JPH0316237B2 - - Google Patents

Info

Publication number
JPH0316237B2
JPH0316237B2 JP1710184A JP1710184A JPH0316237B2 JP H0316237 B2 JPH0316237 B2 JP H0316237B2 JP 1710184 A JP1710184 A JP 1710184A JP 1710184 A JP1710184 A JP 1710184A JP H0316237 B2 JPH0316237 B2 JP H0316237B2
Authority
JP
Japan
Prior art keywords
wire
annealing
furnace
welding
atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1710184A
Other languages
Japanese (ja)
Other versions
JPS60162595A (en
Inventor
Minoru Adachi
Shunichi Kikuta
Harutoshi Tanaka
Mitsuo Kurihara
Hiroshi Fujii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Welding and Engineering Co Ltd
Original Assignee
Nippon Steel Welding and Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Welding and Engineering Co Ltd filed Critical Nippon Steel Welding and Engineering Co Ltd
Priority to JP1710184A priority Critical patent/JPS60162595A/en
Publication of JPS60162595A publication Critical patent/JPS60162595A/en
Publication of JPH0316237B2 publication Critical patent/JPH0316237B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/40Making wire or rods for soldering or welding

Description

【発明の詳細な説明】[Detailed description of the invention]

(発明の技術分野) 本発明は送給性のすぐれた銅メツキ処理を行つ
た全自動および半自動溶接用鋼ワイヤの製造方法
に関する。 (従来技術) 一般にCO2ガスシールド溶接、NIC溶接等には
0.8〜2.4mmφの銅メツキした溶接用鋼ワイヤが使
用されている。これらの溶接用ワイヤは通常スプ
ールやボビンに巻装された状態で、あるいはペイ
ルパツクと呼ばれる円筒容器に装填された状態で
溶接に供せられる。これらのワイヤが使用される
ときは、溶接機の付属装置である送給機に設置さ
れ、送給ローラを通り3〜20mにおよぶフレキシ
ブルコンジツトチユーブ、溶接トーチ、コンタク
トチツプを通じ、溶接が行われる例が多い。 この他、走行台車にワイヤスプールなどを搭載
し、コンジツトチユーブを使用しない装置も使用
されているが、これは前記した設置形式のものに
比べて、装置が複雑でしかも大型化しかつ溶接領
域が限定される等の欠点があり用途が限られてい
る。 さてフレキシブルコンジツトチユーブを用いる
溶接ワイヤの送給方式としてはプツシユ式、プル
式、プツシユプル式の3種類があるが、取扱いの
簡便な、プツシユ式の使用比率が高い。しかしプ
ツシユ式の送給機のコンジツトチユーブは通常3
m、広領域の溶接を行う場合には20m程度の長さ
のものが使用され、この時ワイヤ送給性の問題が
生じる。溶接ワイヤには一定速度で供給されるこ
とが求められるものである。しかしワイヤはフレ
キシブルコンジツトの案内管であるライナー、ト
ーチ、チツプとの間の接触抵抗およびフレキシブ
ルコンジツトチユーブの屈曲部とを通りぬけるた
めの抵抗力などが作用する。フレキシブルコンジ
ツトチユーブが直線状態である現場作業はほとん
どなく、屈曲状態下で使用されるのが普通であ
り、屈曲部が多いほどまた屈曲半径が小さいほど
屈曲部通りぬけの抵抗力は大きい。しかして、前
記の如き溶接ワイヤとの接触抵抗力に打克つ力で
ワイヤは押進せしめられ送給されるものである
が、接触抵抗が大きくなると溶接ワイヤの送給速
度が不均一になりついには送給停止の事態が生じ
るようになる。このため、溶接アークの不安定、
ビード形状の不揃、融合不良、アンダーカツトの
発生など種々の溶接欠陥を生ずるようになる。 最近、溶接作業の複雑化、高速化、広範囲化に
伴ないフレキシブルコンジツトライナーとの摩擦
抵抗力が小さく、送給が円滑でかつ安定し、常に
定速送給されうる溶接用ワイヤ、すなわち送給性
が安定な溶接用ワイヤが強く要求されるようにな
つた。 従来、ワイヤの送給性を改善するために、送給
機の送給パワーを高めるかあるいはワイヤ自体の
送給性を向上させることが行われてきた。例えば
特公昭50−3256号公報に開示されたワイヤのよう
にワイヤ自体の送給性の向上をはかるべく、表面
が充分ミクロ的に緻密平滑なワイヤ表面に液状の
潤滑油を塗布し、ワイヤ表面の潤滑能を上げ、送
給抵抗の軽減を計る方法が知られているが必ずし
も安定した送給性を示すものは得られなかつた。
その理由はワイヤ表面が緻密平滑であることから
液状の潤滑剤をワイヤの表面に均一にかつ安定し
た状態で塗布することは困難であり、所定の性能
を得るため潤滑油を多量に塗布せざるを得なかつ
たからである。また必要以上に多量に塗布された
ワイヤ表面の潤滑油は溶接部の材質変化を生ぜし
めたりあるいは溶接作業性に悪影響をおよぼすの
みであつた。第3図は表面が緻密平滑な従来ワイ
ヤの表面状態を示す金属顕微鏡写真(倍率×400)
である。 この従来のワイヤは大気焼鈍すなわち酸素の多
い状態で焼鈍するために、ワイヤ表面より数μm
〜10μm程度の深さまで鉄酸化物(FeO、Fe3O4
Fe2O3等)を主成分とする酸化被覆、いわゆる外
部酸化層を生成する。この外部酸化層はワイヤの
めつき密着性に悪影響を及ぼすことから次工程の
めつき前処理(酸洗)で除去し、表面清浄なワイ
ヤとしてその表面に銅めつき等のめつきを施こ
す。このときの鋼ワイヤは外周部に伸びのあるめ
つき層、内部は軟化焼鈍された伸びのある2重構
造のワイヤ断面であり、該ワイヤの伸線加工に際
して、減面するワイヤにともなつてめつき層が伸
びるので、第3図に示すような表面が緻密平滑な
ワイヤとなる。 その他特開昭54−141348号公報に開示されてい
るように、ワイヤの表面を強制的に加圧し、表面
粗度を変え接触抵抗を軽減する方法などもあるが
その効果は前記した潤滑油の塗布による送給性の
改善の効果と大同小異であり、未だ満足すべきも
のではない。 このような従来ワイヤの欠点を解消する溶接用
鋼ワイヤとして本出願人は特開昭56−144892号公
報に示されたワイヤを開発した。即ち、原線径5
〜6mmφの熱延鋼線材を使用して溶接用鋼ワイヤ
を製造する場合、製品の具備すべき適正な引張強
さを得る意味で伸線加工により硬化した線材の応
力除去を目的に伸線加工途中で雰囲気ガス中での
バツチ式軟化焼鈍を行なう。例えば窒素ガス雰囲
気中で700℃×4hrのバツチ焼鈍を行なう。この焼
鈍により鋼ワイヤは所定の引張強さに下げられる
とともに、鋼ワイヤの表面層は前工程よりワイヤ
表面に付着して焼鈍炉内に持込まれた水分、潤滑
剤等によつて酸化されて深さ数μm〜10μm程度
の硬い内部酸化層となる。次いでめつき前処理工
程の酸洗処理でめつき密着性を悪くするワイヤ表
面上層部を除去するとともに、最終の仕上伸線工
程で亀甲状の溝が良好に形成されるように前記硬
い内部酸化層の厚さを調整した上で銅めつき等の
めつきを行なう。 かくして外周部に軟かく伸びのあるめつき層、
中間部は焼鈍で生成し調整された硬い内部酸化
層、内部は軟化焼鈍された伸びのある線材の3重
構造のワイヤ断面を呈する線材が得られる。 こうして得られためつきされた鋼ワイヤを仕上
伸線工程で所望製品径まで伸線を行なう。仕上伸
線工程で伸線すると、それぞれの層間の密着性が
損われず、厚さ調整した中間の内部酸化層の最も
薄く伸びの少ない箇所を基点にして、横溝がワイ
ヤ表面の円周方向に発達し、ワイヤ表面に亀甲状
の溝が生成する。 この製造方法はワイヤ表面に前工程にて付着し
た水分、潤滑剤等の酸素源のみによりワイヤ表面
層に内部酸化層を生成せしめようとするいわば消
極的な製造方法であつた。このため少なくとも2
時間以上の長時間焼鈍を余義なくされ、各工程の
連続化を困難なものにしていた。なぜならば伸
線、めつき前処理、めつき処理等の各工程の所要
時間は数分以内であり、焼鈍のみ数時間を要した
場合、連続化のためには膨大な長さの焼鈍炉を設
置しなければならないからである。そこで従来バ
ツチ式の焼鈍炉が採用されている。 第4図はこの溶接用鋼ワイヤの表面状態を示す
金属顕徴鏡写真(倍率×400)であり、ワイヤ表
面に亀甲状の横溝が形成されていることがわか
る。この横溝はワイヤ円周方向に形成された溝で
あり、この溝が全体として亀甲模様を呈する。こ
のワイヤによればできるだけ少ない液状潤滑剤を
安定した状態でワイヤ長手方向に均一に付着させ
ることが可能となる。すなわちワイヤ表面の亀裂
内に液状潤滑剤を保持しワイヤの表面はミクロ的
な含油状態になるのでワイヤ表面の潤滑能が極め
て良好となりコンジツトライナーとの接触抵抗が
軽減される。この結果送給抵抗そのものも低く、
変動範囲が挟くなりワイヤ送給性が安定する。ワ
イヤ送給性の安定・均一化によりアークは安定
し、ビード形状の不揃、融合不良などの溶接欠陥
が生じない。さらにメツキ亀裂内に液状潤滑剤が
安定した状態で保持されるため液状潤滑剤は最小
限のワイヤ付着量で安定した送給性が得られるの
で過剰な潤滑剤によるピツト、ブローホールなど
の溶接欠陥の発生がなく、すぐれた溶接作業性が
達成される。 (発明の目的) 本発明はこのようなワイヤ表面に亀甲状の溝を
形成した送給性性の良好な溶接用ワイヤの最も好
ましい製造方法であつて、短時間にかつ安定して
ワイヤ表面に亀甲状の溝を有する溶接用鋼ワイヤ
を得ることのできる製造方法を提供することを目
的とする。 又本発明の目的は焼鈍−めつき−伸線等の各工
程を連続化しうる溶接用鋼ワイヤの製造方法を提
供することを目的とする。 (発明の構成・作用) この目的を達成する本発明の要旨とするところ
は鋼ワイヤ表面に炭酸塩を塗布してから雰囲気が
酸素量2vol.%以下の密閉炉内で焼鈍温度650℃以
上で1分以上保持する焼鈍を行ない、続いてめつ
き処理、伸線加工を施すことを特徴とする溶接用
鋼ワイヤの製造方法にある。 以下本発明を詳細に説明する。 本発明では酸素量が非常に少ない雰囲気、すな
わち2vol.%以下の雰囲気で軟化焼鈍しワイヤに
内部酸化層を生成させる。焼鈍炉内の酸素量を少
なくするためには、アルゴンガス等の不活性ガス
あるいは窒素ガス、一酸化炭素と二酸化炭素の混
合ガス等のいわゆる中性又は環元性ガスを使用す
ればよいがランニングコスト、安全性等を考慮し
て例えば窒素ガスを使用する。又本発明ではワイ
ヤに内部酸化層を生成させる時間を短縮化するた
めに焼鈍前のワイヤに炭酸塩を塗布しこれにより
内部酸化層生成を促進せしめる。実際には炭酸塩
の水溶液に鋼ワイヤを浸漬して乾燥してから、上
記雰囲気の焼鈍炉内で焼鈍温度650℃以上で1分
以上保持することで所望の内部酸化層を生成せし
める。ワイヤ表面に塗布した炭酸塩がワイヤの内
部酸化層の生成を促進するのは、炭酸塩として炭
酸カリウムを例にして説明すると、該炭酸カリウ
ムが650℃以上の高温で分解し、 K2CO3→K2O+CO2 となつて発生する酸化カリウムの触媒作用により
ワイヤ表面層に内部酸化が進むものと考えられ
る。酸素の供給源は焼鈍に供されるワイヤに付着
している水分、伸線潤滑剤あるいは雰囲気ガス中
の不純物であり、これらの酸素の供給源からもた
らされる酸素が高温状態で鋼ワイヤ中の鉄よりも
親和力の強いケイ素、マンガン等の合金元素と炭
酸塩の存在により良好に反応してワイヤ表面から
ほぼ110μm以内にFe2SiO4、FeMnO2等の酸化物
からなる内部酸化層を生成する。このとき窒素ガ
ス雰囲気中での焼鈍ならば、該窒素およびワイヤ
に付着した潤滑剤中の炭素により不可避的に生成
する若干の窒化物、炭化物も内部酸化層に含有さ
れる。又ワイヤ表面に若干の鉄の酸化物(FeO、
Fe3O4、Fe2O3等)も生成するが、炉内の酸素が
非常に少ないので前記した鉄の酸化被膜の状態、
すなわち外部酸素の状態にはならない。 このようにしてワイヤ表面からほぼ10μm以内
に上記の酸化物、窒化物、炭化物からなる硬い内
部酸化層が生成する。焼鈍工程に次いでめつき前
処理の酸洗工程で、焼鈍で生成しためつき密着性
を悪くする鉄酸化物等の表面上層部を除去すると
共に最終仕上伸線工程で亀甲模様の溝が良好に形
成されるように前記の硬い内部酸化層の膜厚を調
整したうえでめつきを行なう。かくして外周部に
軟かく伸びのあるめつき層、中間部は焼鈍で生成
し調整された硬い内部酸化層、内部は軟化焼鈍さ
れた伸びのある鋼ワイヤの3重構造のワイヤ断面
を呈する線材が得られる。 この3重構造のワイヤを仕上伸線工程で伸線す
るとそれぞれの層間の密着性が損われず、硬い中
間層の最も伸びの少ない箇所を基点にして、亀甲
模様の溝がワイヤ表面の円周方向に発生する。 ここで本発明に係る焼鈍方法について説明す
る。 前記したように本発明では炭酸塩を塗布したワ
イヤを雰囲気が酸素量2vol.%以下の密閉炉中で
焼鈍温度650℃以上で1分以上保持する焼鈍を行
う。なお本発明でいう密閉炉による焼鈍とは炉内
雰囲気の圧力を炉外雰囲気(一般には大気)圧以
上かつ所定圧以下に保持すべく、炉内雰囲気ガス
を適当に炉外に流出させるとともに炉外雰囲気の
流入を禁止して行なう焼鈍をいう。 このような焼鈍装置の具体例を第1図、第2図
に示す。第1図の具体例において1は焼鈍炉で焼
鈍炉1の前部には乾燥室4を介して炭酸塩水溶液
槽2、後部には水槽3が配設されている。この炭
酸塩水溶液槽2はワイヤへの炭酸塩の塗布、炉内
雰囲気ガス遮へいのために、又水槽3は焼鈍後の
ワイヤの冷却、炉内雰囲気ガス遮へいのために設
ける。焼鈍炉1の炉内はラジアントチユーブバー
ナ方式や電熱ヒータ方式等適宜の加熱方式により
所定の温度に保たれる。6,7,8,9はそれぞ
れ炉内への雰囲気ガス供給パイプ、排出パイプ、
圧力計、炉外大気中への雰囲気ガス排出パイプを
又14,15は槽2,3内で発生した水蒸気を大
気中に排出するチエツクバルブを備えた排出パイ
プを示す。 実際にワイヤを焼鈍する場合は次の(イ)〜(ニ)の順
序で行なう。 (イ) 焼鈍を開始する前に雰囲気ガス供給パイプ6
からガスを炉内に導入して初期雰囲気をつくり
バルブを閉めガス供給をストツプする。 (ロ) 所定径に伸線されたワイヤをコイラーにより
ループ状にしてチエーンコンベア10で横置搬
送(矢印A方向)して炭酸塩水溶液槽2に浸漬
し、乾燥室4にて乾燥する。 (ハ) ワイヤに炭酸塩を塗布、乾燥後ローラコンベ
ア11により焼鈍炉内を搬送し焼鈍する。炉内
雰囲気は所定温度、所定圧力に保持されてお
り、炉内圧力は圧力計8、該圧力計8からの指
示により開閉する電磁バルブを有する排出パイ
プ9により適宜ガス排出が行なわれることによ
り大気圧以上に保持される。 (ニ) 焼鈍炉1内搬送により焼鈍されたループ状の
ワイヤは、ローラコンベア11からチエーンコ
ンベア10に受け継がれ焼鈍炉1に後続する水
槽3に浸漬されて冷却された後めつき工程へと
搬送(矢印B方向)されていく。 第2図に示す具体例は第1図の場合とほぼ同様
であるが、炭酸塩塗布手段、水冷手段が若干異な
つている。すなわち本例では炭酸塩水溶液塗布室
12において炭酸塩水溶液をループ状ワイヤの上
方から散液してワイヤに塗布するとともに散液す
ることによつて形成される液カーテンによつて炉
内雰囲気ガスを炉外大気と遮へいする。液剤をワ
イヤに塗布するには図示の如くループ状ワイヤの
搬送路下部に液受皿を配置し、散液を受皿で一旦
受けた後、オーバーフローさせて下方の受液槽に
流下させると液剤が受皿に一時滞留し、波立ち現
象が起こりループ状ワイヤの重合部にも液剤がゆ
きわたるので全体にわたつて均一に塗布でき効果
的である。又同様に水冷室13において水をワイ
ヤループの上方から散水してワイヤを冷却すると
ともに散水することによつて形成される水カーテ
ンによつて炉内雰囲気ガスを炉外大気と遮へいす
る。本例では液剤、水のカーテンの隙間から焼鈍
にともなつて次第に圧力が高くなる炉内雰囲気お
よび乾燥室4′、水冷室13内の水蒸気を含む雰
囲気が大気中へ漏れるので完全な遮へいとはなら
ない。従つてこの場合は第1図の具体例の排出パ
イプ14,15は備える必要はない。 第1図、第2図の具体例の乾燥室と焼鈍炉の間
および焼鈍炉と水槽、水冷室との間には図示しな
いがワイヤの搬送をさまたげない適当な雰囲気ガ
スの遮へい手段を設けて乾燥室内、水槽、水冷室
内の水蒸気が焼鈍炉内に進入しないように配慮し
ている。すなわちこれらの具体例では焼鈍炉の直
前、直後に第1の雰囲気ガスの遮へい手段を設け
るとともに、さらに液槽、水槽、液塗布室、水冷
室による第2の遮へい手段を設ける2段方式の遮
へいを行なつている。なお遮へいされた各部の圧
力は焼鈍炉、乾燥室および焼鈍炉側の水槽、
水冷室、炉外大気の順に低いので、、の
順にガスの流れが生じてもその逆はない。この圧
力関係は焼鈍炉内、乾燥室内等で焼鈍にともなつ
てガス(CO2、水蒸気等)が発生することによつ
て起こる。 他の具体例としては第1図の水槽を第2図の水
冷室に代える等いろいろな態様が考えられる。 なお本発明者らの実験によると上記乾燥室を設
けず、炭酸塩水溶液を塗布されて搬送されるワイ
ヤにブラシ、ローラ等を接触させてあるいはワイ
ヤを振動させてワイヤ表面の炭酸塩水溶液の付着
量をコントロールすることによつてもある程度の
効果があることを確認している。 焼鈍炉内の雰囲気ガス組成の変化について述べ
る。 (イ) (初期雰囲気ガス組成が窒素ガス100%の場
合) ワイヤに塗布する炭酸塩を炭酸カリウムとし
て説明すると前述の如く焼鈍炉内でワイヤ表面
の炭酸カリウムは分解してK2OとCO2を生じ
る。 K2CO3→K2O+CO2 K2Oはワイヤ表面層の内部酸化に寄与し、又
CO2はさらに次のようにワイヤ表面のFeあるい
はワイヤ表面に付着して焼鈍炉内に持ち込まれ
たCと反応してCOを発生する。 CO2+Fe→FeO+CO CO2+C→2CO C+FeO→Fe+CO 更にCO2の一部は 2CO2B2CO+O2 のように反応してCOとO2を生じる。 このようにして最初窒素ガス100%であつた
炉内雰囲気は次第にCO2、COが生じて炉内雰
囲気ガスの組成はN2−CO2−COの混合ガスと
なるが酸素含有量は2vol.%を超えることはな
い。 (ロ) (大気を利用する場合) この場合はまずダミーワイヤを焼鈍炉に流し
て炉内大気雰囲気をワイヤに内部酸化層を生成
させるための雰囲気(酸素量2vol.%以下の雰
囲気)に変化させる。すなわち炉内温度650℃
以上の密閉した炉内に炭酸カリウムを塗布した
ダミーのワイヤを通過させると上記(イ)の場合と
同様にCO2、COガスが発生するとともに大気
中の酸素はワイヤ表面のFeと反応してFeOを
生じる(2Fe+O2→2FeO)ので酸素O2は次第
に減少してついには酸素量2vol.%以下のN2
CO2−CRの混合ガス雰囲気となる。次にこの
N2−CO2−COの混合ガス雰囲気を初期雰囲気
として正式にワイヤの焼鈍を開始する。おダミ
ーワイヤは酸素量を少なくするのが目的である
からワイヤ表面に炭酸塩を塗布しなくてもよ
い。 なお焼鈍炉内の雰囲気圧力は焼鈍が進むにつ
れてCO2、COが増えてくるので次第に高くな
る。このため前記したような手段で炉内雰囲気
ガスを適当に炉外へ排出させて、炉内雰囲気の
圧力を調整する必要がある。 本発明で炉内雰囲気を酸素量2vol.以下の雰
囲気としたのはワイヤに内部酸化層を効果的に
生成させるために必要であるからであり、好ま
しくは酸素量1vol.%以下の雰囲気とする。又
前記したように炭酸塩を塗布した鋼ワイヤを酸
素量2vol.%以下の雰囲気中で焼鈍する場合、
焼鈍温度650℃以上で1分以上保持することが
必要である。すなわち、焼鈍温度の下限値650
℃は炭酸塩を分解させるに必要な温度である。
他方、上限値は特に限定しないがエネルギーコ
ストを考えれば900℃以下が望ましい。 焼鈍時間は鋼ワイヤの温度650℃以上で1分
以上保持すれば亀甲模様の溝を生成する目的に
おいて充分である。焼鈍温度を1分間以上長く
保持すれば内部酸化層の厚さは焼鈍時間が長く
なるのにつれて厚くなるが、この内部酸化層の
厚さは少々厚くなつても弊害はないことから焼
鈍時間の上限値は特に限定せず、エネルギーコ
スト等から適宜決定すればよい。 このように所定温度、所定時間で加熱されて
内部酸化層が形成されかつ軟化された焼鈍ワイ
ヤは冷却されて次工程に供給される。 製造された溶接用鋼ワイヤ表面にはワイヤ送
給性、耐錆性のための潤滑剤が付着されるが、
この潤滑剤は油脂、鉱物油、湿式伸線用潤滑剤
等の液状潤滑剤であり、これら潤滑剤中に添加
される界面活性剤を含むものである。 本発明の製造方法により製造された溶接用ワイ
ヤが送給性良好なワイヤになる理由は前記したよ
うにワイヤ表面の亀甲状の亀裂に伸線時の液状潤
滑剤等の潤滑剤が入り込み、ワイヤ表面がミクロ
的給油状態になつているので溶接時にコンジツト
ライナー内壁等と接触したとき、亀裂内に存在す
る液状潤滑剤が排出され、これにより接触抵抗の
軽減が計れ、よりバラツキのない安定した送給性
が得られるものである。 本発明者等の実験によるとワイヤ表面に形成さ
れる亀甲状の溝は上記含油機能の目的においては
溝容積を0.5〜2.5ml/10Kgワイヤ程度とすること
が好ましい。これは溝容積が0.5ml/10Kgワイヤ
に満たない場合は亀甲状の溝の含油機能が発揮さ
れないこと、又2.5ml/10Kgワイヤを超えてもワ
イヤ送給性の向上は認められず、逆に油付着量が
多くなり過ぎて溶着金属の品質低下につながるこ
と等の理由による。これをワイヤ表面の溝面積の
点からみるとワイヤ全表面積に対する溝部面積の
比率は5〜25%程度とすることが好ましい。 以下本発明の製造方法の実施例を述べる。 原線径5.5mmφ、化学成分C:0.05%、Si:0.80
%、Mn:1.53%の熱延鋼線材を原線として、製
品径1.2mmφの溶接用鋼ワイヤを第1表に示す工
程を経て製造した。なお焼鈍装置は第1図に示す
ものを使用した。
(Technical Field of the Invention) The present invention relates to a method for producing steel wire for fully automatic and semi-automatic welding using copper plating treatment with excellent feedability. (Conventional technology) Generally, CO 2 gas shield welding, NIC welding, etc.
Copper-plated welding steel wire with a diameter of 0.8 to 2.4 mm is used. These welding wires are usually used for welding while being wound around a spool or bobbin, or loaded into a cylindrical container called a pail pack. When these wires are used, they are installed in a feeder, which is an attached device to a welding machine, and welding is carried out through a flexible conduit tube, welding torch, and contact tip that passes through a feeding roller and extends for 3 to 20 meters. There are many examples. In addition, devices are used in which a wire spool is mounted on a traveling trolley and no conduit tube is used, but this device is more complex and larger than the installation type described above, and requires a welding area. There are drawbacks such as limitations, and its uses are limited. Now, there are three types of welding wire feeding systems using flexible conduit tubes: push type, pull type, and push-pull type, but the push type is used more often because it is easier to handle. However, the conduit tube of a push-type feeder is usually 3
When welding a wide area, a wire with a length of about 20 m is used, and at this time problems arise with wire feedability. Welding wire is required to be fed at a constant speed. However, the wire is subject to contact resistance with the liner, torch, and tip that are guide tubes of the flexible conduit, and resistance force due to passing through the bent portion of the flexible conduit tube. There are almost no on-site operations where flexible conduit tubes are in a straight state, and they are usually used in a bent state, and the more bends there are and the smaller the bend radius, the greater the resistance to passing through the bends. The wire is pushed forward and fed by the force that overcomes the contact resistance force with the welding wire as described above, but as the contact resistance increases, the feeding speed of the welding wire becomes uneven and eventually In this case, a situation where the supply is stopped occurs. For this reason, the welding arc becomes unstable,
Various welding defects such as irregular bead shapes, poor fusion, and undercuts occur. Recently, as welding work has become more complex, faster, and wider, welding wires that have low frictional resistance with flexible conduit liners, can be fed smoothly and stably, and can always be fed at a constant speed have been developed. There has been a strong demand for welding wires with stable supply properties. Conventionally, in order to improve the feeding performance of the wire, the feeding power of the feeder has been increased or the feeding performance of the wire itself has been improved. For example, in order to improve the feedability of the wire itself, as in the wire disclosed in Japanese Patent Publication No. 50-3256, liquid lubricant is applied to the surface of the wire, which has a sufficiently microscopically dense and smooth surface. Although methods are known for increasing the lubricating ability of the material and reducing the feeding resistance, it has not always been possible to obtain a method that shows stable feeding performance.
The reason for this is that the surface of the wire is dense and smooth, so it is difficult to apply liquid lubricant evenly and stably to the surface of the wire, and in order to achieve the desired performance, a large amount of lubricant must be applied. This is because he did not obtain any. Moreover, lubricating oil applied to the wire surface in an unnecessarily large amount only causes changes in the material of the welded part or adversely affects welding workability. Figure 3 is a metal micrograph (magnification x 400) showing the surface condition of a conventional wire with a dense and smooth surface.
It is. This conventional wire is annealed in the atmosphere, that is, in a state with a lot of oxygen, so it is several μm below the wire surface.
Iron oxides (FeO, Fe 3 O 4 ,
It forms an oxide coating, the so-called external oxide layer, whose main component is Fe 2 O 3 , etc.). This external oxidation layer has a negative effect on the plating adhesion of the wire, so it is removed in the next plating pretreatment (pickling), and the surface of the wire is cleaned, and plating such as copper plating is applied to the surface. . The steel wire at this time has a plating layer with elongation on the outer periphery, and a double structure wire cross section with elongation that has been softened and annealed on the inside. Since the plating layer stretches, a wire with a dense and smooth surface as shown in FIG. 3 is obtained. In addition, as disclosed in JP-A-54-141348, there is a method of forcibly pressurizing the surface of the wire to change the surface roughness and reduce the contact resistance, but this method is less effective than the above-mentioned lubricating oil. The effect is almost the same as that of improving feedability by coating, and is still not satisfactory. As a welding steel wire that overcomes the drawbacks of conventional wires, the present applicant has developed a wire disclosed in Japanese Patent Application Laid-open No. 144892/1983. That is, the original wire diameter 5
When producing steel wire for welding using ~6mmφ hot-rolled steel wire, wire drawing is performed to remove stress from the wire that has been hardened by wire drawing in order to obtain the appropriate tensile strength that the product should have. Batch-type softening annealing is performed in an atmospheric gas midway through the process. For example, batch annealing is performed at 700°C for 4 hours in a nitrogen gas atmosphere. This annealing lowers the tensile strength of the steel wire to a predetermined level, and the surface layer of the steel wire is oxidized by moisture, lubricant, etc. that has adhered to the wire surface from the previous process and is brought into the annealing furnace. It becomes a hard internal oxidation layer with a thickness of several μm to 10 μm. Next, the upper layer of the wire surface that deteriorates plating adhesion is removed by pickling treatment in the plating pretreatment process, and the hard internal oxidation is removed so that hexagonal grooves are well formed in the final wire drawing process. After adjusting the layer thickness, plating such as copper plating is performed. In this way, a soft and stretchy plating layer is formed on the outer periphery,
A wire rod exhibiting a wire cross section with a triple structure of a hard internal oxidation layer generated and adjusted by annealing in the middle portion and an elongated wire rod that has been softened and annealed inside is obtained. The thus-obtained thinned steel wire is drawn to a desired product diameter in a final wire drawing step. When the wire is drawn in the final wire drawing process, the adhesion between each layer is not impaired, and horizontal grooves are formed in the circumferential direction of the wire surface, starting from the thinnest and least elongated part of the intermediate internal oxidation layer whose thickness has been adjusted. It develops, and tortoiseshell-shaped grooves are formed on the wire surface. This manufacturing method is a so-called passive manufacturing method in which an internal oxidation layer is generated on the wire surface layer using only oxygen sources such as moisture and lubricant that have adhered to the wire surface in the previous process. For this reason, at least 2
This makes it difficult to carry out continuous annealing for each process. This is because the time required for each process such as wire drawing, plating pretreatment, and plating treatment is within a few minutes, and if annealing alone takes several hours, an extremely long annealing furnace would be required for continuous operation. This is because it must be installed. Therefore, a batch-type annealing furnace is conventionally used. FIG. 4 is a metal micrograph (magnification x 400) showing the surface condition of this welding steel wire, and it can be seen that hexagonal-shaped horizontal grooves are formed on the wire surface. This lateral groove is a groove formed in the circumferential direction of the wire, and this groove exhibits a hexagonal pattern as a whole. With this wire, it is possible to deposit as little liquid lubricant as possible in a stable and uniform manner in the longitudinal direction of the wire. That is, the liquid lubricant is retained in the cracks on the wire surface, and the surface of the wire becomes microscopically oil-impregnated, so that the lubrication ability of the wire surface is extremely good and the contact resistance with the conduit liner is reduced. As a result, the feeding resistance itself is low,
The fluctuation range is narrowed and wire feedability is stabilized. Stable and uniform wire feeding makes the arc stable, and welding defects such as irregular bead shapes and poor fusion do not occur. Furthermore, since the liquid lubricant is held in a stable state within the plating cracks, stable feeding performance can be achieved with a minimum amount of wire adhesion, resulting in welding defects such as pits and blowholes caused by excessive lubricant. Excellent welding workability is achieved. (Objective of the Invention) The present invention is the most preferable method for manufacturing a welding wire having hexagonal grooves formed on the surface of the wire and having good feedability. It is an object of the present invention to provide a manufacturing method capable of obtaining a welding steel wire having a hexagonal groove. Another object of the present invention is to provide a method for manufacturing a welding steel wire, which allows continuous steps such as annealing, plating, and wire drawing. (Structure and operation of the invention) The gist of the present invention to achieve this object is to apply carbonate to the surface of a steel wire and then annealing it at a temperature of 650°C or higher in a closed furnace with an oxygen content of 2 vol.% or less. A method for manufacturing a steel wire for welding, characterized by performing annealing for one minute or more, followed by plating and wire drawing. The present invention will be explained in detail below. In the present invention, an internal oxidation layer is generated in the wire by soft annealing in an atmosphere with a very low oxygen content, that is, an atmosphere with an oxygen content of 2 vol.% or less. In order to reduce the amount of oxygen in the annealing furnace, it is recommended to use an inert gas such as argon gas, or a so-called neutral or cyclic gas such as nitrogen gas or a mixed gas of carbon monoxide and carbon dioxide. For example, nitrogen gas is used in consideration of cost, safety, etc. Further, in the present invention, in order to shorten the time required to form an internal oxide layer on the wire, carbonate is applied to the wire before annealing, thereby promoting the formation of the internal oxide layer. In practice, a steel wire is immersed in an aqueous carbonate solution, dried, and then kept at an annealing temperature of 650° C. or higher for 1 minute or more in an annealing furnace with the above atmosphere to generate a desired internal oxidation layer. The reason why the carbonate applied to the wire surface promotes the formation of an internal oxidation layer on the wire is explained using potassium carbonate as an example.The potassium carbonate decomposes at high temperatures of 650°C or higher and becomes K 2 CO 3 . →It is thought that internal oxidation progresses in the wire surface layer due to the catalytic action of potassium oxide generated as K 2 O + CO 2 . Oxygen sources are water attached to the wire being annealed, wire drawing lubricant, or impurities in the atmospheric gas, and the oxygen from these oxygen sources depletes the iron in the steel wire at high temperatures. Due to the presence of carbonate and alloying elements such as silicon and manganese, which have a stronger affinity than that of carbonate, an internal oxide layer consisting of oxides such as Fe 2 SiO 4 and FeMnO 2 is formed within about 110 μm from the wire surface. At this time, if annealing is performed in a nitrogen gas atmosphere, some nitrides and carbides inevitably generated by the nitrogen and carbon in the lubricant adhering to the wire will also be contained in the internal oxidation layer. Also, there is some iron oxide (FeO,
Fe 3 O 4 , Fe 2 O 3 , etc.) are also produced, but since there is very little oxygen in the furnace, the state of the iron oxide film described above,
In other words, it will not be in an external oxygen state. In this way, a hard internal oxide layer consisting of the above-mentioned oxides, nitrides, and carbides is formed within approximately 10 μm from the wire surface. Following the annealing process, the pre-plating pickling process removes the upper surface layer such as iron oxides that are generated during annealing and impairs plating adhesion, and the final wire drawing process improves the tortoise-shell pattern grooves. Plating is performed after adjusting the thickness of the hard internal oxide layer so as to form the hard internal oxide layer. In this way, the wire rod has a wire cross section with a triple structure: a soft and elongated plating layer on the outer periphery, a hard internal oxidation layer generated and adjusted by annealing in the middle, and an elongated steel wire that has been softened and annealed inside. can get. When this triple-layered wire is drawn in the final wire drawing process, the adhesion between each layer is not impaired, and the hexagonal pattern grooves are formed around the circumference of the wire surface, starting from the point of least elongation in the hard intermediate layer. occurs in the direction. Here, the annealing method according to the present invention will be explained. As described above, in the present invention, a wire coated with carbonate is annealed in a closed furnace with an oxygen content of 2 vol. % or less at an annealing temperature of 650° C. or higher for 1 minute or more. Note that annealing in a closed furnace as used in the present invention refers to annealing in which the furnace atmosphere gas is appropriately discharged to the outside of the furnace in order to maintain the pressure of the furnace atmosphere above the outside atmosphere (generally atmospheric) pressure and below a predetermined pressure. Annealing that is carried out with the inflow of outside atmosphere prohibited. A specific example of such an annealing apparatus is shown in FIGS. 1 and 2. In the specific example shown in FIG. 1, reference numeral 1 denotes an annealing furnace, and a carbonate aqueous solution tank 2 is provided at the front of the annealing furnace 1 via a drying chamber 4, and a water tank 3 is provided at the rear. This carbonate aqueous solution tank 2 is provided for applying carbonate to the wire and for shielding the furnace atmosphere gas, and the water tank 3 is provided for cooling the wire after annealing and for shielding the furnace atmosphere gas. The inside of the annealing furnace 1 is maintained at a predetermined temperature by an appropriate heating method such as a radiant tube burner method or an electric heater method. 6, 7, 8, and 9 are an atmospheric gas supply pipe into the furnace, a discharge pipe, and
A pressure gauge, atmospheric gas exhaust pipes to the atmosphere outside the furnace, and exhaust pipes 14 and 15 equipped with check valves for exhausting water vapor generated in the tanks 2 and 3 to the atmosphere. When actually annealing the wire, it is performed in the following order (a) to (d). (b) Before starting annealing, the atmospheric gas supply pipe 6
Gas is introduced into the furnace to create an initial atmosphere, and the valve is closed to stop the gas supply. (b) A wire drawn to a predetermined diameter is made into a loop by a coiler, conveyed horizontally (in the direction of arrow A) by a chain conveyor 10, immersed in a carbonate aqueous solution tank 2, and dried in a drying chamber 4. (c) Carbonate is applied to the wire, and after drying, the wire is transported through an annealing furnace by a roller conveyor 11 and annealed. The atmosphere inside the furnace is maintained at a predetermined temperature and pressure, and the pressure inside the furnace is increased by appropriately discharging gas through a pressure gauge 8 and an exhaust pipe 9 having a solenoid valve that opens and closes according to instructions from the pressure gauge 8. Maintained above atmospheric pressure. (d) The loop-shaped wire annealed by being transported in the annealing furnace 1 is transferred from the roller conveyor 11 to the chain conveyor 10, immersed in the water tank 3 following the annealing furnace 1, cooled, and then transported to the plating process. (in the direction of arrow B). The specific example shown in FIG. 2 is almost the same as that shown in FIG. 1, but the carbonate application means and water cooling means are slightly different. That is, in this example, in the carbonate aqueous solution coating chamber 12, the carbonate aqueous solution is sprayed from above the loop-shaped wire and applied to the wire, and the furnace atmosphere gas is removed by the liquid curtain formed by the spraying. Shield from the outside atmosphere. To apply the liquid to the wire, place a liquid receiver at the bottom of the loop-shaped wire conveyance path as shown in the figure, and once the liquid is received by the receiver, it will overflow and flow down into the liquid receiving tank below, and the liquid will flow into the receiver. The liquid agent temporarily stays there, causing a ripple phenomenon, and the liquid agent spreads over the overlapped portion of the loop-shaped wire, making it possible to apply it uniformly over the entire area, making it effective. Similarly, in the water cooling chamber 13, water is sprayed from above the wire loop to cool the wire, and the in-furnace atmospheric gas is shielded from the outside atmosphere by a water curtain formed by the water sprinkling. In this example, the atmosphere in the furnace whose pressure gradually increases with annealing and the atmosphere containing water vapor in the drying chamber 4' and the water cooling chamber 13 leak into the atmosphere through the gaps between the curtains of liquid and water, so complete shielding is not possible. No. Therefore, in this case, it is not necessary to provide the exhaust pipes 14 and 15 of the specific example shown in FIG. Although not shown, suitable atmospheric gas shielding means that do not interfere with wire transportation are provided between the drying chamber and the annealing furnace and between the annealing furnace and the water tank and water cooling chamber in the specific example shown in FIGS. 1 and 2. Care is taken to prevent water vapor in the drying chamber, water tank, and water cooling chamber from entering the annealing furnace. In other words, in these specific examples, a two-stage shielding method is employed in which a first atmospheric gas shielding means is provided immediately before and after the annealing furnace, and a second shielding means is further provided using a liquid tank, a water tank, a liquid coating chamber, and a water cooling chamber. is being carried out. The pressure of each shielded part is determined by the annealing furnace, drying chamber, water tank on the side of the annealing furnace,
Since the temperature is lower in the order of water cooling room and outside atmosphere, the gas flow occurs in the order of , but not the other way around. This pressure relationship occurs due to gases (CO 2 , water vapor, etc.) being generated during annealing in the annealing furnace, drying chamber, etc. As other specific examples, various embodiments may be considered, such as replacing the water tank in FIG. 1 with the water cooling chamber in FIG. 2. According to experiments conducted by the present inventors, the carbonate aqueous solution adheres to the wire surface by bringing a brush, roller, etc. into contact with the wire coated with the carbonate aqueous solution and conveying it, or by vibrating the wire, without providing the above-mentioned drying chamber. It has been confirmed that controlling the amount has some effect. We will discuss changes in the atmospheric gas composition within the annealing furnace. (B) (When the initial atmosphere gas composition is 100% nitrogen gas) If the carbonate applied to the wire is potassium carbonate, as mentioned above, the potassium carbonate on the wire surface decomposes into K 2 O and CO 2 in the annealing furnace. occurs. K 2 CO 3 →K 2 O + CO 2 K 2 O contributes to internal oxidation of the wire surface layer, and
CO 2 further reacts with Fe on the wire surface or with C adhering to the wire surface and brought into the annealing furnace to generate CO as described below. CO 2 +Fe→FeO+CO CO 2 +C→2CO C+FeO→Fe+CO Further, a part of CO 2 reacts as 2CO 2 B2CO+O 2 to produce CO and O 2 . In this way, the furnace atmosphere, which was initially 100% nitrogen gas, gradually produces CO 2 and CO, and the composition of the furnace atmosphere gas becomes a mixed gas of N 2 −CO 2 −CO, but the oxygen content is 2 vol. %. (b) (When using the atmosphere) In this case, the dummy wire is first flowed into the annealing furnace, and the atmosphere inside the furnace is changed to an atmosphere (atmosphere with an oxygen content of 2 vol.% or less) for generating an internal oxidation layer on the wire. let In other words, the furnace temperature is 650℃
When a dummy wire coated with potassium carbonate is passed through the above sealed furnace, CO 2 and CO gas are generated as in case (a) above, and oxygen in the atmosphere reacts with Fe on the wire surface. FeO is produced (2Fe + O 2 → 2FeO), so oxygen O 2 gradually decreases until N 2 - with an oxygen content of less than 2 vol.%.
A mixed gas atmosphere of CO 2 -CR results. Then this
Officially annealing the wire is started using a mixed gas atmosphere of N 2 −CO 2 −CO as an initial atmosphere. Since the purpose of the dummy wire is to reduce the amount of oxygen, there is no need to apply carbonate to the wire surface. Note that as the annealing progresses, the atmospheric pressure in the annealing furnace gradually increases because CO 2 and CO increase. Therefore, it is necessary to adjust the pressure of the furnace atmosphere by appropriately discharging the furnace atmosphere gas to the outside of the furnace using the above-mentioned means. In the present invention, the atmosphere in the furnace is set to have an oxygen content of 2 vol.% or less because this is necessary to effectively generate an internal oxidation layer on the wire, and the atmosphere is preferably an oxygen content of 1 vol.% or less. . Also, as mentioned above, when a steel wire coated with carbonate is annealed in an atmosphere with an oxygen content of 2 vol.% or less,
It is necessary to hold the annealing temperature at 650°C or higher for 1 minute or more. In other words, the lower limit of annealing temperature is 650
°C is the temperature required to decompose carbonates.
On the other hand, the upper limit is not particularly limited, but in consideration of energy costs, 900°C or less is desirable. As for the annealing time, if the temperature of the steel wire is maintained at 650° C. or higher for 1 minute or more, it is sufficient for the purpose of forming hexagonal pattern grooves. If the annealing temperature is maintained for more than 1 minute, the thickness of the internal oxidation layer will increase as the annealing time increases; however, since there is no adverse effect even if the internal oxidation layer becomes slightly thicker, the upper limit of the annealing time is The value is not particularly limited and may be appropriately determined based on energy costs and the like. The annealed wire thus heated at a predetermined temperature and for a predetermined time to form an internal oxidation layer and softened is cooled and supplied to the next step. A lubricant is applied to the surface of the manufactured steel wire for welding to improve wire feedability and rust resistance.
This lubricant is a liquid lubricant such as fat, mineral oil, or lubricant for wet wire drawing, and contains a surfactant added to these lubricants. The reason why the welding wire manufactured by the manufacturing method of the present invention has good feedability is that, as mentioned above, lubricant such as liquid lubricant during wire drawing enters the hexagonal cracks on the wire surface. Since the surface is in a micro-lubricated state, when it comes into contact with the inner wall of the conduit liner during welding, the liquid lubricant present in the cracks is discharged, which reduces contact resistance and creates a more consistent and stable welding process. This provides good feedability. According to experiments conducted by the present inventors, it is preferable that the volume of the hexagonal grooves formed on the wire surface be approximately 0.5 to 2.5 ml/10 kg wire for the purpose of the above-mentioned oil impregnation function. This is because if the groove volume is less than 0.5ml/10Kg wire, the oil-retaining function of the hexagonal groove is not demonstrated, and even if it exceeds 2.5ml/10Kg wire, no improvement in wire feedability is observed; This is because the amount of oil adhesion becomes too large, leading to a decline in the quality of the weld metal. From the viewpoint of the groove area on the wire surface, the ratio of the groove area to the total wire surface area is preferably about 5 to 25%. Examples of the manufacturing method of the present invention will be described below. Original wire diameter 5.5mmφ, chemical composition C: 0.05%, Si: 0.80
%, Mn: 1.53% hot-rolled steel wire as a raw wire, welding steel wire with a product diameter of 1.2 mmφ was manufactured through the steps shown in Table 1. The annealing device shown in FIG. 1 was used.

【表】【table】

【表】 第5図aは第1表に基づいて製造された溶接用
鋼ワイヤの表面状態を示す金属顕微鏡写真(倍率
×400)であり、この写真から明らかなように亀
甲状の亀裂がワイヤ表面上に形成されている。又
第5図bはワイヤを6度の傾斜で切断し、断面を
研磨後に金属顕微鏡で撮影した写真でありワイヤ
表面から内部に向つて内部酸化層が認められる。
第6図は比較のために表面が緻密平滑な従来ワイ
ヤについて第5図bと同様に撮影した写真であ
り、内部酸化層は全く認められない。なお第4図
と第5図aは同様にワイヤ表面に亀甲状の亀裂が
形成されているが焼鈍に要する時間が大幅に異な
り、本発明では6分間に対して第4図のワイヤの
場合は4時間であり、本発明に従えば亀甲状の溝
を有するワイヤ表面状態を得るのに極めて短時間
の軟化焼鈍でよい。従つて本発明では工程の連続
化が可能となる。 第7図はワイヤ表面に付着した液状潤滑剤の付
着量と送給抵抗との関係を示す図である。なお送
給性は第2表に示す条件により行なつた。
[Table] Figure 5a is a metallurgical micrograph (magnification x 400) showing the surface condition of the steel wire for welding manufactured based on Table 1. formed on the surface. FIG. 5b is a photograph taken with a metallurgical microscope after cutting the wire at an angle of 6 degrees and polishing the cross section, in which an internal oxidation layer is observed from the surface of the wire toward the inside.
For comparison, FIG. 6 is a photograph taken in the same manner as FIG. 5b of a conventional wire with a dense and smooth surface, in which no internal oxidation layer is observed. 4 and 5 a, similarly, hexagonal cracks are formed on the wire surface, but the time required for annealing is significantly different; in the case of the wire in FIG. 4, the time required for annealing is 6 minutes. According to the present invention, an extremely short softening annealing time is required to obtain a wire surface condition having hexagonal grooves. Therefore, in the present invention, it is possible to make the process continuous. FIG. 7 is a diagram showing the relationship between the amount of liquid lubricant adhering to the wire surface and the feeding resistance. The feedability was tested under the conditions shown in Table 2.

【表】 ワイヤの送給性は送給モータ電機子電流で等価
的に示すことができ、この電機子電流値が大きい
程送給抵抗が大きくて送給性の悪いことを意味
し、逆に値が小さい程送給性は良好である。図か
ら明らかなように表面が緻密平滑な従来ワイヤC
に比べて表面に亀甲状の亀裂を有するワイヤは、
本発明の製造方法によるワイヤA、従来の製造方
法によるワイヤBともに送給抵抗が低く、ワイヤ
の送給性が良好である。 (発明の効果) 以上説明したように本発明によればワイヤ表面
に亀甲状の溝を形成した溶接用鋼ワイヤを短時間
でかつ安定して製造することができる。従つて各
工程の連続化が可能となる。又焼鈍開始時に焼鈍
炉内雰囲気を所定の雰囲気とすれば以後雰囲気ガ
スの炉内供給はしなくてよいので経済的である。
このような効果を有する本発明の工業的価値は大
きい。
[Table] The wire feeding performance can be equivalently expressed by the feeding motor armature current, and the larger the armature current value, the greater the feeding resistance and poorer feeding performance. The smaller the value, the better the feedability. As is clear from the figure, the conventional wire C has a dense and smooth surface.
Wires with hexagonal cracks on the surface compared to
Both wire A manufactured by the manufacturing method of the present invention and wire B manufactured by the conventional manufacturing method have low feeding resistance and good wire feeding performance. (Effects of the Invention) As described above, according to the present invention, a steel wire for welding having hexagonal grooves formed on the wire surface can be manufactured stably in a short time. Therefore, each process can be made continuous. Furthermore, if the atmosphere in the annealing furnace is set to a predetermined atmosphere at the start of annealing, there is no need to supply atmospheric gas into the furnace thereafter, which is economical.
The present invention having such effects has great industrial value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は本発明に用いる焼鈍装置の具
体例を示す図、第3図、第4図、第5図aは溶接
用鋼ワイヤの表面状態を示す金属顕微鏡写真(倍
率×400)で第3図は表面が緻密平滑な従来ワイ
ヤ、第4図は表面に亀甲状の亀裂を有するワイヤ
で従来の製造方法によるもの、第5図aは本発明
の製造方法によるワイヤである。第5図b、第6
図はワイヤの断面状態を示す金属顕微鏡写真(倍
率×400)で第5図bは本発明の製造方法による
ワイヤ、第6図は表面が緻密平滑な従来ワイヤで
ある。第7図は液状潤滑剤の付着量と送給抵抗と
の関係を示す図である。 第7図において:A:表面に亀甲状の亀裂を有
するワイヤで本発明方法によるもの、B:表面に
亀甲状の亀裂を有するワイヤで従来の方法による
もの、C:表面が緻密平滑な従来のワイヤ。
Figures 1 and 2 are diagrams showing a specific example of the annealing apparatus used in the present invention, and Figures 3, 4, and 5a are metallurgical micrographs (magnification x 400) showing the surface condition of the steel wire for welding. ), FIG. 3 shows a conventional wire with a dense and smooth surface, FIG. 4 shows a wire with hexagonal-shaped cracks on the surface produced by the conventional method, and FIG. 5a shows a wire produced by the method of the present invention. Figure 5b, 6th
The figures are metallurgical micrographs (magnification x 400) showing the cross-sectional state of the wire, and Fig. 5b shows a wire manufactured by the manufacturing method of the present invention, and Fig. 6 shows a conventional wire with a dense and smooth surface. FIG. 7 is a diagram showing the relationship between the amount of liquid lubricant deposited and the feeding resistance. In Fig. 7: A: Wire with hexagonal cracks on the surface made by the method of the present invention, B: Wire with hexagonal cracks on the surface made by the conventional method, C: Wire with a dense and smooth surface made by the conventional method. wire.

Claims (1)

【特許請求の範囲】[Claims] 1 鋼ワイヤ表面に炭酸塩を塗布してから雰囲気
が酸素量2vol%以下の密閉炉内で焼鈍温度650℃
以上で1分以上保持する焼鈍を行い、続いてめつ
き処理、伸線加工を施すことを特徴とする溶接用
鋼ワイヤの製造方法。
1 After applying carbonate to the surface of the steel wire, annealing is performed at 650℃ in a closed furnace with an oxygen content of 2 vol% or less.
A method for manufacturing a welding steel wire, which comprises performing annealing for one minute or more, followed by plating and wire drawing.
JP1710184A 1984-02-03 1984-02-03 Production of steel wire for welding Granted JPS60162595A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1710184A JPS60162595A (en) 1984-02-03 1984-02-03 Production of steel wire for welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1710184A JPS60162595A (en) 1984-02-03 1984-02-03 Production of steel wire for welding

Publications (2)

Publication Number Publication Date
JPS60162595A JPS60162595A (en) 1985-08-24
JPH0316237B2 true JPH0316237B2 (en) 1991-03-05

Family

ID=11934619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1710184A Granted JPS60162595A (en) 1984-02-03 1984-02-03 Production of steel wire for welding

Country Status (1)

Country Link
JP (1) JPS60162595A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6257798A (en) * 1985-09-05 1987-03-13 Nippon Steel Weld Prod & Eng Co Ltd Production of steel wire for welding
JP4794413B2 (en) * 2006-10-25 2011-10-19 株式会社神戸製鋼所 Solid wire for gas shielded arc welding

Also Published As

Publication number Publication date
JPS60162595A (en) 1985-08-24

Similar Documents

Publication Publication Date Title
JP4417358B2 (en) Flux-cored wire manufacturing method for stainless steel welding and flux-cored wire manufactured thereby
US6492036B2 (en) Porous electrode wire for use in electrical discharge machining and method of manufacturing the same
WO1998043776A1 (en) Method of production of welding wire
US4552788A (en) Hot dipping method for forming a metal or alloy coating around an elongated body
JPS6321595B2 (en)
JPH0316237B2 (en)
JPH0364239B2 (en)
JPS58128294A (en) Steel wire of small diameter for welding
JPH0452196B2 (en)
JPH046478B2 (en)
JPS6257798A (en) Production of steel wire for welding
JP2000280088A (en) Manufacture of steel wire for gas shield arc welding
JPH07214106A (en) Nonoxidation rolling equipment for steel tube
JPH03268832A (en) Manufacture of trolley wire of high conductance copper clad steel
JPS5961592A (en) Steel wire for arc welding
JP3830010B2 (en) Manufacturing method of steel wire for gas shielded arc welding
JPS5997794A (en) Production of steel wire for welding
JPH09141487A (en) Low spatter steel wire for welding and its manufacture
JPH11104887A (en) Manufacture of welding wire
JP2001262303A (en) Method for producing alloyed galvanized steel sheet and galvannealed steel sheet excellent in hot dip metal coated property
JPS5961597A (en) Production of flux cored wire for welding
JPH0617217A (en) Production of hot dipped wire
JP4504115B2 (en) Welding wire for gas shielded arc welding
JPS61126995A (en) Production of solid wire for welding
JPH0740081A (en) Solid wire for gas shielded arc welding having good feedability and its production

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term