperature
JPH03170374A (en) Sintered material of silicon nitride

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees