JPH0316179A - Semiconductor integrated circuit - Google Patents

Semiconductor integrated circuit

Info

Publication number
JPH0316179A
JPH0316179A JP1149330A JP14933089A JPH0316179A JP H0316179 A JPH0316179 A JP H0316179A JP 1149330 A JP1149330 A JP 1149330A JP 14933089 A JP14933089 A JP 14933089A JP H0316179 A JPH0316179 A JP H0316179A
Authority
JP
Japan
Prior art keywords
mixer diode
active layer
integrated circuit
heterojunction
mixer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1149330A
Other languages
Japanese (ja)
Inventor
Kunihiko Kanazawa
邦彦 金澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP1149330A priority Critical patent/JPH0316179A/en
Publication of JPH0316179A publication Critical patent/JPH0316179A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a mixer diode whose conversion loss and noise factor are small by forming the mixer diode on a semiconductor substrate having a heterojunction. CONSTITUTION:A mixer diode in a microwave integrated circuit(MMIC) is formed as follows: an AlxGa1-xAs active layer 11 is formed on the surface of a semiinsulating GaAs substrate 10; a Schottky electrode 12 in the middle is sandwiched between two ohmic electrodes 13. A junction face of the semiinsulating GaAs substrate 10 end the AlxGa1-xAs active layer 11 is a heterojunction face; a two-dimensional electron gas is generated due to a difference in a band width; as a result, a low-resistance element layer is formed. Thereby, a conversion loss and a noise factor of the mixer diode are reduced to 1/2 or lower; an integrated circuit for microwave use whose integration density is high and whose noise is low can be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は,マイクロ波通信機器に不可欠な周波数混合回
路(ミキサ)に用いられるミキサ・ダイオードを含む半
導体集積回路に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a semiconductor integrated circuit including a mixer diode used in a frequency mixing circuit (mixer) essential for microwave communication equipment.

(従来の技術) 近年、通信情報網が多様化し、衛星通信などニューメデ
ィアに注目が集っている。これらのマイクロ波用の通信
機器の小形化には、マイクロ波集積回路(以下MMTC
と称す)素子が必要である。
(Prior Art) In recent years, communication information networks have diversified, and new media such as satellite communication are attracting attention. Microwave integrated circuits (hereinafter referred to as MMTCs) are used to downsize these microwave communication devices.
) elements are required.

従来、UHF帯以上のマイクロ波回路に用いられる能動
素子には、化合物半導体として、ガリウム・ヒ素(以下
GaAsと称す)が用いられる。
Conventionally, gallium arsenide (hereinafter referred to as GaAs) is used as a compound semiconductor in active elements used in microwave circuits in the UHF band or above.

G a A s素子のうち、電界効果トランジスタ(以
下FETと称す)やダイオードの単品の他に、近年、M
MICが用いられるようになってきた。
Among GaAs elements, in addition to single field effect transistors (hereinafter referred to as FETs) and diodes, in recent years M
MIC has come into use.

まず.従来のマイクロ波回路に単品として使用されてい
るミキサ・ダイオードについて、第2図により説明する
。同図はその断面図で、従来のミキサ・ダイオードは、
n”GaAs基板1の表面に、GaAs活性層2をエビ
タキシャル或長法によって形成し、さらに、その表面お
よび裏面にそれぞれショットキー電極3およびオーミッ
ク電極4を形戊する.なお、ショットキー電極3にはA
Q. Ti/AQあるいはTi / Mo / Au等
がオーミック電極4には、AuGa/^UやAuGeN
i/Au等がそれぞれ用いられる。
first. A mixer diode used as a single item in a conventional microwave circuit will be explained with reference to FIG. The figure is a cross-sectional view of the conventional mixer diode.
A GaAs active layer 2 is formed on the surface of an n'' GaAs substrate 1 by an epitaxial elongation method, and a Schottky electrode 3 and an ohmic electrode 4 are formed on the front and back surfaces, respectively. A for
Q. Ti/AQ or Ti/Mo/Au etc. are used as the ohmic electrode 4, AuGa/^U or AuGeN
i/Au etc. are used respectively.

このミキサ・ダイオードの特徴は、ミキサ動作に不可欠
な低い直列抵抗r.を、低抵抗のn”GaAs基板1を
用いることで実現している。
This mixer diode is characterized by low series resistance r, which is essential for mixer operation. This is realized by using a low resistance n'' GaAs substrate 1.

しかし、この構或は,単一構成部品には適しているが、
n ” G a A s基板1を用いているため、集積
回路化は不可能であった。
However, while this configuration is suitable for single components,
Since the n''GaAs substrate 1 was used, it was impossible to integrate the circuit.

次に、従来のMMICに用いられるミキサ・ダイオード
について、第3図により説明する。同図において,半絶
縁性GaAs基板5の表面にイオン注入によってn”G
aAs層6に挾まれたGaAs活性層7を形或した後、
上記のGaAs活性層7の上にショットキー電極8をn
”GaAs層6の上にオーミック電極9をそれぞれ形成
する。なお,電極8および9に使用される金属は、上述
のミキサ・ダイオードと同様である。
Next, a mixer diode used in a conventional MMIC will be explained with reference to FIG. In the figure, n''G is added to the surface of the semi-insulating GaAs substrate 5 by ion implantation.
After forming the GaAs active layer 7 sandwiched between the aAs layers 6,
A Schottky electrode 8 is placed on top of the GaAs active layer 7.
"Ohmic electrodes 9 are formed on the GaAs layer 6, respectively. Note that the metals used for the electrodes 8 and 9 are the same as those for the mixer diode described above.

このように,半絶縁性GaAs基板5を用いることによ
って、素子間分離が容易となり,同一基板上に、ミキサ
・ダイオード、FET抵抗および容量等を含むMMIC
の形戒が可能となる。
In this way, by using the semi-insulating GaAs substrate 5, isolation between elements becomes easy, and an MMIC including a mixer diode, FET resistance, capacitance, etc. can be mounted on the same substrate.
The form of precepts becomes possible.

(発明が解決しようとする課題) しかしながら、上記の構成では、ミキサ・ダイオードの
物性を左右する陽極と陰極間の直列抵抗r1が極めて大
きく、従って、ミキサ動作をさせたときに、変換損失お
よび雑音指数が共に大きいという問題があった。また、
上記の直列抵抗r.を下げるため、n”GaAsWI6
が用いられているが,ショットキー電極8の耐圧を確保
するために、G a A s活性層7の抵抗率をそれほ
ど下げることができず,従って、MMICの特性が極め
て悪いという問題があった。
(Problem to be Solved by the Invention) However, in the above configuration, the series resistance r1 between the anode and cathode, which affects the physical properties of the mixer diode, is extremely large, and therefore, when the mixer is operated, conversion loss and noise are generated. There was a problem that both indices were large. Also,
The above series resistance r. In order to lower the
However, in order to ensure the breakdown voltage of the Schottky electrode 8, the resistivity of the GaAs active layer 7 could not be lowered that much, and therefore, there was a problem that the characteristics of the MMIC were extremely poor. .

本発明は上記の問題を解決するもので、変換損失および
雑音指数の小さいミキサ・ダイオードを有するMMIC
を提供するものである。
The present invention solves the above problems and provides an MMIC with a mixer diode with low conversion loss and low noise figure.
It provides:

(課題を解決するための手段) 上記の課題を解決するため、本発明は、ヘテロ接合を有
する半導体基板の上にミキサ・ダイオードを形或するも
のである。
(Means for Solving the Problems) In order to solve the above problems, the present invention forms a mixer diode on a semiconductor substrate having a heterojunction.

(作 用) 上記の構成により、ヘテロ接合面に発生する2次元電子
ガスにより,低抵抗層を実現するので,ミキサ・ダイオ
ードの陽極と陰極間の直列抵抗r,が1/2以下になり
、これに伴い変換損失および雑音指数も172以下に下
がる。
(Function) With the above configuration, a low resistance layer is realized by the two-dimensional electron gas generated at the heterojunction surface, so the series resistance r, between the anode and cathode of the mixer diode becomes 1/2 or less, Along with this, the conversion loss and noise figure are also reduced to 172 or less.

(実施例) 本発明の実施例2例をそれぞれ第1図(a)および(b
)により説明する. 第1図(a)は、本発明の第1の実施例を示す要部拡大
断面図で、MMICの中のミキサ・ダイオードは,半絶
縁性GaAs基板10の表面にA Q xG aよーx
As活性層11を形成した上に、ショットキー電極l2
を中にしてこれを2個のオーミック電極l3で挾んで形
或するものである。なお、上記の半絶縁性G a A 
s基板10とA QxG a, +x A s活性層1
1の接合面は、いわゆるヘテロ接合面で、バンド幅の相
異から2次元電子ガスが発生するため、低抵抗層が形或
される。従って、ショットキー電極I2とオーミック電
極l3の間、すなわち,rm極と陰極の間を流れる電流
は、このヘテロ接合面14を流れるため、抵抗が極めて
小さい。
(Example) Two examples of the present invention are shown in FIGS. 1(a) and (b), respectively.
). FIG. 1(a) is an enlarged sectional view of a main part showing a first embodiment of the present invention.
A Schottky electrode l2 is formed on the As active layer 11.
It is formed by sandwiching this between two ohmic electrodes l3. In addition, the above semi-insulating G a A
s substrate 10 and A QxG a, +x A s active layer 1
The junction surface of No. 1 is a so-called heterojunction surface, and a two-dimensional electron gas is generated due to the difference in band width, so that a low resistance layer is formed. Therefore, the current flowing between the Schottky electrode I2 and the ohmic electrode I3, that is, between the rm pole and the cathode, flows through this heterojunction surface 14, so that the resistance is extremely small.

上記のAQxGa1−xAs活性層11の混晶比Xは、
0.2ないし0.3が適当で,通常、分子線エビタキシ
ャル成長(MBE)法あるいはメタルオーガニツク化学
的気相或艮(MOCVD)法によって形或する。
The mixed crystal ratio X of the above AQxGa1-xAs active layer 11 is:
0.2 to 0.3 is suitable and is usually formed by molecular beam epitaxy (MBE) or metal organic chemical vapor deposition (MOCVD).

なお、電極l2および13の材質は、従来例と変らない
Note that the materials of the electrodes 12 and 13 are the same as in the conventional example.

第工図(b)は,本発明による第2の実施例を示す要部
拡大断面図で、本実施例が第1の実施例と異なる点は.
 A QxG a1+x A s活性層l1の上に重ね
て形或したGaAs活性層15に、ショットキー電極1
2は直接、オーミック電極13は,イオン注入を施した
nゝGaAs層16の表面にそれぞれ形成した点である
.その他は変らないので、同じ構或部位に対しては同一
符号を付して,その説明を省略する。
The second engineering drawing (b) is an enlarged sectional view of a main part showing a second embodiment of the present invention, and the differences between this embodiment and the first embodiment are as follows.
A Schottky electrode 1 is placed on the GaAs active layer 15 formed over the active layer l1.
2 is that the ohmic electrode 13 is formed directly on the surface of the ion-implanted nGaAs layer 16. Since the rest remains the same, the same components are designated by the same reference numerals and their explanations will be omitted.

このような構或により、n ” G a A s層16
によって、オーミック電極13の接触抵抗を小さくし、
ショットキー電極l2の耐圧性を向上することができる
.なお、第2の実施例では、G a A s活性層l5
とAQxGai−xAs活性層1lの間にヘテロ接合面
14は存在するが、フェルミ準位の位置の関係で、2次
元電子ガスは存在しない。
With such a structure, the n ” Ga As layer 16
By reducing the contact resistance of the ohmic electrode 13,
The voltage resistance of the Schottky electrode l2 can be improved. Note that in the second embodiment, the GaAs active layer l5
Although a heterojunction surface 14 exists between the AQxGai-xAs active layer 11 and the AQxGai-xAs active layer 1l, two-dimensional electron gas does not exist due to the position of the Fermi level.

なお、本実施例では,ミキサ・ダイオードを例に説明し
てきたが、このヘテロ接合半導体基板を用いることによ
り、ミキサ・ダイオードの他に、高電子移動度トランジ
スタ(H E M T)や、ヘテo・バイポーラトラン
ジスタ(H B T)等がこの同一基板上に形或できる
ので、極めて集積度の高い、低雑音のMMICが形或で
きる。
Although this embodiment has been explained using a mixer diode as an example, by using this heterojunction semiconductor substrate, it can be used not only for mixer diodes but also for high electron mobility transistors (HEMT) and heterojunction semiconductor substrates. - Since a bipolar transistor (HBT) etc. can be formed on this same substrate, an extremely highly integrated and low noise MMIC can be formed.

また、半絶縁性G a A s基板IOとA Qx G
 a1+X A s活性層11の組合せで説明してきた
が、Si基板とSiC層の組合せ等、他のへテロ接合を
用いた半導体基板でも同一の効果が得られることはいう
までもない.また、MMICで説明してきたが,一般の
集積回路すべてにあてはまることはいうまでもない。ま
た、ミキサ・ダイオードのみならず、変調,復調用ダイ
オードにも成り立つことももちろんである。
In addition, semi-insulating G a A s substrate IO and A Qx G
Although the combination of a1+XAs active layer 11 has been described, it goes without saying that the same effect can be obtained with other semiconductor substrates using heterojunctions, such as a combination of a Si substrate and a SiC layer. Further, although the explanation has been made using MMIC, it goes without saying that it applies to all general integrated circuits. Moreover, it goes without saying that it can be used not only as a mixer diode but also as a modulation and demodulation diode.

(発明の効果) 以上説明したように、本発明によれば、MMICの中の
ミキサ・ダイオードは、ヘテロ接合に発生する2次元電
子ガスにより、その直列抵抗が従来の172以下に下が
り、これに伴い,ミキサ・ダイオードの変換損失や雑音
指数が1/2以下に下がり,極めて集積度の高い低雑音
のマイクロ波用の半導体集積回路(MMIC)が得られ
る。
(Effects of the Invention) As explained above, according to the present invention, the series resistance of the mixer diode in the MMIC is reduced to 172 or less compared to the conventional one due to the two-dimensional electron gas generated in the heterojunction. Accordingly, the conversion loss and noise figure of the mixer diode are reduced to 1/2 or less, and a microwave semiconductor integrated circuit (MMIC) with extremely high integration and low noise can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)および(b)は,共に本発明によるMMI
C中のミキサ・ダイオードを示す要部拡大断面図、第2
図は従来の単体のミキサ・ダイオードの要部拡大断面図
、第3図は従来の集積回路に用いられるミキサ・ダイオ
ードの要部拡大断面図である。 1−n”GaAs基板.   2,7.15・・・Ga
As活性層,3,8.12・・・ショットキー電極、 
4,9.13・・・オーミック電極、5,10・・・半
絶縁性GaAs基板、 6 . 16=−・n”GaA
s層、 LL・・・AQzGal−xAs活性層、14
・・・ヘテロ接合面。
FIGS. 1(a) and (b) both show the MMI according to the present invention.
Enlarged cross-sectional view of main parts showing mixer diode in C, 2nd
The figure is an enlarged sectional view of the main part of a conventional single mixer diode, and FIG. 3 is an enlarged sectional view of the main part of a conventional mixer diode used in an integrated circuit. 1-n” GaAs substrate. 2,7.15...Ga
As active layer, 3, 8.12... Schottky electrode,
4,9.13...Ohmic electrode, 5,10...Semi-insulating GaAs substrate, 6. 16=-・n”GaA
s layer, LL...AQzGal-xAs active layer, 14
...Heterojunction surface.

Claims (1)

【特許請求の範囲】[Claims]  ミキサ・ダイオードを含む諸素子の少くとも1つをヘ
テロ接合を有する半導体基板上に形成したことを特徴と
する半導体集積回路。
A semiconductor integrated circuit characterized in that at least one of various elements including a mixer diode is formed on a semiconductor substrate having a heterojunction.
JP1149330A 1989-06-14 1989-06-14 Semiconductor integrated circuit Pending JPH0316179A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1149330A JPH0316179A (en) 1989-06-14 1989-06-14 Semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1149330A JPH0316179A (en) 1989-06-14 1989-06-14 Semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JPH0316179A true JPH0316179A (en) 1991-01-24

Family

ID=15472752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1149330A Pending JPH0316179A (en) 1989-06-14 1989-06-14 Semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPH0316179A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006038390A1 (en) * 2004-09-30 2006-04-13 Sanken Electric Co., Ltd. Semiconductor device
US9257528B2 (en) 2010-12-17 2016-02-09 Samsung Electronics Co., Ltd. Graphene electronic device and method of fabricating the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006038390A1 (en) * 2004-09-30 2006-04-13 Sanken Electric Co., Ltd. Semiconductor device
US7692298B2 (en) 2004-09-30 2010-04-06 Sanken Electric Co., Ltd. III-V nitride semiconductor device comprising a concave shottky contact and an ohmic contact
US9257528B2 (en) 2010-12-17 2016-02-09 Samsung Electronics Co., Ltd. Graphene electronic device and method of fabricating the same

Similar Documents

Publication Publication Date Title
US6583454B2 (en) Nitride based transistors on semi-insulating silicon carbide substrates
US6429467B1 (en) Heterojunction field effect transistor
US5300795A (en) GaAs FET with resistive AlGaAs
KR100707324B1 (en) Semiconductor device and method for manufacturing the same
US8716756B2 (en) Semiconductor device
Wu et al. GaN-based FETs for microwave power amplification
US7439595B2 (en) Field effect transistor having vertical channel structure
US20030157776A1 (en) Methods of fabricating aluminum gallium nitride/gallium nitride high electron mobility transistors having a gate contact on a gallium nitride based cap segment
KR100642191B1 (en) Hetero-junction field effect transistor and process of production of same
US7821030B2 (en) Semiconductor device and method for manufacturing the same
JP3376078B2 (en) High electron mobility transistor
US20030201459A1 (en) Nitride based transistors on semi-insulating silicon carbide substrates
Parikh et al. GaAs MESFET's on a truly insulating buffer layer: Demonstration of the GaAs on insulator technology
JPH0316179A (en) Semiconductor integrated circuit
JP2000174261A (en) Compound semiconductor device
JP2000100829A (en) Function field-effect transistor and manufacture thereof
JPH0793323B2 (en) Field effect transistor
US6410946B1 (en) Semiconductor device with source and drain electrodes in ohmic contact with a semiconductor layer
JPH0269943A (en) Compound semiconductor device and manufacture thereof
JP2000208753A (en) Semiconductor device and its manufacture
JPH02111073A (en) Insulated gate fet and integrated circuit device thereof
Agarwala et al. Al0. 3Ga0. 7As/GaAs metal‐insulator‐semiconductor‐type field‐effect transistor fabricated on an InP substrate
JP2980630B2 (en) Compound semiconductor device
US20220181236A1 (en) Semiconductor device, semiconductor device manufacturing method, and electronic apparatus
Shin et al. Monolithic integration of AlGaAs/GaAs HBT and GaAs junction-gate floated electron channel field effect transistor using selective MOCVD growth