JPH03164433A - Production of jarosite particles - Google Patents

Production of jarosite particles

Info

Publication number
JPH03164433A
JPH03164433A JP30421889A JP30421889A JPH03164433A JP H03164433 A JPH03164433 A JP H03164433A JP 30421889 A JP30421889 A JP 30421889A JP 30421889 A JP30421889 A JP 30421889A JP H03164433 A JPH03164433 A JP H03164433A
Authority
JP
Japan
Prior art keywords
particles
soln
jarosite
aqueous solution
jarosite particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30421889A
Other languages
Japanese (ja)
Other versions
JP2736693B2 (en
Inventor
Yoshiro Okuda
奥田 嘉郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP1304218A priority Critical patent/JP2736693B2/en
Publication of JPH03164433A publication Critical patent/JPH03164433A/en
Application granted granted Critical
Publication of JP2736693B2 publication Critical patent/JP2736693B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To produce jarosite particles at a low cost by blowing oxygen into a mixed aq. soln. prepd. by mixing an aq. ferrous sulfate soln. with an aq. soln. of the sulfate of an alkali metal or ammonium ion and an aq. sulfuric acid soln., forming a precipitate by an oxidation reaction in a specified temp. range, washing and drying the precipitate after filtration. CONSTITUTION:An aq. soln. of an alkali metal sulfate such as Na2SO4 or the sulfate of an ammonium ion and an aq. sulfuric acid soln. are added to an aq. FeSO4 soln. in a reactor and mixed to prepare a mixed aq. soln. An oxygen- contg. gas such as air is blown into the mixed aq. soln. and an oxidation reaction is caused in the temp. range of 45 deg.C to the b.p. of the soln. while stirring the soln. to form a precipitate. This precipitate is separated from the soln. by filtration, well washed and dried. Jarosite particles having a compsn. represented by a general formula RFe3(SO4)2(OH)6 (where R is K, Na, NH4, etc.) is economically produced on an industrial scale.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、硫酸第一鉄を用いてジャロサイト粒子粉末を
生成させる製造法に関し、詳しくは、RFes(Son
)x(Of{)a (R=K’ 、Na’   NH4
”など)で示されるジャロサイト粒子粉末を、工業的、
経済的に有利に製造することができる新規な製造法を提
供することを目的とする. 〔従来の技術〕 ジャロザイト粒子粉末の工業的な製造法としては、例え
ば、特公昭55−46975号公報に開示されているよ
うに、硫酸第二鉄を用いる方法がよく知られている。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a manufacturing method for producing jarosite particles using ferrous sulfate.
)x(Of{)a (R=K', Na'NH4
Jarosite particles shown in
The purpose is to provide a new manufacturing method that can be economically advantageous. [Prior Art] As an industrial method for manufacturing jarozite particles, a method using ferric sulfate is well known, for example, as disclosed in Japanese Patent Publication No. 55-46975.

一方、硫酸第一鉄を用いてジャロサイ1・粒子粉末を工
業的に製造する方法としては、特開昭54−56006
号公報に開示された方法が挙げられる。
On the other hand, as a method for industrially manufacturing Jarosi 1/particle powder using ferrous sulfate, Japanese Patent Application Laid-Open No. 54-56006
For example, the method disclosed in Japanese Patent Publication No.

(発明が解決しようとする課題] 特開昭54−56006号公報に開示された方法は、硫
酸第−鉄を1・・・・該ジャロサイ1・形威化合物は酸
素と結合した硫酸第一銖溶液、即ち硫酸第二鉄でジャD
 43イトを形戊ずる・・・・」なる記載の通り、硫酸
第二鉄に変威して用いており、更に同公報には、「所要
の作業温度を得るため、オー1・クレープの・・・・最
終区画室内の温度を170乃至230゜C・・・・」な
る記載の通り、オー1・クレープを用いて高温でジャロ
ザイト粒子を生或させる方法である。
(Problems to be Solved by the Invention) The method disclosed in Japanese Patent Application Laid-open No. 54-56006 discloses that ferrous sulfate is converted into 1... solution, i.e. ferric sulfate.
As stated in ``Form 43ite...'', ferric sulfate was modified and used, and the same publication further stated, ``In order to obtain the required working temperature,... . . The temperature in the final compartment is 170 to 230° C." As described in this method, jarozite particles are produced at a high temperature using O-1 crepe.

尚、硫酸第一鉄とアルカリ金属又はアンモニウムイオン
の硫酸塩との混合水溶液に、酸素含有ガスを通気して常
温で酸化反応を行うことによって、ジャロサイト粒子ど
ゲータイ1粒子との混合物を生成させたことが、粉体わ
}未冶金脇会発行「昭和43年度春季人会講演概g集J
 (昭和43年)第88〜89頁に報告されている。
In addition, by passing oxygen-containing gas into a mixed aqueous solution of ferrous sulfate and a sulfate of an alkali metal or ammonium ion to carry out an oxidation reaction at room temperature, a mixture of jarosite particles and 1 particle of jarosite is generated. This is the Powder Wanderer. Published by Miyakin Sekikai, ``1964 Spring Meeting Lecture Summary G Collection J.
(1968), reported on pages 88-89.

従って、硫酸第一鉄を用いて、沸点以下の条件でジャロ
ザイ1・拉子のみを生成させることができ、しかも、工
業的、経済的にジャロ4ノイト粒子粉末が製造できる方
法は、いまだ確立されておらず、その方法の確立が強く
要求されており、本発明はこの要求に応えることを技術
的課題とするものである. 〔課題を解決する為の手段〕 本発明者は、前記技術的5題を解決すべく種々検討を重
ねた結果、本発明に到達したのである。
Therefore, a method that can produce only Jarozai-1 and Lazi under conditions below the boiling point using ferrous sulfate, and also that can industrially and economically produce Jaro-4-noite powder, has not yet been established. However, there is a strong demand for the establishment of a method for doing so, and the technical objective of the present invention is to meet this demand. [Means for Solving the Problems] The present inventor has arrived at the present invention as a result of repeated studies to solve the five technical problems mentioned above.

即ち、本発明は、硫酸第一銖水溶液とアルカリ金属又は
アンモニウムイオンの硫酸塩水溶液と硫酸水溶液との混
合7容液に、酸素含有ガスを通気して45℃〜沸点の温
度範囲で酸化反応を行うことにより、ジャロザイト粒子
を生成さセ“、生成したジャロザイト粒子をp別、洗浄
、乾燥してジャロザイト粒子粉末を得ることからなるジ
ャロザイト粒子粉末の製造法並びに、 硫酸第一鉄水溶液とアルカリ金属又はアンモニウムイオ
ンの硫酸塩水溶液と硫酸水溶液との混合溶液に、酸素含
有ガスを通気して45゛C〜沸点の温度範囲で酸化反応
を行・)ことにより、ジャロづイ1・粒子を生成させ、
生成したジャロザイト粒子を枦別して濾液を回収する第
1の工程と、次いで、第1の工程で回収した濾液に新た
に硫酸第一鉄と水酸化アルカリ又はアンモニアとを加え
た新たな混合溶液に、酸素含有ガスを通気して45゛C
〜沸点の温度範囲で酸化反応を行うことにより、ジャロ
サイト粒子を生成さセる第2の工程と、続いて、第2の
工程で生成したジャロサイト粒子をが別して回収した濾
液を用いて第2の工程の反応を繰り返すことによって、
ジャロザイト粒子を生成させ、生成したジャロサイト粒
子を:濾別する第3の工程と、 前記第1−・3の各工程で得られたジャロザイト粒子を
洗浄、乾燥してジャロザイI・粒?−粉末を得る工程と
からなるジャロサイト粒子粉末の製造法である. (作  用〕 本発明においては、硫酸第一銖水溶液とアルカリ金属又
はアンモニウムイオンの硫酸塩水溶液と硫酸水溶液との
混合溶液に、酸素含有ガスを通気して45℃〜沸点の温
度範囲で酸化反応を行うことにより、板状、六面体状、
八面体状等の粒子が凝集した平均粒子径3〜30μmの
球形を呈したジャロサイト粒子のみを生成させることが
出来る。
That is, in the present invention, an oxygen-containing gas is passed through a 7-volume mixed solution of a sulfuric acid solution, an alkali metal or ammonium ion sulfate aqueous solution, and a sulfuric acid aqueous solution to carry out an oxidation reaction in a temperature range of 45° C. to the boiling point. A method for producing jarozite particles, which comprises: producing jarozite particles by carrying out the process, separating the produced jarozite particles, washing and drying them to obtain jarozite particles; By passing an oxygen-containing gas through a mixed solution of an aqueous sulfate solution of ammonium ions and an aqueous sulfuric acid solution and carrying out an oxidation reaction at a temperature range of 45°C to the boiling point, Jarozui 1 particles are generated.
A first step of separating the generated jarozite particles and collecting a filtrate, and then adding ferrous sulfate and alkali hydroxide or ammonia to the filtrate collected in the first step to create a new mixed solution. 45°C by venting oxygen-containing gas
A second step in which jarosite particles are produced by performing an oxidation reaction in a temperature range of ~ boiling point, followed by a second step in which the jarosite particles produced in the second step are separated and the collected filtrate is used. By repeating the reaction in step 2,
A third step of generating jarozite particles and separating the generated jarosite particles by filtration, and washing and drying the jarozite particles obtained in each of the steps 1-3 above to obtain jarozite I particles. - This is a method for producing jarosite particle powder, which consists of the steps of obtaining powder. (Function) In the present invention, an oxygen-containing gas is bubbled through a mixed solution of an aqueous sulfuric acid solution, an aqueous sulfate solution of an alkali metal or ammonium ion, and an aqueous sulfuric acid solution to carry out the oxidation reaction in a temperature range from 45°C to the boiling point. By doing this, plate-like, hexahedral-like,
Only spherical jarosite particles with an average particle diameter of 3 to 30 μm, which are agglomerated octahedral particles, can be produced.

本発明の第1の工程においては、硫酸第一鉄水溶液とア
ルカリ金属又はアンモニウl1イオンの硫酸塩水溶液と
硫酸水溶液との混合溶液に、酸素含有ガスを通気して4
5゛C〜沸点の温度範囲で酸化反応を行うことにより、
板状、六面体状、八面体状等の粒子が凝集した平均粒子
径3〜30μmの球形を呈したジャロザイト粒子のみを
生成さ丑ることか出来る. 次いで、第2の工程においては、第Iの工程でジ十口サ
イト粒子を濾別して回収した〆液に、反応溶液の総容量
が増加しないように、下記反応式(1)に基づいて、第
1の工程で生成したジャロサイト粒子の収量に相当する
量の硫酸第一鉄の結晶と水酸化アルカリの結晶又はアン
モニアガスを補給して新たな混合溶液とする。得られた
新たな混合溶液を用いて、第1の工程と同条件による酸
化反応を行うことにより、第1の工程と同等のジャロサ
イト粒子のみを生成させることが出来る.本発明者は、
第2の工程の反応式は、 3FeSO.+3R011−+RFei(SOa)i(
Of−1)i +RtSO4”(1)(但し、R一κ”
 、Na”   NH.’などである.)と考えている
. 尚、本発明の第1の工程で回収した濾液及び第2の工程
で回収した濾液の組成は、ほぼ同等であり以下の通りで
ある. Fe”゜−  5 〜40g/ I Fe’゜−5〜15g/l R−0.5〜30g/I SOa”−− 70 −150g/ 1(但し、R=κ
゜、Na”   NH4”などである.)従って、第2
の工程で回収した濾液を用いて、第2の工程と同様の反
応を繰り返すことによってジャロサイト粒子のみを生成
させることが出来るのである. 次に、本発明方法実施にあたっての諸条件について述べ
る. 本発明における反応溶液の濃度はFeとして0.1〜2
.0sol/j!である。より好ましくは0.2 〜1
.0mol/lである,  0.1mol/j!未満の
場合には、生産性が悪くなり経済的ではなく、2. 0
mol/ lを超える場合には、反応槽内等においてジ
ャロサイト粒子以外の芒硝等の結晶が析出したりするの
でハンドリングが困難となる. 本発明において使用されるアルカリ金属又はアンモニウ
ムイオンの硫酸塩水溶液としては、硫酸ナトリウム、硫
酸カリウム、硫酸アンモニウムなどの水溶液を使用する
ことができる. 本発明における上記硫酸塩水溶液は、硫酸第一鉄水溶液
のFeに対して5 〜200mol%である, 5mo
l%未溝の場合には、ジャロサイト粒子が生成し難< 
、2001101%を超える場合には、反応速度が遅く
なり経済的ではない. 本発明において使用される硫酸水溶液は、0.02〜0
.1mol/j!である. 0.02mol/ 1未満
の場合には、α−FeOOHが混入するため好ましくな
く、o.i指of/iを超える場合には、反応速度が遅
くなり好ましくない. 本発明における第2の工程において使用される水酸化ア
ルカリとしては、水酸化ナトリウム、水酸化カリウムな
どの結晶か、又はアンモニアガスを用いることができる
.水酸化アルカリ又はアンモニアは、第2の工程におい
て使用する硫酸第一鉄に対して等モルである. 尚、本発明における第2の工程で使用する水酸化アルカ
リ又はアンモニアは、第1の工程で用いたアルカリ金属
又はアンモニウムイオンの硫酸塩水溶液と同一のものを
使用する.同一のものを使用しない場合にもジャロサイ
ト粒子は生成するが、アルカリによって組戒が異なるた
め、異なった組成のジャロサイト粒子が混ざってしまう
.本発明における反応温度は45℃〜沸点の温度範囲で
ある.より好ましくは60〜80℃である。45゜C未
満の場合には、反応速度が非常に遅くなり、沸点を超え
る場合には、特別の設備を要するなど好ましくない. 本発明における酸化手段は、酸素含有ガス(例えば、空
気)を溶液中に通気することにより行い、また、当該通
気ガスや機械的操作により撹拌しながら行う. 本発明は、実施例に示した回分弐を繰り返す方法に限ら
ず、反応液を連続的に抜き出し、ジャロサイト粒子と濾
液を濾別し、p液を反応槽に戻すと共に硫酸第一鉄とア
ルカリとを連続的に反応槽に供給する方法で行うことも
できる. 本発明においては、ジャロサイト粒子粉末の使用目的に
より、ジャロサイト粒子の生成に際し、A1、SL P
 −, PInSCoSN1% CuSZn1PIg,
 Cas hsCr, Sn, Pb等の異種元素を添
加することもできる.〔実 施 例〕 次に、実施例並びに比較例により本発明を説明する。
In the first step of the present invention, an oxygen-containing gas is bubbled through a mixed solution of a ferrous sulfate aqueous solution, an alkali metal or ammonium l1 ion sulfate aqueous solution, and a sulfuric acid aqueous solution.
By carrying out the oxidation reaction at a temperature range of 5°C to the boiling point,
It is possible to produce only spherical jarozite particles with an average particle diameter of 3 to 30 μm, which are agglomerated particles of plate, hexahedral, and octahedral shapes. Next, in the second step, based on the following reaction formula (1), a third solution is added to the final solution collected by filtering out the di-decasite particles in the first step so as not to increase the total volume of the reaction solution. A new mixed solution is prepared by replenishing ferrous sulfate crystals and alkali hydroxide crystals or ammonia gas in an amount corresponding to the yield of jarosite particles produced in step 1. By performing an oxidation reaction using the obtained new mixed solution under the same conditions as in the first step, it is possible to generate only jarosite particles equivalent to those in the first step. The inventor is
The reaction formula for the second step is 3FeSO. +3R011-+RFei(SOa)i(
Of-1)i +RtSO4"(1) (However, R-κ"
, Na"NH.', etc.). The compositions of the filtrate collected in the first step of the present invention and the filtrate collected in the second step are almost the same, and are as follows. There is.
゜, Na"NH4", etc. ) Therefore, the second
By repeating the same reaction as in the second step using the filtrate collected in step 1, it is possible to generate only jarosite particles. Next, various conditions for implementing the method of the present invention will be described. The concentration of the reaction solution in the present invention is 0.1 to 2 as Fe.
.. 0sol/j! It is. More preferably 0.2 to 1
.. 0mol/l, 0.1mol/j! If it is less than 2, productivity will be poor and it will not be economical. 0
If it exceeds mol/l, crystals such as mirabilite other than jarosite particles may precipitate in the reaction tank, making handling difficult. As the aqueous sulfate solution of alkali metal or ammonium ions used in the present invention, aqueous solutions of sodium sulfate, potassium sulfate, ammonium sulfate, etc. can be used. The sulfate aqueous solution in the present invention contains 5 to 200 mol% of Fe in the ferrous sulfate aqueous solution.
If 1% is not grooved, it is difficult to generate jarosite particles.
, 2001101%, the reaction rate slows down and is not economical. The sulfuric acid aqueous solution used in the present invention is 0.02 to 0.
.. 1mol/j! It is. If it is less than 0.02 mol/1, it is not preferable because α-FeOOH will be mixed in, and o. If it exceeds i fingers of/i, the reaction speed becomes slow, which is undesirable. As the alkali hydroxide used in the second step of the present invention, crystals of sodium hydroxide, potassium hydroxide, etc., or ammonia gas can be used. The alkali hydroxide or ammonia is equimolar to the ferrous sulfate used in the second step. The alkali hydroxide or ammonia used in the second step of the present invention is the same as the aqueous alkali metal or ammonium ion sulfate solution used in the first step. Jarosite particles are produced even if the same alkali is not used, but since the composition differs depending on the alkali, jarosite particles with different compositions will be mixed together. The reaction temperature in the present invention is in the temperature range of 45°C to the boiling point. More preferably it is 60 to 80°C. If the temperature is less than 45°C, the reaction rate becomes very slow, and if it exceeds the boiling point, special equipment is required, which is undesirable. The oxidation means in the present invention is carried out by aerating an oxygen-containing gas (for example, air) into the solution, and is also carried out while stirring with the aerated gas or mechanical operation. The present invention is not limited to the method of repeating batch 2 as shown in the example, but the present invention is not limited to the method of repeating batch 2 as shown in the example. This can also be carried out by continuously supplying both to the reaction tank. In the present invention, A1, SL P
−, PINSCoSN1% CuSZn1PIg,
It is also possible to add different elements such as Cr, Sn, and Pb. [Examples] Next, the present invention will be explained with reference to Examples and Comparative Examples.

尚、以下の実施例並びに比較例にお(ノる粒子の平均粒
子梯ば、電子顕微鏡写真から測定した数値の平均値で示
した、 実施例1 1.8lIol/ EのFeSO4水溶液2.51と、
0. 45vao I /iのNazSO.水}容液1
.Offi  (FcSo,水溶液中のFeに対し10
 mol%に該当する.)及び0.23mol/lのH
8so4t.OR (全反応溶液中で0.05mol/
 (!に該当する。)を反応容器に投入して混合?8液
とし、空気+5 1!/sinの割合で吹き込んで撹拌
し,ながら、温度70゛Cにおいて24時間酸化反応を
行って、沈澱物を生成させた。
In addition, in the following Examples and Comparative Examples (the average particle ladder of the particles is shown as the average value of the numerical values measured from the electron micrograph), Example 1 1.8 lIol/E FeSO4 aqueous solution 2.51 and ,
0. 45vao I/i NazSO. Water} Volume 1
.. Offi (FcSo, 10 for Fe in aqueous solution
Corresponds to mol%. ) and 0.23 mol/l H
8so4t. OR (0.05 mol/in total reaction solution
(corresponds to !) into the reaction vessel and mix? 8 liquids, air + 5 1! The oxidation reaction was carried out at a temperature of 70° C. for 24 hours while stirring at a rate of 70° C. to form a precipitate.

生成した沈R物を常法により、枦別、洗浄、乾燥して2
09gの粒子粉末を得た。
The generated precipitate is separated, washed and dried using a conventional method.
09g of particle powder was obtained.

得られた粒子粉末は、X線回折の結果、ジャロザイ}・
であり、22μmの六面体状の凝集した球形を呈した粒
子であった。
As a result of X-ray diffraction, the obtained particle powder was found to be
The particles had a hexahedral agglomerated spherical shape of 22 μm.

実施例2 第1の工程の反応として,、1,8aiol/j2のF
eSOa水溶液2.5Eと、0.45mol/ lのN
a.SO4水溶液i.oe  (FeSO.水溶液中の
Feに対し10 mol%に該当する6)及び0.23
mol/尼のHzSOa  i.oz (全反応溶液中
で0.05moI/ 12に該当する.)を反応容器に
投入して混合溶液とし、空気15 j! /@inの割
合で吹き込んで撹拌しながら、温度70゜Cにおいて2
4時間酸化反応を行って、第1の工程の沈B物を生成さ
せ、これを炉別して枦液を回収した。
Example 2 As the reaction of the first step, 1,8 aiol/j2 of F
eSOa aqueous solution 2.5E and 0.45 mol/l N
a. SO4 aqueous solution i. oe (FeSO.6 corresponding to 10 mol% of Fe in aqueous solution) and 0.23
mol/ni HzSOa i. oz (corresponding to 0.05 moI/12 in the total reaction solution) into the reaction vessel to make a mixed solution, and add 15 j! of air! /@in at a temperature of 70°C while stirring.
The oxidation reaction was carried out for 4 hours to produce the precipitate B of the first step, which was separated in a furnace to recover the liquid.

次に、第2の工程の反応として、第1の工程の沈B物を
炉別して回収した濾液4、3lに、FeSO,−711
.0結晶359gとNaOI!結晶52g ( FeS
O4・IHtOに対して等モルに該当する.)を熔解し
て混合溶液とし、反応容器に投入した.f!.合溶液に
空気15e /winの割合で吹き込んで撹拌しながら
、温度70℃において24時間酸化反応を行って、第2
の工程の沈′R物を生戊させた。
Next, as a reaction in the second step, FeSO, -711
.. 359g of 0 crystals and NaOI! 52g crystal (FeS
It corresponds to equimolar amount to O4・IHtO. ) was melted to make a mixed solution, and the mixture was poured into a reaction vessel. f! .. An oxidation reaction was carried out at a temperature of 70°C for 24 hours while stirring by blowing air into the combined solution at a rate of 15e/win.
The precipitate from the step of step 1 was extracted.

続いて、第2の工程の沈澱物をが別、回収したPili
i.4.31を用いて、第2の工程の反心と同一条件で
酸化反応を行って、第3の王程の沈澱物を生成させ、こ
れを枦刑した。
Subsequently, the precipitate from the second step was separated and recovered.
i. Using 4.31, an oxidation reaction was carried out under the same conditions as in the second step to form a third Wang Chen precipitate, which was then processed.

得られた、第1〜3の工程のそれぞれの沈澱物を常法に
より、洗浄、乾燥して209g、205g、212gの
粒子粉末を得た。
The obtained precipitates from each of the first to third steps were washed and dried by a conventional method to obtain 209 g, 205 g, and 212 g of particle powder.

得られた、それぞれの粒子粉末は、X19回折の結果、
ジャロサイ1・であり、図1〜図3に示す走査型電子顕
微鏡写真( x 2, 000>の通り、それぞれ22
μm、22μm、21μmの六面体状の凝集した球形を
呈した粒子であった。
As a result of X19 diffraction, each of the obtained particle powders has the following properties:
As shown in the scanning electron micrographs (x 2,000) shown in Figs.
The particles were hexahedral, aggregated, spherical particles with dimensions of μm, 22 μm, and 21 μm.

実施例3〜7、比較例1〜2 実施例2の第1の工程における硫酸第一鉄水溶液の濃度
及び使用量、アルカリ金属の硫酸塩水溶液の種類、濃度
、使用量及びFeに対する割合、硫酸水溶液の濃度、使
用景及び全反応溶液に対する濃度並びに反応温度、 第2、第3の工程においては、それぞれ直前の工程にお
けるジャロサイE・粒子粉末の収量に相当する硫酸第一
鉄7水塩の使用董及び同一の水酸化アルカリとその使用
量並びに同一の反応温度を種々変化させた以外は、実施
例2と同様にしてジャロサイト粒子粉末を得た。
Examples 3 to 7, Comparative Examples 1 to 2 Concentration and usage amount of ferrous sulfate aqueous solution in the first step of Example 2, type, concentration, usage amount and ratio to Fe of alkali metal sulfate aqueous solution, sulfuric acid Concentration of aqueous solution, use situation, concentration with respect to the total reaction solution, and reaction temperature; In the second and third steps, use of ferrous sulfate heptahydrate corresponding to the yield of Jarosi E. particles in the previous step, respectively. Jarosite particles were obtained in the same manner as in Example 2, except that the same alkali hydroxide, the amount used, and the same reaction temperature were varied.

尚、比較例1 11.:おいてはゲータイト粒子が混入
し、比較例2においてはジャロザイト粒子が生成しなか
った。
In addition, Comparative Example 1 11. : Goethite particles were mixed in, and in Comparative Example 2, jarozite particles were not produced.

この時の主要製造条件及び諸特性を表1及び表2に示す
The main manufacturing conditions and characteristics at this time are shown in Tables 1 and 2.

表2 〔発明の効果〕 本発明によれば、安価な硫酸第一鉄を用いて、しかも、
大気圧下・沸点以下の条件でジャロサイト粒子粉末が製
造でき、しかも、ジャロサイト粒子を生成して残ったp
液を廃棄することなく、繰り返し循環して用いることが
できるので、工業的、経済的に非常に有利である.
Table 2 [Effects of the invention] According to the present invention, inexpensive ferrous sulfate is used, and moreover,
Jarosite particles can be produced under atmospheric pressure and below the boiling point, and the remaining p
Since the liquid can be recycled and used repeatedly without being disposed of, it is very advantageous industrially and economically.

【図面の簡単な説明】[Brief explanation of the drawing]

図1乃至図3は、それぞれ実施例2の第1乃至第3の工
程で得られたジャロサイト粒子粉末の粒子構造を示す走
査型電子顕微鏡写真(x2.ooO)である.
1 to 3 are scanning electron micrographs (x2.ooO) showing the particle structures of jarosite particles obtained in the first to third steps of Example 2, respectively.

Claims (1)

【特許請求の範囲】 1、硫酸第一鉄水溶液とアルカリ金属又はアンモニウム
イオンの硫酸塩水溶液と硫酸水溶液との混合溶液に、酸
素含有ガスを通気して45℃〜沸点の温度範囲で酸化反
応を行うことにより、ジャロサイト粒子を生成させ、生
成したジャロサイト粒子を濾別、洗浄、乾燥してジャロ
サイト粒子粉末を得ることを特徴とするジャロサイト粒
子粉末の製造法。 2、硫酸第一鉄水溶液とアルカリ金属又はアンモニウム
イオンの硫酸塩水溶液と硫酸水溶液との混合溶液に、酸
素含有ガスを通気して45℃〜沸点の温度範囲で酸化反
応を行うことにより、ジャロサイト粒子を生成させ、生
成したジャロサイト粒子を濾別して濾液を回収する第1
の工程と、 次いで、第1の工程で回収した濾液に新たに硫酸第一鉄
と水酸化アルカリ又はアンモニアとを加えた新たな混合
溶液に、酸素含有ガスを通気して45℃〜沸点の温度範
囲で酸化反応を行うことにより、ジャロサイト粒子を生
成させる第2の工程と、続いて、第2の工程で生成した
ジャロサイト粒子を濾別して回収した濾液を用いて第2
の工程の反応を繰り返すことによって、ジャロサイト粒
子を生成させ、生成したジャロサイト粒子を濾別する第
3の工程と、 前記第1〜3の各工程で得られたジャロサイト粒子を洗
浄、乾燥してジャロサイト粒子粉末を得る工程とからな
ることを特徴とするジャロサイト粒子粉末の製造法。
[Claims] 1. Oxygen-containing gas is passed through a mixed solution of a ferrous sulfate aqueous solution, an alkali metal or ammonium ion sulfate aqueous solution, and a sulfuric acid aqueous solution to carry out an oxidation reaction at a temperature ranging from 45°C to the boiling point. A method for producing jarosite particles, the method comprising: producing jarosite particles by performing the above steps, and obtaining jarosite particles by filtering, washing, and drying the produced jarosite particles. 2. By carrying out an oxidation reaction in the temperature range from 45°C to the boiling point by passing an oxygen-containing gas through a mixed solution of a ferrous sulfate aqueous solution, an alkali metal or ammonium ion sulfate aqueous solution, and a sulfuric acid aqueous solution, jarosite is produced. The first step is to generate particles, filter out the generated jarosite particles, and collect the filtrate.
Next, a new mixed solution in which ferrous sulfate and alkali hydroxide or ammonia are added to the filtrate collected in the first step is heated to a temperature of 45°C to the boiling point by passing oxygen-containing gas through it. A second step of generating jarosite particles by performing an oxidation reaction within a range of
A third step of producing jarosite particles by repeating the reaction in step 1 and filtering out the produced jarosite particles, and washing and drying the jarosite particles obtained in each of the steps 1 to 3 above. A method for producing jarosite particles, comprising the steps of: obtaining jarosite particles.
JP1304218A 1989-11-22 1989-11-22 Method for producing jarosite particle powder Expired - Fee Related JP2736693B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1304218A JP2736693B2 (en) 1989-11-22 1989-11-22 Method for producing jarosite particle powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1304218A JP2736693B2 (en) 1989-11-22 1989-11-22 Method for producing jarosite particle powder

Publications (2)

Publication Number Publication Date
JPH03164433A true JPH03164433A (en) 1991-07-16
JP2736693B2 JP2736693B2 (en) 1998-04-02

Family

ID=17930430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1304218A Expired - Fee Related JP2736693B2 (en) 1989-11-22 1989-11-22 Method for producing jarosite particle powder

Country Status (1)

Country Link
JP (1) JP2736693B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100401987B1 (en) * 1998-12-16 2003-12-18 주식회사 포스코 A method for preparing chromic acid from electroplating was tewater including hexavalent chrome

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5456006A (en) * 1977-08-19 1979-05-04 Sherritt Gordon Mines Ltd Precipitating of iron as jarosite
JPS6123250A (en) * 1984-07-11 1986-01-31 Nec Corp Test system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5456006A (en) * 1977-08-19 1979-05-04 Sherritt Gordon Mines Ltd Precipitating of iron as jarosite
JPS6123250A (en) * 1984-07-11 1986-01-31 Nec Corp Test system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100401987B1 (en) * 1998-12-16 2003-12-18 주식회사 포스코 A method for preparing chromic acid from electroplating was tewater including hexavalent chrome

Also Published As

Publication number Publication date
JP2736693B2 (en) 1998-04-02

Similar Documents

Publication Publication Date Title
US3970738A (en) Process for producing iron oxide products from waste liquids containing ferrous salts
JP4018138B2 (en) Long spherically agglomerated basic cobalt carbonate (II) and long spherically agglomerated cobalt hydroxide (II), their production and use
JP3961826B2 (en) Method for producing high density and large particle size cobalt hydroxide or cobalt mixed hydroxide and product produced by this method
CN106399688B (en) The removal methods of iron ion in a kind of trivalent chromium acid solution
JP3272759B2 (en) Manufacture of trimanganese oxide
US3685965A (en) Redox precipitation of nonferrous heavy metals from aqueous solution
JPH03164433A (en) Production of jarosite particles
JPH06127947A (en) Preparation of nickel hydroxide
JP2001261343A (en) Super fine particle of trimanganese tetraoxide and method of producing the same
JPH101315A (en) Production of high purity iron oxide powder
US3227520A (en) Production of manganese sulfate solution
JPS59162206A (en) Manufacture of fine nickel and cobalt powder
JP3638659B2 (en) Method for producing composite oxide powder for soft ferrite
JPS61186225A (en) Production of acicular goethite
CN1276877C (en) Method for preparing manganomanganic oxide from native manganese ore
JP2002211930A (en) Method for producing cobalt oxide particles by neutralization method
US4394366A (en) Process for production of CoCl2 solution from cobaltic oxide-hydrate
JP2669010B2 (en) Desiliconization method in metal salt solution
US3515512A (en) Complex sulfites of copper and iron and the method of preparing them
JPH11292544A (en) Production of beta-iron oxide (oh) particles
KR920001518B1 (en) Process for the preparation iron oxide of particle size
SU1650593A1 (en) Method for obtaining arsenic acid
JPH0742119B2 (en) Method for producing acicular goethite particle powder
KR950002226B1 (en) Process for preparing mn3o4 for magnetic material
JPH0585739A (en) Production of goethite for magnetic material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees