JPH0316019A - Aluminum substrate - Google Patents

Aluminum substrate

Info

Publication number
JPH0316019A
JPH0316019A JP14938989A JP14938989A JPH0316019A JP H0316019 A JPH0316019 A JP H0316019A JP 14938989 A JP14938989 A JP 14938989A JP 14938989 A JP14938989 A JP 14938989A JP H0316019 A JPH0316019 A JP H0316019A
Authority
JP
Japan
Prior art keywords
film
nickel
substrate
plating
phospher
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14938989A
Other languages
Japanese (ja)
Inventor
Yasuyuki Imai
康之 今井
Kazuo Yokoyama
横山 一男
Shuichi Haga
秀一 芳賀
Hiroyuki Mihashi
裕之 三橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP14938989A priority Critical patent/JPH0316019A/en
Publication of JPH0316019A publication Critical patent/JPH0316019A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To improve adhesion property, cracking resistance and surface property by successively laminating an anodic oxidation film, nickel striking film and electroless nickel-phospher plating film on a substrate. CONSTITUTION:On an aluminum alloy layer 1, there are successively laminated an anodic oxidation film 2, nickel striking film 3 and nickel-phospher film 4 to constitute the substrate. The anodic oxidation film 2 has a duplex structure comprising a thin, uniform insulating film 2a adjacent to the aluminum alloy layer 1, and a porous film 2b having lots of pores 5 grown on the film 2a. By plating this film 2 by nickel striking method, the nickel strike film 3 is formed. Further by treating the substrate with nickel-phospher electroless plat ing, the nickel-phospher film 4 is formed on the nickel striking film 3 as the seed material. The substrate thus obtained has been improved in adhesion prop erty, cracking resistance and smoothness.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は、主として磁気ディスクに適用するための表面
処理を施したアルミニウムもしくはアルミニウム合金か
らなる基板(以下、アルミニウム系基板と称する。)に
関し、特に非磁性下地膜に至るまでの表面処理層の構成
に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a substrate made of aluminum or aluminum alloy (hereinafter referred to as an aluminum-based substrate) that has been subjected to surface treatment mainly for application to magnetic disks. In particular, it relates to the structure of the surface treatment layer up to the non-magnetic underlayer.

〔発明の概要〕[Summary of the invention]

本発明は、アルミニウム系基板の表面処理層の構或を陽
極酸化被膜、ニッケルストライク被膜、および無電解ニ
ッケル−リンめっき被膜を順次積層させたものとするこ
とにより、無電解ニッケル−リンめっきの前処理として
従来行われていた亜鉛置換処理を不要とし、また形成さ
れる無電解ニッケル−リンめっき被膜の密着性,耐クラ
ンク性表面性の改善を実現するものである。
In the present invention, the structure of the surface treatment layer of the aluminum-based substrate is such that an anodized film, a nickel strike film, and an electroless nickel-phosphorus plating film are sequentially laminated, so that the surface treatment layer can be treated before electroless nickel-phosphorus plating. This eliminates the need for the conventional zinc substitution treatment, and also improves the adhesion and crank-resistant surface properties of the electroless nickel-phosphorus plating film formed.

〔従来の技術] 磁気記録の分野においては、高密度化、大容量化、高速
化等への要求がますます増大しており、磁性層を磁性塗
料の塗布により形威したいわゆる塗布型の磁気記録媒体
に代わって、磁性層をスパッタリングやめっき等の薄膜
形戒技術により形威した薄膜型の磁気記録媒体が実用化
され、さらなる発展が期待されている. 薄膜型の磁気記録媒体においては、通常、基板と磁性層
との間に非磁性下地膜が形威されている。
[Prior Art] In the field of magnetic recording, demands for higher density, larger capacity, higher speed, etc. are increasing, and so-called coated magnetic recording technology, in which the magnetic layer is formed by coating magnetic paint, is being developed. In place of recording media, thin-film magnetic recording media, in which the magnetic layer is formed using thin-film techniques such as sputtering and plating, have been put into practical use, and further development is expected. In thin-film magnetic recording media, a nonmagnetic underlayer is usually formed between the substrate and the magnetic layer.

この非磁性下地膜は、基板の硬度を増大させ、また基板
と磁性層との間に介在することにより両者の密着性を高
めて磁性層の脱落等の障害を防止するために設けられる
ものである。一般的な薄膜型の磁気記録媒体では、アル
ごニウム系基板の上に非磁性下地膜としてニッケル−リ
ン被膜が形威された構成となっている。上記ニッケル−
リン被膜はめっき技術により形威されるものであるが、
このめっき技術としては、電解めっき法に比べて均一で
緻密な薄膜が比較的容易に得られ、一括大量生産が可能
な無電解めっき法が広く適用されている。
This non-magnetic base film is provided to increase the hardness of the substrate, and by being interposed between the substrate and the magnetic layer, to increase the adhesion between the two and prevent problems such as the magnetic layer falling off. be. A typical thin-film magnetic recording medium has a structure in which a nickel-phosphorous film is formed as a nonmagnetic underlayer on an argonium-based substrate. Above nickel
The phosphorus coating is formed by plating technology, but
As this plating technique, electroless plating is widely applied because compared to electrolytic plating, it is relatively easy to obtain a uniform and dense thin film, and it allows batch mass production.

さらに、上記ニッケル−リン被膜の均一な析出を助け、
基板との密着性を向上させるために、無電解ニッケル−
リンめっき被膜の下地として亜鉛層が形戒されているこ
とが多い。この亜鉛層は、基板の表層のみを亜鉛と置換
する亜鉛置換処理(ジンケート処理)により形戒される
Furthermore, it helps the uniform precipitation of the nickel-phosphorus coating,
Electroless nickel is used to improve adhesion to the substrate.
A zinc layer is often used as the base for the phosphor plating film. This zinc layer is formed by zinc substitution treatment (zincate treatment) in which only the surface layer of the substrate is replaced with zinc.

ところで、gtllU型の磁気記録媒体は上述のような
非磁性下地膜や磁性層の他、保護膜,潤滑層等の十数μ
m−数十人厚の一様な機能性膜が積層された構威を有し
ている。かかる構或において、下層側の性状は上層側の
性状に大きく影響するため、各機能性膜には物理的,化
学的,機械的に厳しい条件が課せられている.特に近年
では高密度化を目的として磁気ヘッドの浮上量が減少さ
れる傾向にあるので、信号エラーやドロップアウト、さ
らにはヘッドクラッシュ等の重大な障害を回避するため
には、これら機能性膜の均一性,密着性,平滑性の向上
が極めて重要な課題となる。
By the way, the gtllU type magnetic recording medium has a protective film, a lubricating layer, etc. in addition to the non-magnetic base film and magnetic layer mentioned above.
It has a structure in which uniform functional films with a thickness of several tens of m are laminated. In such a structure, the properties of the lower layer greatly influence the properties of the upper layer, so each functional film is subject to strict physical, chemical, and mechanical conditions. Particularly in recent years, the flying height of magnetic heads has tended to be reduced for the purpose of increasing density, so in order to avoid serious problems such as signal errors, dropouts, and even head crashes, the use of these functional films is essential. Improving uniformity, adhesion, and smoothness are extremely important issues.

このような事情から、ニッケル−リン被膜に先立って形
戒される亜鉛層についても十分に薄《かつ均一であるこ
とが要求される。
Under these circumstances, the zinc layer formed prior to the nickel-phosphorus coating is also required to be sufficiently thin and uniform.

[発明が解決しようとする課題] しかしながら、上記亜鉛層を形成するための亜鉛置換処
理は浴温,PH,攪拌速度,濾過速度浸漬時間等、制御
すべき条件が多く、しかもこれらは基板材料の&lI戒
や表面処理状態にも依存するという難しさをともなって
いる。諸条件が最適化され亜鉛層が薄く均一に形成され
ないと、該亜鉛層の性状がその上に積層されるニッケル
−リン被膜にも影響し、密着不良,表面荒れ,ビンホー
ル形或.ピット形戒等の種々の欠陥を発生させる原因と
なるが、実際にはこれらの欠陥を完全に防止するのは困
難である。さらに、亜鉛置換処理を行った基板を無電解
ニッケル−リンめっき浴に浸漬すると、該基仮表面から
亜鉛イオンが溶出してニッケルの析出を阻害することに
よるめっき浴の寿命低下が起こるほか、形威されるニッ
ケル−リン被膜の内部応力が増大してクラソクを生し易
くなったり、膨れが生したり、また多孔質化する等の不
都合が生ずる。
[Problems to be Solved by the Invention] However, the zinc replacement treatment for forming the zinc layer requires many conditions to be controlled, such as bath temperature, pH, stirring speed, filtration speed, and immersion time, and these also depend on the substrate material. This is accompanied by the difficulty of depending on the precepts and surface treatment conditions. If the conditions are not optimized and the zinc layer is not formed thinly and uniformly, the properties of the zinc layer will also affect the nickel-phosphorus coating layered thereon, resulting in poor adhesion, surface roughness, bottle-hole shapes, etc. This causes various defects such as pit-shaped cracks, but in reality it is difficult to completely prevent these defects. Furthermore, when a substrate subjected to zinc substitution treatment is immersed in an electroless nickel-phosphorus plating bath, zinc ions are eluted from the temporary surface of the base, inhibiting nickel precipitation, which shortens the life of the plating bath, and also causes formation of The internal stress of the nickel-phosphorous coating increases, causing problems such as cracking, blistering, and porosity.

そこで本発明は、密着性.耐クラック性.平滑性に優れ
、しかも容易に製造することのできるアルミニウム系基
板の提供を目的とする。
Therefore, the present invention aims to improve adhesion. Crack resistance. The purpose of the present invention is to provide an aluminum-based substrate that has excellent smoothness and can be easily manufactured.

(課題を解決するための手段〕 本発明者らは上述の目的を達戊するために鋭意検討を行
った結果、ニッケル−リン被膜の下地として上述の亜鉛
層に代えて陽極酸化被膜およびニッケルストライク被膜
を適用すれば、上述のような間理点が回避されると共に
、煩雑な制御を要する亜鉛置換処理を行う必要がなく、
また生産性や再現性も向上することを見出した。
(Means for Solving the Problems) As a result of intensive studies to achieve the above-mentioned object, the present inventors found that an anodized film and a nickel strike film were used instead of the above-mentioned zinc layer as the base of the nickel-phosphorus film. By applying the coating, the above-mentioned problems can be avoided, and there is no need to perform zinc replacement treatment that requires complicated control.
It was also found that productivity and reproducibility were improved.

本発明にかかるアルξニウム系基板はかかる知見にもと
づいて提案されるものであり、基体表面に陽極酸化被膜
、ニッケルストライク被膜、および無電解ニッケル−リ
ンめっき被膜が順次積層されてなるものである。
The aluminum-based substrate according to the present invention is proposed based on this knowledge, and is made by sequentially laminating an anodized film, a nickel strike film, and an electroless nickel-phosphorus plating film on the surface of the substrate. .

なお、本明細書中の以下の記載では、無電解ニッケル−
リンめっき被膜を単に二ノケルーリン被膜と称すること
にする。
In addition, in the following description in this specification, electroless nickel
The phosphorus plating film will be simply referred to as the Ninokeru phosphorus film.

本発明における陽極酸化被膜は薄いT−1et○,の被
膜であり、アルらニウム系基板の表面硬度と研磨性を確
保するために設けられるものである。陽極酸化被膜は硫
酸浴.リン酸浴,シュウ酸浴.スルファミン酸浴,スル
ホサリチル酸浴,クロム酸浴1五ホウ酸アンモニウム浴
,アジピン酸アンモニウム浴.炭酸ナトリウム浴,硫酸
アンモニウムー硫酸水素ナトリウム浴,ホルムアミドー
ホウ酸浴等の従来公知の処理浴中で陽極酸化を行うこと
により形戒することができるが、使用する処理浴の種類
により処理条件や被膜の性状が若干異なるので、目的に
応じて適宜選沢すれば良い。
The anodic oxide film in the present invention is a thin T-1et◯ film, and is provided to ensure surface hardness and polishability of the aluminum-based substrate. The anodic oxide film is made in a sulfuric acid bath. Phosphoric acid bath, oxalic acid bath. Sulfamic acid bath, sulfosalicylic acid bath, chromic acid bath, ammonium pentaborate bath, ammonium adipate bath. This can be achieved by performing anodic oxidation in a conventionally known treatment bath such as a sodium carbonate bath, ammonium sulfate-sodium hydrogen sulfate bath, or formamide boric acid bath, but the treatment conditions and coating thickness may vary depending on the type of treatment bath used. Since the properties of these materials are slightly different, it is best to select the appropriate material depending on the purpose.

本発明では、この陽極酸化被膜の上に後述のニッケルス
トライク被膜が形成されることを考慮し、アンカー効果
(ここでは、ニッケルストライク被膜の一部を陽極酸化
被膜のポアーに陥入させて密着性を高めることを意味す
る。)を発揮させるために、多孔譬の陽極酸化被膜が形
威されるような処理浴および処理条件を選択することが
望ましい.陽極酸化被膜の膜厚は1〜15μm程度、よ
り好ましくはl〜10μm程度に選ぶことが望ましい。
In the present invention, in consideration of the fact that a nickel strike film, which will be described later, is formed on this anodic oxide film, the anchor effect (here, a part of the nickel strike film is invaginated into the pores of the anodic oxide film to improve adhesion). It is desirable to select a treatment bath and treatment conditions that will produce a porous anodic oxide film. The thickness of the anodic oxide film is desirably selected to be about 1 to 15 μm, more preferably about 1 to 10 μm.

lμm未満では十分に基板の表面硬度と研磨性を確保す
ることができず、また15μmを越えても効果に変化が
ない。
If it is less than 1 μm, sufficient surface hardness and polishability of the substrate cannot be ensured, and if it exceeds 15 μm, there is no change in the effect.

上記陽極酸化被膜の上に積層されるニッケルストライク
被膜は、該陽極酸化被膜とニッケル−リンw!.lII
との密着性を高め、無電解ニッケル−リンめっきにおけ
る二ッケルーリン被膜の戒長の核を提供することを目的
として設けられるものである.また、このニッケルスト
ライク被膜はストライクめっきにより形威されるが、こ
の過程において陽極酸化被膜に不純物に起因した欠陥が
ある場合にも該欠陥を被って基体表面を平坦化すること
ができるほか、副生する水素による表面の清浄化も期待
できる.上記ストライクめっきに使用されるめっき浴の
組成および条件の一例を以下に示す.塩化ニッケル  
  100〜250g/ff塩酸         1
0〜250g/1p H          0.5〜
2.5浴温        20〜40゜C 電流密度       2〜15 A/dm!(電圧4
〜15v) 処理時間       3〜lO分 形威されるニッケルストライク被膜の厚さは平坦部で1
μm程度であるが、欠陥部ではやや増大する。
The nickel strike film laminated on the anodic oxide film is a combination of the anodic oxide film and the nickel-phosphorus w! .. lII
It is provided for the purpose of increasing the adhesion with the nickel phosphorus and providing the core of the nickel phosphorus coating in electroless nickel-phosphorus plating. In addition, this nickel strike film is formed by strike plating, and even if there are defects in the anodic oxide film due to impurities during this process, the defects can be covered and the substrate surface can be flattened. The generated hydrogen can also be expected to clean the surface. An example of the composition and conditions of the plating bath used in the above strike plating is shown below. nickel chloride
100-250g/ff hydrochloric acid 1
0~250g/1p H 0.5~
2.5 Bath temperature 20~40°C Current density 2~15 A/dm! (voltage 4
~15V) Processing time: 3~10 minutes The thickness of the nickel strike film formed on the flat part is 1~15V).
It is approximately μm, but it increases slightly in defective areas.

このようにしてニッケルストライク被膜が形或された後
、水洗を経て通常の無電解ニッケル−リンめっきが行わ
れる。無電解ニッケル−リンめっき浴の組威としては、
磁気ディスクの非磁性下地膜を形戒する目的で従来使用
されているものが適用可能であり、特に限定されるもの
ではない。また、形或されるめっき被膜の膜厚も特に限
定されるものではないが、特に磁気ディスクに適用する
場合、余り薄すぎては基板の硬度を十分に向上させるこ
とができず、また厚すぎては表面性が劣化してその上に
積層される磁性層の表面性に悪影響を及ぼすほか、めっ
き被膜の内部応力が増大してクランク発生や基板との密
着不良の原因となる。
After the nickel strike film is formed in this way, it is washed with water and then subjected to normal electroless nickel-phosphorus plating. The strength of the electroless nickel-phosphorus plating bath is as follows:
Any material conventionally used for the purpose of forming a non-magnetic underlayer of a magnetic disk can be applied, and is not particularly limited. Furthermore, the thickness of the plating film to be formed is not particularly limited, but especially when applied to magnetic disks, if it is too thin, the hardness of the substrate cannot be sufficiently improved, and if it is too thick, it will not be possible to sufficiently improve the hardness of the substrate. In addition to deteriorating the surface properties and adversely affecting the surface properties of the magnetic layer laminated thereon, internal stress in the plating film increases, causing cracking and poor adhesion to the substrate.

したがって、望ましい膜厚は5〜500μ′mの範囲で
ある。
Therefore, the desirable film thickness is in the range of 5 to 500 μ'm.

〔作用〕[Effect]

本発明にかかるアルミニウム系基板は、従来ニッケル−
リン被膜の下地層として一般的に設けられていた亜鉛層
に代わって、陽極酸化被膜とニッケルストライク被膜が
設けられてなるものである.これらの被膜は共に均一か
つ緻密であり、相互の密着性にも優れている。これらの
被膜を形威するために行われる陽極酸化およびニッケル
ストライクめっきは、亜鉛置換処理と比べて被膜の性質
を決定する諸条件を厳密に制御する必要が遥かに少なく
、容易に良好な性状の被膜を得ることができるものであ
る。さらに、ニッケルストライク被膜が形威される過程
では不純物の存在に起因する表面欠陥もカバーされるの
で、最終的に基板表面の平滑性を高める上で極めて有利
である。
The aluminum-based substrate according to the present invention is conventionally nickel-based.
Instead of the zinc layer that is generally provided as the base layer for the phosphorous coating, an anodized coating and a nickel strike coating are provided. Both of these coatings are uniform and dense, and have excellent mutual adhesion. The anodic oxidation and nickel strike plating used to form these coatings requires far less strict control over the conditions that determine the properties of the coating than zinc replacement treatment, and it is easier to achieve good properties. It is possible to obtain a film. Furthermore, in the process of forming the nickel strike film, surface defects caused by the presence of impurities are also covered, which is extremely advantageous in ultimately improving the smoothness of the substrate surface.

〔実施例] 以下、本発明を3.5インチのアルミニウム合金ディス
ク基仮に適用した例について図面を参照しながら説明す
る。
[Example] Hereinafter, an example in which the present invention is applied to a 3.5-inch aluminum alloy disk base will be described with reference to the drawings.

まず、上記アルミニウム合金ディスク基板(以下、単に
基板と称する.)の断面構造を第1図に示す。
First, FIG. 1 shows the cross-sectional structure of the aluminum alloy disk substrate (hereinafter simply referred to as the substrate).

上記基板は、アルξニウム合金1(1)の上に厚さ5μ
mの陽極酸化被膜(2)、厚さlumのニツケルストラ
イク被膜(3)および厚さ10μmのニッケル−リン被
11!(4)が順次積層されてなるものである。
The above substrate has a thickness of 5μ on top of aluminum ξ alloy 1(1).
m anodized coating (2), a lum thick nickel strike coating (3) and a 10 μm thick nickel-phosphorous coating 11! (4) are sequentially laminated.

ここで、各被膜の性状をより明らかにするために、第2
図および第3図を参照しなから形或工程にしたがって説
明する. 上記陽極酸化被膜(2)は、その形或後の状態を第2図
に示すように、アルξニウム合金N(1)に接する薄く
て均一な絶縁性被膜部(2a)と、その上に戒長し多数
のポアー(5)を有する多孔質被欣部(2b)とからな
る、いわゆるデュプレックス構造を有している。ここで
、始めにアルξニウム合金層(1)の表面もしくはその
近傍に鉄.ケイ素等の不純物(6)が存在していると、
その部位においては陽極酸化が起こらないので陽極酸化
被膜(2〉が形戊されず、欠陥(7)が生ずる. この上にニッケルストライクめっきを施すと、第3図に
示すようにニッケルストライク被11!J(3)が形成
される。ストライクめっきは一般に通常のめっきよりも
大きな電流密度のもとて短時間行われるので、めっき浴
中で同時に多数発生する結晶核から小さな結晶粒を或長
させることができ、その結果、内部応力の小さい硬い膜
を得ることが可能となる。このニッケルストライク被1
!(3)の一部はボア−(5)内に陥入しており、この
部分がアンカー効果を発揮して密着性を高めると共にク
ラックの発生を防止する。また、ストライクめっきの過
程で上記不純物(6) に電荷が集中するため、欠陥(
7)の存在部位により多くのニッケルが析出して表面凹
凸が緩和され、基体が全体として平坦化されるという効
果もある。
Here, in order to clarify the properties of each film, the second
The explanation will be given according to the form or process with reference to the figures and Fig. 3. As shown in FIG. 2, the anodic oxide film (2) has a thin and uniform insulating film part (2a) in contact with the aluminum alloy N (1), and a thin and uniform insulating film part (2a) on top of it. It has a so-called duplex structure consisting of a long porous covering part (2b) having a large number of pores (5). First, iron is deposited on the surface of the aluminum ξ alloy layer (1) or in its vicinity. If impurities (6) such as silicon are present,
Since anodic oxidation does not occur in that area, the anodic oxide film (2) is not formed and a defect (7) occurs. When nickel strike plating is applied on this, the nickel strike coating 11 is formed as shown in Figure 3. !J(3) is formed.Strike plating is generally performed for a shorter time at a higher current density than normal plating, so small crystal grains are elongated from the crystal nuclei that are generated in large numbers at the same time in the plating bath. As a result, it is possible to obtain a hard film with low internal stress.
! A part of (3) is recessed into the bore (5), and this part exerts an anchor effect to improve adhesion and prevent the occurrence of cracks. In addition, since charge is concentrated on the impurity (6) during the strike plating process, defects (
There is also the effect that more nickel is precipitated at the sites where 7) exists, the surface unevenness is alleviated, and the substrate is flattened as a whole.

さらに、このような基体に対して無電解ニッケル−リン
めっきを行うと、前述の第1図に示すように、上記ニッ
ケルストライク被膜(3)を核としてニッケル−リン被
膜(4〉 の形威された基板が得られる.上記ニッケル
−リン被膜(4)は、上述のニッケルストライク被膜(
3)に対して優れた密着性を有し、また予め平坦化され
た基体の上に均一に析出するため、極めて平滑に形威さ
れる。したがって、さらに上記ニッケル−リン被膜(4
)の上に磁性層が形成される際にも、その表面を極めて
平滑とすることができる。
Furthermore, when electroless nickel-phosphorus plating is performed on such a substrate, as shown in FIG. The above-mentioned nickel-phosphorus coating (4) is similar to the above-mentioned nickel strike coating (4).
It has excellent adhesion to (3) and is deposited uniformly on a previously flattened substrate, so it is shaped extremely smoothly. Therefore, the above nickel-phosphorus coating (4
) When a magnetic layer is formed on the magnetic layer, the surface can be made extremely smooth.

本実施例において各被膜をそれぞれ形威するために行わ
れた陽極酸化、ニッケルストライクめっき、および無電
解ニッケル−リンめっきは、いずれも通常の条件を採用
したものである。
In this example, the anodic oxidation, nickel strike plating, and electroless nickel-phosphorus plating performed to form each film were performed under normal conditions.

また、得られた基板の表面を触針弐表面粗さ計およびレ
ーザー式表面欠陥検査機により調べたところ、ニッケル
−リン被膜の下地として亜鉛置換処理により亜鉛層を形
威した場合と比べて表面性が大幅に改良されていること
が明らかとなった。
In addition, when the surface of the obtained substrate was examined using a stylus surface roughness meter and a laser-type surface defect inspection machine, it was found that the surface of the substrate was significantly different from that of the case where a zinc layer was formed by zinc substitution treatment as the base for the nickel-phosphorus coating. It became clear that the properties were significantly improved.

(発明の効果〕 以上の説明からも明らかなように、本発明を適用したア
ルミニウム系基板は密着性,耐クラック性.平滑性に極
めて優れている。かかるアルミニウム系基板を磁気ディ
スクに適用すれば、該基板の上に形威される磁性層の表
面も高度に平滑化されるため、近年の高記録密度化に対
応して磁気ヘッドの浮上量が極めて微小化されても、信
号エラ一やドロップアウト、さらにはヘッドクラッシュ
等の重大な障害を起こさず、S/N比が高く、信頼性の
高い磁気ディスクが提供される。
(Effects of the Invention) As is clear from the above description, the aluminum substrate to which the present invention is applied has excellent adhesion, crack resistance, and smoothness.If such an aluminum substrate is applied to a magnetic disk, The surface of the magnetic layer formed on the substrate is also highly smoothed, so even if the flying height of the magnetic head has become extremely small in response to the recent increase in recording density, signal errors and A magnetic disk that does not cause serious failures such as dropouts or even head crashes, has a high S/N ratio, and is highly reliable is provided.

また、本発明のアルミニウム系基板は、従来ニッケル−
リン被膜を形成するための前処理として行われていた煩
雑な亜鉛ilit換処理を行うことなく製造することが
できるので、生産性,再現性,経済性も向上する。
Furthermore, the aluminum-based substrate of the present invention has a conventional nickel-based substrate.
Since it can be manufactured without performing the complicated zinc ilit conversion treatment that was performed as a pretreatment for forming a phosphorus film, productivity, reproducibility, and economic efficiency are also improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明にかかるアルミニウム系基板の構戒例を
示す要部拡大断面図である。第2図は陽極酸化被膜の形
成状態を示す要部拡大断面図であり、第3図はニッケル
ストライク被膜の形威状態を示す要部拡大断面図である
. l・・・アルξニウム合金層 2・・・陽極酸化被膜 3・・・ニッケルストライク被膜 4・・・ ニッケル−リン被膜
FIG. 1 is an enlarged sectional view of essential parts showing an example of the structure of an aluminum-based substrate according to the present invention. FIG. 2 is an enlarged sectional view of the main part showing the state of formation of the anodic oxide film, and FIG. 3 is an enlarged sectional view of the main part showing the state of the nickel strike film. l...Aluminum alloy layer 2...Anodized coating 3...Nickel strike coating 4...Nickel-phosphorus coating

Claims (1)

【特許請求の範囲】[Claims] 基体表面に陽極酸化被膜、ニッケルストライク被膜、お
よび無電解ニッケル−リンめっき被膜が順次積層されて
なるアルミニウム系基板。
An aluminum-based substrate in which an anodized film, a nickel strike film, and an electroless nickel-phosphorus plating film are sequentially laminated on the surface of the base.
JP14938989A 1989-06-14 1989-06-14 Aluminum substrate Pending JPH0316019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14938989A JPH0316019A (en) 1989-06-14 1989-06-14 Aluminum substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14938989A JPH0316019A (en) 1989-06-14 1989-06-14 Aluminum substrate

Publications (1)

Publication Number Publication Date
JPH0316019A true JPH0316019A (en) 1991-01-24

Family

ID=15474059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14938989A Pending JPH0316019A (en) 1989-06-14 1989-06-14 Aluminum substrate

Country Status (1)

Country Link
JP (1) JPH0316019A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8310661B2 (en) 2009-04-27 2012-11-13 Fujitsu Limited Cable installed state analyzing method and cable installed state analyzing apparatus
WO2014130453A1 (en) * 2013-02-19 2014-08-28 Alumiplate, Inc. Methods for improving adhesion of aluminum films

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8310661B2 (en) 2009-04-27 2012-11-13 Fujitsu Limited Cable installed state analyzing method and cable installed state analyzing apparatus
WO2014130453A1 (en) * 2013-02-19 2014-08-28 Alumiplate, Inc. Methods for improving adhesion of aluminum films

Similar Documents

Publication Publication Date Title
US4631112A (en) Surface-treated aluminum alloy substrates for magnetic disks
US3886052A (en) Method of making a magnetic recording disc
JPH0316019A (en) Aluminum substrate
JPH05143972A (en) Metal thin film magnetic recording medium and its production
JP2001073166A (en) Aluminum alloy substrate for magnetic recording medium and its production
US3970433A (en) Recording surface substrate
JPH0310085A (en) Surface treatment for substrate
JPH0568772B2 (en)
JPH0328399A (en) Surface treatment of substrate
JPH01211213A (en) Magnetic recording medium
JPH0515790B2 (en)
JPH0159359B2 (en)
JP2005108407A (en) Magnetic recording medium and substrate for magnetic recording medium
JPS599194A (en) Imparting of barrier wall to surface of aluminum substrate
JPS62125526A (en) Magnetic recording medium
JPS61175920A (en) Magnetic disk substrate
JPS63149827A (en) Magnetic recording medium and its production
JPH01133218A (en) Production of aluminum substrate for magnetic disk
JPS63304422A (en) Magnetic recording medium
JPH01223628A (en) High heat resistant substrate and production thereof
JPH0323975B2 (en)
JPS63145738A (en) Alloy for film formation
JPS63188829A (en) Improvement of corrosion resistance of underlying plating
JPH05303740A (en) Substrate for magnetic disk and its production and magnetic disk formed by using the substrate
JPH03171424A (en) Magnetic disk