JPH0315975B2 - - Google Patents

Info

Publication number
JPH0315975B2
JPH0315975B2 JP58149483A JP14948383A JPH0315975B2 JP H0315975 B2 JPH0315975 B2 JP H0315975B2 JP 58149483 A JP58149483 A JP 58149483A JP 14948383 A JP14948383 A JP 14948383A JP H0315975 B2 JPH0315975 B2 JP H0315975B2
Authority
JP
Japan
Prior art keywords
gas
electrode
hydrogen
voltage
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58149483A
Other languages
Japanese (ja)
Other versions
JPS6040945A (en
Inventor
Kentaro Ito
Tetsuya Kubo
Yukio Yamauchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hochiki Corp
Original Assignee
Hochiki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hochiki Corp filed Critical Hochiki Corp
Priority to JP14948383A priority Critical patent/JPS6040945A/en
Publication of JPS6040945A publication Critical patent/JPS6040945A/en
Publication of JPH0315975B2 publication Critical patent/JPH0315975B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid

Description

【発明の詳細な説明】 本発明は、触媒金属でイオン化された水素の注
入により電気特性の変化を作り出す半導体ガスセ
ンサに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor gas sensor that produces a change in electrical properties by injection of ionized hydrogen with a catalytic metal.

従来、SnO2,ZnOなどの金属酸化物半導体の
電気伝導度が還元性ガスの吸着により変化する性
質は広く知られガスセンサとして実用化されてい
るが、ガスの接触による導電度の変化を検出する
ために高温に加熱した状態で使用され、安全性お
よび安定性の点で問題がある。
Conventionally, the property that the electrical conductivity of metal oxide semiconductors such as SnO 2 and ZnO changes due to the adsorption of reducing gases has been widely known and has been put into practical use as gas sensors. Therefore, it is used heated to high temperatures, which poses problems in terms of safety and stability.

一方、常温で使用できる半導体センサとして、
半導体へのガス吸着による表面電位や界面の電位
障壁の変化を利用するセンサの研究も進められて
おり、この種の半導体ガスセンサとしては、
MOSFET型ガスセンサとダイオード型ガスセン
サが知られている。
On the other hand, as a semiconductor sensor that can be used at room temperature,
Research is also progressing on sensors that utilize changes in surface potential and interface potential barriers due to gas adsorption on semiconductors, and this type of semiconductor gas sensor includes:
MOSFET type gas sensors and diode type gas sensors are known.

MOSFET方ガスセンサは、スエーデンの
Lundstr¨om等により1975年に発表されたもの
で、一般のMOSFETと同じ構造を有し、弱いp
型性シリコン基板上に10μm程度の距離をおいて
2つのn型領域を形成してソースおよびドレイン
とし、その表面に数千Åの厚さのSiO2の絶縁層
を作り、更に絶縁層の上に触媒金属としてのパラ
ジウムPdを蒸着してゲート電極としたもので、
ゲート電極がガスに感応することによるゲート作
用の変化を利用している。
The MOSFET gas sensor is from Sweden.
It was announced in 1975 by Lundström et al. It has the same structure as a general MOSFET, and has a weak p
Two n-type regions are formed on a silicon substrate with a distance of about 10 μm to serve as a source and a drain, an insulating layer of SiO 2 several thousand Å thick is formed on the surface, and then an insulating layer is formed on the insulating layer. The gate electrode is made by depositing palladium Pd as a catalytic metal on the
It utilizes the change in gate action caused by the gate electrode being sensitive to gas.

また、ダイオード型のガスセンサは、GE社の
Steele等により1976年に提案され、インジウムを
ドープしたCdSの上に半径0.1cm、厚さ800Åのバ
ラジウムを蒸着したダイオードを作り、このダイ
オードの電流−電圧特性が空気中の微量の水素ガ
スにより大きく変化することを示している。
In addition, diode type gas sensors are manufactured by GE.
Proposed by Steele et al. in 1976, a diode with a radius of 0.1 cm and a thickness of 800 Å was fabricated on indium-doped CdS, and the current-voltage characteristics of this diode were greatly increased by the trace amount of hydrogen gas in the air. It shows that things change.

しかしながら、MOSFET型およびダイオード
型ガスセンサのいずれも未だ実験室的な開発段階
にあり、しかも水素ガスの接触による電気特性の
変化については、双極子層による説明、あるいは
表面準位による説明がなされているが必ずしも明
らかでなく、前記以外の化合物半導体の使用によ
る半導体ガスセンサの開発研究が進められてい
る。
However, both MOSFET-type and diode-type gas sensors are still in the laboratory development stage, and changes in electrical characteristics due to contact with hydrogen gas are explained by dipole layers or surface states. is not necessarily clear, and research and development is underway to develop semiconductor gas sensors using compound semiconductors other than those mentioned above.

本発明は、このような状況に鑑みてなされたも
ので、触媒金属で解離吸着された水素原子が化合
物半導体を還元して電気特性の変化を起すという
知見に基づき、化合物半導体として三酸化タング
ステンを使用して還元性ガスを常温で検出するこ
とのできる半導体ガスセンサを提供することを目
的とする。
The present invention was made in view of this situation, and is based on the knowledge that hydrogen atoms dissociated and adsorbed by a catalyst metal reduce a compound semiconductor and cause a change in electrical characteristics. An object of the present invention is to provide a semiconductor gas sensor that can be used to detect reducing gases at room temperature.

この目的を達成するため本発明は、ガラス基板
等の絶縁基板上に導電膜、三酸化タングステン
WO3、および触媒金属を用いた電極を順次積層
し、導電膜および電極の各々より取出した電極リ
ード間に定電圧または定電流バイアスを掛けるこ
とにより、水素ガス、もしくはNH3,H2S,
SiH4等の還元性ガスの接触で電流−電圧特性の
変化が得られるようにしたものである。
In order to achieve this object, the present invention provides a conductive film and a tungsten trioxide film on an insulating substrate such as a glass substrate.
By sequentially stacking electrodes using WO 3 and a catalytic metal, and applying a constant voltage or constant current bias between the electrode leads taken out from the conductive film and the electrodes, hydrogen gas, NH 3 , H 2 S,
The current-voltage characteristics can be changed by contact with a reducing gas such as SiH 4 .

以下、本発明の実施例を図面に基づいて説明す
る。
Embodiments of the present invention will be described below based on the drawings.

第1図は、本発明の半導体センサの一実施例を
示した構造説明図である。
FIG. 1 is a structural explanatory diagram showing an embodiment of the semiconductor sensor of the present invention.

まず、構成を説明すると、1は絶縁基板となる
ガラス基板であり、ガラス基板1上に例えば
In2O3等を用いた電極の導電膜2を蒸着し、更に
導電膜2の上に化合物半導体として三酸化タング
ステンWO3層3を蒸着により形成し、この三酸
化タングステンWO3層3の表面に触媒金属とし
てパラジウムPdを用いた電極4を形成し、導電
膜2および電極4のそれぞれより電極リード5,
6を取り出している。
First, to explain the configuration, 1 is a glass substrate serving as an insulating substrate, and on the glass substrate 1, for example,
A conductive film 2 of an electrode using In 2 O 3 or the like is deposited, and then a tungsten trioxide WO 3 layer 3 is formed as a compound semiconductor on the conductive film 2 by evaporation, and the surface of this tungsten trioxide WO 3 layer 3 is An electrode 4 using palladium Pd as a catalyst metal is formed on the electrode 4, and electrode leads 5,
6 is taken out.

次に、第1図の実施例に示す本発明の半導体ガ
スセンサの電流−電圧特性は第2図のグラフ図に
示すようになる。
Next, the current-voltage characteristics of the semiconductor gas sensor of the present invention shown in the embodiment of FIG. 1 are as shown in the graph of FIG. 2.

この第2図に示す電流−電圧特性はダイオード
と同じであり、ガスセンサに対し、水素ガスの接
触がない状態、例えば空気中に置いたときには曲
線Aで示されるダイオードと略等価な電流−電圧
特性が得られ、水素ガスの濃度を増加させると、
ガス濃度の増加に応じて曲線B,Cのように特性
が変化し、最終的に単なる抵抗体としての特性C
に達する。
The current-voltage characteristics shown in Figure 2 are the same as those of a diode, and when the gas sensor is placed in a state where there is no contact with hydrogen gas, for example in the air, the current-voltage characteristics shown by curve A are approximately equivalent to those of the diode. is obtained, and increasing the concentration of hydrogen gas,
As the gas concentration increases, the characteristics change as shown by curves B and C, and finally the characteristic C as a mere resistor changes.
reach.

A:水素が含まれない状態 B:水素濃度が数百〜数千PPMの状態 C:水素濃度が%オーダーの状態 この第2図に示す水素ガスの接触による電流−
電圧特性の変化の理由は必ずしも明らかではない
が、化合物半導体として三酸化タングステン
WO3を使用することにより水素ガスが接触した
ときに三酸化タングステンWO3層が青色に変色
し、この青色への変色は水素原子による還元作用
に基づくことから、触媒金属Pdを用いた電極4
で生成された水素原子が三酸化タングステン
WO3層3に注入されていることが明らかであり、
WO3に対する水素原子の注入で、第2図に示す
電流−電圧特性の変化が起ると考えられる。
A: A state in which no hydrogen is contained B: A state in which the hydrogen concentration is several hundred to several thousand ppm C: A state in which the hydrogen concentration is on the order of % The current due to contact with hydrogen gas shown in Fig. 2 -
The reason for the change in voltage characteristics is not necessarily clear, but tungsten trioxide as a compound semiconductor
By using WO 3 , the tungsten trioxide WO 3 layer turns blue when it comes into contact with hydrogen gas, and this blue color change is based on the reduction action of hydrogen atoms, so electrode 4 using catalytic metal Pd
Hydrogen atoms generated in tungsten trioxide
It is clear that WO 3 is injected into layer 3,
It is thought that the injection of hydrogen atoms into WO 3 causes the change in current-voltage characteristics shown in FIG. 2.

第3図は、第1図の実施例に示す半導体センサ
を用いたガス検出の基本回路を示したもので、定
電圧源7により半導体センサ8の電極リード5,
6間に一定電圧Vcをバイアス電圧として印加し
たもので、バイアス電圧が一定であることから、
第2図の特性グラフ図から水素ガスの接触に対す
る特性曲線の変化から明らかなように、ガス濃度
の増加に応じて電流Isが増加する第4図のグラフ
図に示す検出特性が得られ、電流Isからガス濃度
を知ることができる。
FIG. 3 shows a basic circuit for gas detection using the semiconductor sensor shown in the embodiment shown in FIG.
6, a constant voltage Vc is applied as a bias voltage, and since the bias voltage is constant,
As is clear from the change in the characteristic curve in response to contact with hydrogen gas from the characteristic graph in Figure 2, the detection characteristics shown in the graph in Figure 4, in which the current Is increases as the gas concentration increases, are obtained, and the current Gas concentration can be determined from Is.

第5図は、第1図の半導体センサを用いた他の
基本回路を示したもので、半導体センサ8のリー
ド端子5,6間に定電流源9を接続したもので、
半導体センサ8に一定電流Icを流すことにより、
第6図に示すように水素ガスの濃度の増加に対
し、半導体センサ8のリード端子5,6間の電圧
Vsが減少し、電圧Vsからガス濃度を知ることが
できる。
FIG. 5 shows another basic circuit using the semiconductor sensor of FIG. 1, in which a constant current source 9 is connected between the lead terminals 5 and 6 of the semiconductor sensor 8.
By passing a constant current Ic through the semiconductor sensor 8,
As shown in FIG. 6, as the concentration of hydrogen gas increases, the voltage between the lead terminals 5 and 6 of the semiconductor sensor 8 increases.
Vs decreases, and the gas concentration can be determined from the voltage Vs.

尚、第3,5図の基本回路において、リード端
子5,6に対する電圧極性としては、電極4に接
続した電極リード6側をプラス、導電膜2に接続
した電極リード5側をマイナスとした第2図にお
ける第1象限の特性よりは、逆に電極リード5側
をプラス、電極リード6側をマイナスとした第2
図の第3象限における特性の方が水素ガスの接触
に対し、顕著な特性変化が得られることが実験的
に確認されている。従つて、第3,5図の基本回
路においては、電極リード5側をプラス、電極リ
ード6側をマイナスとなるように定電圧源7もし
くは定電流源9を接続することが望ましい。
In the basic circuits shown in FIGS. 3 and 5, the voltage polarity for the lead terminals 5 and 6 is set such that the electrode lead 6 side connected to the electrode 4 is positive and the electrode lead 5 side connected to the conductive film 2 is negative. In contrast to the characteristics of the first quadrant in Figure 2, the second quadrant with the electrode lead 5 side positive and the electrode lead 6 side negative
It has been experimentally confirmed that the characteristics in the third quadrant of the figure show a more significant change in characteristics upon contact with hydrogen gas. Therefore, in the basic circuits shown in FIGS. 3 and 5, it is desirable to connect the constant voltage source 7 or the constant current source 9 so that the electrode lead 5 side is positive and the electrode lead 6 side is negative.

また、上記の実施例は電極4を形成する触媒金
属としてPdを用いたが、この他に同様な触媒活
性作用を有する金Au、白金Pt、ニツケルNi等を
使用してもよく、また、被検知ガスとしては上記
の水素ガスの他にアンモニアガスNH3、シラン
ガスSiH4、硫化水素ガスH2S等の、水素を容易
に解離する還元性ガスに対しても同様な電気特性
の変化としてガス濃度を検出することができる。
In addition, although Pd was used as the catalyst metal forming the electrode 4 in the above embodiment, other metals such as gold Au, platinum Pt, and nickel Ni, which have similar catalytic activity, may also be used. In addition to the above-mentioned hydrogen gas, detection gases include ammonia gas NH 3 , silane gas SiH 4 , hydrogen sulfide gas H 2 S, and other reducing gases that easily dissociate hydrogen. Concentration can be detected.

なお、メタン、エタン、プロパンは水素を解離
しにくいので、あまり有効ではない。
Note that methane, ethane, and propane are not very effective because they are difficult to dissociate hydrogen.

次に、本発明の効果を説明すると、絶縁基板上
に導電膜、三酸化タングステンWO3および触媒
金属を用いた電極を順次積層し、導電膜および電
極の各々より電極リードを取り出すようにしたた
め、SnO2,ZnO等の金属酸化物半導体を用いた
ガスセンサのように加熱する必要がなく、常温で
還元性ガスの接触により電気特性の変化が得られ
るため、燃焼性、爆発性の被検知ガスに対し、本
質的に安全構造を実現することができ、また常温
でそのまま使用できることから、素子の耐久性と
安全性を保証することができる。また、センサ構
造自体が従来のダイオードに近似した構造である
ことから量産化が容易であり、高い製造歩留まり
を得ることができる。
Next, to explain the effects of the present invention, a conductive film, an electrode using tungsten trioxide WO 3 and a catalyst metal are sequentially laminated on an insulating substrate, and electrode leads are taken out from each of the conductive film and the electrode. Unlike gas sensors that use metal oxide semiconductors such as SnO 2 and ZnO, there is no need for heating, and the electrical characteristics can be changed by contact with reducing gas at room temperature, making it suitable for combustible and explosive gases. On the other hand, since it is possible to realize an inherently safe structure and can be used as is at room temperature, the durability and safety of the element can be guaranteed. Furthermore, since the sensor structure itself is similar to a conventional diode, mass production is easy and a high manufacturing yield can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示した構造説明
図、第2図は本発明のガス接触に対する電流−電
圧特性の変化を示したグラフ図、第3図は定電圧
バイアスによる本発明の基本回路を示した回路
図、第4図は第3図の基本回路による検出特性を
示したグラフ図、第5図は定電流バイアスによる
本発明の基本回路を示した回路図、第6図は第5
図の基本回路による検出特性を示したグラフ図で
ある。 1:ガラス基板、2:導電膜、3:三酸化タン
グステンWO3層、4:電極、5,6:電極リー
ド、7:定電圧源、8:半導体ガスセンサ、9:
定電流源。
Fig. 1 is a structural explanatory diagram showing one embodiment of the present invention, Fig. 2 is a graph showing changes in current-voltage characteristics due to gas contact of the present invention, and Fig. 3 is a diagram showing the change in current-voltage characteristics due to constant voltage bias. A circuit diagram showing the basic circuit, FIG. 4 is a graph showing the detection characteristics of the basic circuit of FIG. 3, FIG. 5 is a circuit diagram showing the basic circuit of the present invention using constant current bias, and FIG. Fifth
FIG. 3 is a graph diagram showing detection characteristics by the basic circuit shown in the figure. 1: Glass substrate, 2: Conductive film, 3: Tungsten trioxide WO 3 layer, 4: Electrode, 5, 6: Electrode lead, 7: Constant voltage source, 8: Semiconductor gas sensor, 9:
Constant current source.

Claims (1)

【特許請求の範囲】[Claims] 1 絶縁基板上に電極、三酸化タングステン
WO3、及び触媒金属を用いた電極を順次積層し、
前記電極および触媒金属の各々より電極リードを
取出したことを特徴とする半導体ガスセンサ。
1 Electrode, tungsten trioxide on an insulating substrate
WO 3 and electrodes using catalytic metal are sequentially stacked,
A semiconductor gas sensor characterized in that electrode leads are taken out from each of the electrode and the catalyst metal.
JP14948383A 1983-08-16 1983-08-16 Semiconductor gas sensor Granted JPS6040945A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14948383A JPS6040945A (en) 1983-08-16 1983-08-16 Semiconductor gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14948383A JPS6040945A (en) 1983-08-16 1983-08-16 Semiconductor gas sensor

Publications (2)

Publication Number Publication Date
JPS6040945A JPS6040945A (en) 1985-03-04
JPH0315975B2 true JPH0315975B2 (en) 1991-03-04

Family

ID=15476134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14948383A Granted JPS6040945A (en) 1983-08-16 1983-08-16 Semiconductor gas sensor

Country Status (1)

Country Link
JP (1) JPS6040945A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003329592A (en) * 2002-05-08 2003-11-19 Shinji Okazaki Method for manufacturing film for gas sensor
WO2007116919A1 (en) * 2006-04-04 2007-10-18 Japan Atomic Energy Agency Hydrogen gas detecting material and method for coating same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004013678A1 (en) * 2004-03-18 2005-10-20 Micronas Gmbh Device for detecting a gas or gas mixture
WO2021210453A1 (en) * 2020-04-16 2021-10-21 ヌヴォトンテクノロジージャパン株式会社 Hydrogen sensor, hydrogen detection method, and hydrogen detection device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5774648A (en) * 1980-08-28 1982-05-10 Siemens Ag Selective thin film gas sensor and manufacture thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5774648A (en) * 1980-08-28 1982-05-10 Siemens Ag Selective thin film gas sensor and manufacture thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003329592A (en) * 2002-05-08 2003-11-19 Shinji Okazaki Method for manufacturing film for gas sensor
WO2007116919A1 (en) * 2006-04-04 2007-10-18 Japan Atomic Energy Agency Hydrogen gas detecting material and method for coating same

Also Published As

Publication number Publication date
JPS6040945A (en) 1985-03-04

Similar Documents

Publication Publication Date Title
JP5603193B2 (en) Gas sensor
US20060270053A1 (en) Apparatus, methods, and systems having gas sensor with catalytic gate and variable bias
KR101027074B1 (en) nanostructure gas sensors and nanostructure gas sensor array with metal oxide layer and method of producing the same
JP3744539B2 (en) Gas detection method and apparatus
US4892834A (en) Chemical sensor
US8025843B2 (en) Hydrogen sensor
US20140260545A1 (en) Sensor and sensing method
JPH051416B2 (en)
JPS6045368B2 (en) semiconductor gas sensor
JP2005530984A (en) Microstructured gas sensor that controls gas sensing characteristics by applying an electric field
JPH0315975B2 (en)
US4356150A (en) Humidity sensor with electrical rejection of contaminants
TWI706571B (en) Miniature gas sensor structure
US3793605A (en) Ion sensitive solid state device and method
JPS59131152A (en) Reducing gas sensor
US6218687B1 (en) Smart microsensor arrays with silicon-on-insulator readouts for damage control
JPS63101740A (en) Vertical fet type gas sensor
JPH06148115A (en) Gas sensor
JPH04276544A (en) Bonding type chemical sensor
JPH06174674A (en) Semiconductor gas sensor
JPS62124454A (en) Hetero junction type gas sensor
JPS63139241A (en) Diode type humidity sensor
JPS6312252B2 (en)
JPH05322821A (en) Gas sensor
JPH0220681Y2 (en)