JPH03159005A - Conductive composition for conductive film formation - Google Patents

Conductive composition for conductive film formation

Info

Publication number
JPH03159005A
JPH03159005A JP29729389A JP29729389A JPH03159005A JP H03159005 A JPH03159005 A JP H03159005A JP 29729389 A JP29729389 A JP 29729389A JP 29729389 A JP29729389 A JP 29729389A JP H03159005 A JPH03159005 A JP H03159005A
Authority
JP
Japan
Prior art keywords
powder
conductive
tin
lead
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29729389A
Other languages
Japanese (ja)
Inventor
Yasuto Kudo
康人 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP29729389A priority Critical patent/JPH03159005A/en
Publication of JPH03159005A publication Critical patent/JPH03159005A/en
Pending legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

PURPOSE:To form a conductive film with high aging strength and wettability to solders on a ceramic substrate by dispersing solid components of specified inert fillers in a liquid vehicle. CONSTITUTION:Solid components consisting of tin-zinc and/or lead-copper alloy powder as a conductive powder, glass powder, and/or an inert filler of bismuth oxide, copper oxide powder, etc., are dispersed in a liquid vehicle. The tin-zinc and/or lead-copper alloy powder is prepared by mixing copper, tin and zinc and/or lead in a prescribed ratio, melting the mixture, and atomizing the resulting melt. In this way, without degrading wettability to solders, a conductive composition, from which a conductive film having sufficiently high aging strength even if left in a high temperature ambience under a soldered condition is prepared, is obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、セラミックス基体上に導電被膜を形成するの
に好適な導体膜形成用組成物に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a composition for forming a conductive film suitable for forming a conductive film on a ceramic substrate.

[従来の技術] セラミック基体上に導電回路や電極等の導電性被膜を形
成するために、導電粉末としての銅、ガラス粉末、及び
/又は酸化ビスマスや酸化銅粉末等の不活性充填剤を液
体ビヒクルに分散せしめたペースト状組成物が用いられ
ている。
[Prior Art] In order to form a conductive film such as a conductive circuit or an electrode on a ceramic substrate, copper as a conductive powder, glass powder, and/or an inert filler such as bismuth oxide or copper oxide powder is liquefied. A pasty composition dispersed in a vehicle has been used.

導電性被膜を形成するには、このような組成物をセラミ
ック基体上に所望のパターンでスクリーン印刷法、転写
法等の手段により塗布し、600〜900℃の不活性雰
囲気で焼成する。
To form a conductive film, such a composition is coated onto a ceramic substrate in a desired pattern by means such as screen printing or transfer, and fired in an inert atmosphere at 600 to 900°C.

ところで、上記方法で得られた導電性被膜には半田濡れ
性80%以上、接着強度4.0Kg以上、エージング強
度2.0Kg以上、抵抗値4mΩ/口以下という緒特性
が要求されているが、従来の組成物は、導電性被膜上に
半田付けした初期段階では、高い接着強度を有するが、
半田付けした状態で高温度雰囲気に放置した場合、導電
性被膜とセラミック基体との接合力(以下エージング強
度と示す。)が著しく低下し、製品の信頼性を低下させ
るという欠点がある。
By the way, the conductive film obtained by the above method is required to have solder wettability of 80% or more, adhesive strength of 4.0 kg or more, aging strength of 2.0 kg or more, and resistance value of 4 mΩ/mouth or less. Conventional compositions have high adhesive strength at the initial stage of soldering onto conductive coatings, but
If soldered and left in a high-temperature atmosphere, the bonding strength (hereinafter referred to as aging strength) between the conductive film and the ceramic substrate will significantly decrease, resulting in a decrease in product reliability.

[発明が解決しようとする課題] 本発明の目的は、半田の濡れ性を悪化させることな(、
半田付けした状態で高温度雰囲気に放置しても充分なエ
ージング強度を有する導電性被膜を形成するための導電
性組成物の提供にある。
[Problems to be Solved by the Invention] An object of the present invention is to solve the problem without deteriorating the wettability of solder.
An object of the present invention is to provide a conductive composition for forming a conductive film having sufficient aging strength even when left in a high temperature atmosphere in a soldered state.

[課題を解決するための手段] 本発明の導体膜形成用導電性組成物は、導電粉末として
の錫−亜鉛及び/又は鉛−銅系合金粉、ガラス粉末、及
び/又は酸化ビスマスや酸化銅粉末等の不活性充填剤か
らなる固形分を液体ビヒクルに分散せしめた導電性組成
物であり、好ましくは、重量で0.1〜0.4%の錫と
0.1〜0.9%の亜鉛及び/又は鉛を含有する銅合金
粉を80〜96重量部、軟化点400〜700℃の硼珪
酸鉛ガラス粉末2〜10重量部、及び/又は酸化ビスマ
スや酸化銅粉末等の不活性充填剤2〜15重量部の固形
分を液体ビヒクルに分散せしめたものであり、銅合金粉
として、重量で0.1〜0.4%の錫と0.1〜0.9
%の亜鉛及び/又は鉛を含有するものを用いたものであ
る。
[Means for Solving the Problems] The conductive composition for forming a conductive film of the present invention contains tin-zinc and/or lead-copper alloy powder, glass powder, and/or bismuth oxide or copper oxide as conductive powder. A conductive composition comprising a solid content of an inert filler such as a powder dispersed in a liquid vehicle, preferably 0.1-0.4% tin and 0.1-0.9% tin by weight. 80 to 96 parts by weight of copper alloy powder containing zinc and/or lead, 2 to 10 parts by weight of lead borosilicate glass powder with a softening point of 400 to 700°C, and/or inert filling such as bismuth oxide or copper oxide powder. 2 to 15 parts by weight of solids are dispersed in a liquid vehicle, and the copper alloy powder contains 0.1 to 0.4% tin and 0.1 to 0.9% by weight of tin.
% of zinc and/or lead.

本発明に用いる錫−亜鉛及び/又は鉛−銅系合金粉は銅
と錫と亜鉛及び/又は鉛とをそれぞれ所定量混合し、溶
解して得た融体をアトマイズすることにより得ることが
でき、また酸化物や炭酸塩の混合粉や、湿式により得ら
れる共沈粉を還元雰囲気中で加熱することによっても得
ることができる。合金粉の代りに銅粉と錫粉と亜鉛粉又
は鉛粉とを所定量混合し、得た混合粉を用いて導電性組
成物を得、これを用いても、塗布後に基板を不活性雰囲
気で焼成する際に各金属が合金化するため本発明と同様
な効果が得られるが、均一性が悪く、必ずしも充分な効
果は得られない。
The tin-zinc and/or lead-copper alloy powder used in the present invention can be obtained by mixing predetermined amounts of copper, tin, zinc and/or lead, and atomizing the resulting melt. It can also be obtained by heating a mixed powder of oxides or carbonates or a coprecipitated powder obtained by a wet method in a reducing atmosphere. Instead of alloy powder, a predetermined amount of copper powder, tin powder, and zinc powder or lead powder is mixed, and the resulting mixed powder is used to obtain a conductive composition. Since the various metals are alloyed during firing, the same effect as the present invention can be obtained, but the uniformity is poor and a sufficient effect cannot necessarily be obtained.

ガラス粉末は、市販の種々の硼珪酸鉛ガラスを用いるこ
とができるが、軟化点が400〜700℃で、熱膨張が
用いるセラミック基体にほぼ等しい物が好ましく、不活
性充填剤としては銅、マンガン、コバルト、亜鉛、クロ
ム、ビスマス、シリコン、バナジウム、アルミニウム等
の酸化物、あるいは複合酸化物を使用でき、液状ビヒク
ルとしてはターピネオール、ブチルカルピトール、トル
エン等の溶剤にエチルセルロースやメタクリレート樹脂
などを溶解した物を使用できる。
As the glass powder, various commercially available lead borosilicate glasses can be used, but it is preferable that the softening point is 400 to 700°C and the thermal expansion is almost the same as that of the ceramic substrate used.As the inert filler, copper or manganese can be used. , cobalt, zinc, chromium, bismuth, silicon, vanadium, aluminum, etc., or composite oxides can be used.As a liquid vehicle, ethyl cellulose or methacrylate resin is dissolved in a solvent such as terpineol, butyl calpitol, or toluene. can use things.

[作用] 本発明で銅と錫と亜鉛及び/又は鉛との合金粉を用いる
のは、錫はエージング強度の低下を抑えるためであり、
亜鉛や鉛は錫による初期強度の低下を補うためである。
[Function] The reason why an alloy powder of copper, tin, zinc and/or lead is used in the present invention is that tin suppresses a decrease in aging strength.
Zinc and lead are used to compensate for the decrease in initial strength caused by tin.

錫や亜鉛や鉛の添加量が少ないと充分な効果が得られず
、多すぎると導電性が低下する。適当な導電性を確保し
っつエージング強度を高めるためには、それぞれの添加
量は相互に関係し、例えば、銅−錫一亜鉛系にあっては
、錫0.1〜0.2重量%(以下%と示す。)、亜鉛0
.1〜0.2%することが望ましく、銅−錫一鉛系にあ
っては、錫 0.1〜0.4%、鉛 0.2〜0.9%
とすることが望ましい。熱論、亜鉛と鉛とを混合して使
用することも可能である。
If the amount of tin, zinc, or lead added is too small, a sufficient effect cannot be obtained, and if the amount is too large, the conductivity decreases. In order to ensure appropriate conductivity and increase aging strength, the amount of each additive is related to each other. For example, in the case of copper-tin-zinc system, tin is 0.1 to 0.2% by weight. (hereinafter referred to as %), Zinc 0
.. It is desirable that the content be 1 to 0.2%, and in the case of copper-tin-lead system, tin 0.1 to 0.4% and lead 0.2 to 0.9%.
It is desirable to do so. It is also possible to use a mixture of zinc and lead.

ところで、固形物中のガラス量は多くなるに従ってセラ
ミック基体との接着強度は強くなるものの、焼成後の導
電性被膜の表面に残留するガラスが多くなり、半田の濡
れ性は悪化する。よって、固形物中のガラス含有量は、
2〜lO%とすることが必要であり、好ましくは2〜4
%とすることが望ましい。酸化亜鉛や酸化銅といった不
活性充填剤の量を多(すると導電性被膜とセラミ・ツク
基体との接合力が強くなるが、あまり多くするとガラス
粉末と同様に半田の濡れ性を著しく低下させ、生産時の
歩留りを悪化させることになる。そのため、不活性充填
剤の量は15%以下とする。
By the way, as the amount of glass in the solid substance increases, the adhesive strength with the ceramic substrate becomes stronger, but more glass remains on the surface of the conductive film after firing, and the wettability of the solder deteriorates. Therefore, the glass content in the solid is
It is necessary to set it to 2-10%, preferably 2-4%.
It is desirable to set it as %. If the amount of inert filler such as zinc oxide or copper oxide is increased (this will strengthen the bonding force between the conductive film and the ceramic substrate, but if it is added too much, it will significantly reduce the wettability of the solder, similar to glass powder). This will worsen the yield during production.Therefore, the amount of inert filler should be 15% or less.

上記組成で調合された固形分は液状ビヒクルと混練し、
ペースト状の導体膜形成用導電性組成物とする。この導
体膜形成用導電性組成物は150〜400メツシユのス
クリーンを用いて基体に塗布する。従って、用いる粉末
はこのスクリーンを円滑に通過しうる物でなければなら
ない。そのためには10μm以上の粒子が存在しないこ
とが望ましく、さらに好ましくは平均粒径が2μm以下
であることが望ましい。また、スクリーン印刷に好適な
ペースととするためには固形分100重量部と、12〜
25重量部の液状ビヒクルとを混練することが望ましい
The solid content prepared with the above composition is kneaded with a liquid vehicle,
A paste-like conductive composition for forming a conductive film is prepared. This conductive composition for forming a conductive film is applied to a substrate using a screen of 150 to 400 meshes. Therefore, the powder used must be able to pass through this screen smoothly. For this purpose, it is desirable that particles of 10 μm or more are not present, and more preferably that the average particle size is 2 μm or less. In addition, in order to make the pace suitable for screen printing, the solid content should be 100 parts by weight and 12 to 12 parts by weight.
It is desirable to knead with 25 parts by weight of a liquid vehicle.

[実施例−1コ アトマイズ法で作成し、最大粒径が7μm以下となり、
平均粒径が2μmとなるように調製した第1表の組成の
銅合金粉95重量部とガラス粉末3重量部と酸化ビスマ
ス2重量部からなる固形分1007fi量部を液体ビヒ
クル13重量部と共に混練し、導体膜形成用導電性組成
物を得た。用いたガラス粉末の組成は、Pb0 43゜
1、Sin、  17.7、B、O89,1,A1.O
l  7.6、ZnO8,5、CaO11,0、ZrO
s 1.3、TiO21,7各%であり、軟化点677
℃1熱膨張率は30〜300℃の範囲で?2 X  1
0−’/”Cのものである。また、液体ビヒクルにはブ
チルメタクリレート濃度22%のターピネオール溶液を
用いた。また。
[Example-1 Created by core atomization method, maximum particle size is 7 μm or less,
A solid content of 1007 parts by weight consisting of 95 parts by weight of copper alloy powder having the composition shown in Table 1, 3 parts by weight of glass powder and 2 parts by weight of bismuth oxide prepared to have an average particle size of 2 μm was kneaded with 13 parts by weight of a liquid vehicle. A conductive composition for forming a conductor film was obtained. The composition of the glass powder used was: Pb0 43°1, Sin, 17.7, B, O89,1, A1. O
l 7.6, ZnO8,5, CaO11,0, ZrO
s 1.3, TiO2 1.7% each, softening point 677
Is the coefficient of thermal expansion at ℃1 in the range of 30 to 300℃? 2 x 1
0-'/''C. Also, a terpineol solution with a butyl methacrylate concentration of 22% was used as the liquid vehicle.

上記導体膜形成用導電性組成物をアルミナ基板上にテス
ト用パターンを用いてスクリーン印刷し、ピーク温度9
00℃1ピーク時゛間8分、全焼成サイクル60分のベ
ルト式焼成炉を用いて窒素雰囲気中で焼成した。雰囲気
中の酸素濃度は、300〜600℃の昇温領域で15±
5 ppmとし、その他の領域では3 pp+n以下と
した。
The above conductive composition for forming a conductive film was screen printed on an alumina substrate using a test pattern, and the peak temperature was 9.
Firing was performed in a nitrogen atmosphere using a belt-type firing furnace with a peak time of 8 minutes at 00°C and a total firing cycle of 60 minutes. The oxygen concentration in the atmosphere is 15± in the temperature range of 300 to 600℃.
5 ppm, and 3 pp+n or less in other areas.

得られた導体膜について次の様な試験を行ない評価した
The obtained conductive film was evaluated by conducting the following tests.

(イ)半田濡れ性 2 m1111角のパターン上に7ラツクス(タムラ化
研製 XA−100)を塗布し、該パターンを230″
Cの37 Pb/63 Sn半田浴に5 see間浸せ
きし、冷却後パターン上の濡れ面積比率を求める。
(a) Solder wettability 2 Apply 7lux (XA-100 manufactured by Tamura Kaken) on a 1111 m square pattern, and spread the pattern to 230"
It was immersed in a 37 Pb/63 Sn solder bath of C for 5 see, and after cooling, the wetted area ratio on the pattern was determined.

(ロ)接着強度 2 mm 角のパターン上に直径0.65mmのメツキ
銅線を37 Pb/63 Snの半田を用いて半田付け
し、次いで垂直方向に引張り剥離して、剥離時の引張り
力を求める。
(b) Adhesive strength 2 mm A plated copper wire with a diameter of 0.65 mm was soldered onto a square pattern using 37Pb/63Sn solder, and then pulled and peeled in the vertical direction to reduce the tensile force at the time of peeling. demand.

(ハ)エージング強度 2 mm角のパターン上に直径0.65mmのメツキ銅
線を31 Pb/63 Snの半田を用いて半田付けし
、基板ごと150℃の高温槽中に1000時間保持した
後、メツキ銅線を垂直方向に引張り剥離して、剥離時の
引張り力を求める。
(c) Aging strength After soldering a plated copper wire with a diameter of 0.65 mm on a 2 mm square pattern using 31 Pb/63 Sn solder and holding the board together in a high temperature bath at 150°C for 1000 hours, The plated copper wire is pulled and peeled in the vertical direction, and the tensile force at the time of peeling is determined.

(ニ)抵抗値 幅0.6 m1lls長さ60 amの配線の抵抗値を
デジタルマルチメーターで測定する。
(d) Measure the resistance value of a wiring with a resistance width of 0.6 ml and a length of 60 am using a digital multimeter.

(イ)〜(ニ)の測定結果を第1表に示した。The measurement results of (a) to (d) are shown in Table 1.

第1表より本発明の導体膜形成用導電性組成物は半田濡
れ性80%以上、接着強度4.0Kg以上、エージング
強度2.0Kg以上、抵抗値4IlΩ/口以下という要
求値を満足する物であることがわかった。
From Table 1, the conductive composition for forming a conductive film of the present invention satisfies the required values of solder wettability of 80% or more, adhesive strength of 4.0 kg or more, aging strength of 2.0 kg or more, and resistance value of 4 IlΩ/mouth or less. It turned out to be.

第1表 〔比較例] アトマイズ方で作成し、最大粒径が7μm以下となり、
平均粒径が2μmとなるように調製した第2表の組成の
銅合金粉95重量部とガラス粉末31i量部と酸化ビス
マス2重量部からなる固形分100重量部を液体ビヒク
ル13重量部と共に混練し、導体膜形成用導電性組成物
を得た。用いたガラス粉末、液体ビヒクルは実施例と同
じ物であった。
Table 1 [Comparative example] Created by atomization method, maximum particle size was 7 μm or less,
A solid content of 100 parts by weight consisting of 95 parts by weight of copper alloy powder having the composition shown in Table 2, 31 parts by weight of glass powder and 2 parts by weight of bismuth oxide prepared to have an average particle size of 2 μm was kneaded with 13 parts by weight of a liquid vehicle. A conductive composition for forming a conductor film was obtained. The glass powder and liquid vehicle used were the same as in the examples.

上記導体膜形成用導電性組成物をアルミナ基板上にテス
ト用パターンを用いてスクリーン印刷し、実施例と同様
に処理して導体膜を得、実施例と同様に半田濡れ性、接
着強度、エージング強度、抵抗値を測定した。この測定
結果を第2表に示した。
The above conductive composition for forming a conductive film was screen printed on an alumina substrate using a test pattern, processed in the same manner as in the example to obtain a conductive film, and subjected to solder wettability, adhesive strength, and aging in the same manner as in the example. Strength and resistance values were measured. The measurement results are shown in Table 2.

第2表よりこれらの導体膜形成用導電性組成物は何れも
前記要求値を満たしていないことがわかった。
From Table 2, it was found that none of these conductive compositions for forming a conductor film satisfied the above-mentioned required values.

(以下余白) [発明の効果] 本発明の導体膜形成用導電性組成物を用いれば、エージ
ング強度、半田濡れ性に優れた導体膜をセラミック基体
上に形成することができる。
(The following is a blank space) [Effects of the Invention] By using the conductive composition for forming a conductor film of the present invention, a conductor film having excellent aging strength and solder wettability can be formed on a ceramic substrate.

Claims (2)

【特許請求の範囲】[Claims] (1)導電粉末としての錫−亜鉛及び/又は鉛−銅系合
金粉、ガラス粉末、及び/又は酸化ビスマスや酸化銅粉
末等の不活性充填剤からなる固形分を液体ビヒクルに分
散せしめた導体膜形成用導電性組成物。
(1) A conductor in which a solid content of tin-zinc and/or lead-copper alloy powder, glass powder, and/or inert filler such as bismuth oxide or copper oxide powder is dispersed in a liquid vehicle as a conductive powder. Conductive composition for film formation.
(2)重量で0.1〜0.4%の錫と0.1〜0.9%
の亜鉛及び/又は鉛を含有する銅合金粉を80〜96重
量部、軟化点400〜700℃の硼珪酸鉛ガラス粉末2
〜10重量部、及び/又は酸化ビスマスや酸化銅粉末等
の不活性充填剤2〜15重量部の固形分を液体ビヒクル
に分散せしめた請求項(1)記載の導体膜形成用導電性
組成物。
(2) 0.1-0.4% tin and 0.1-0.9% by weight
80 to 96 parts by weight of copper alloy powder containing zinc and/or lead, and lead borosilicate glass powder 2 with a softening point of 400 to 700°C.
The conductive composition for forming a conductive film according to claim (1), wherein a solid content of ~10 parts by weight and/or 2 to 15 parts by weight of an inert filler such as bismuth oxide or copper oxide powder is dispersed in a liquid vehicle. .
JP29729389A 1989-11-17 1989-11-17 Conductive composition for conductive film formation Pending JPH03159005A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29729389A JPH03159005A (en) 1989-11-17 1989-11-17 Conductive composition for conductive film formation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29729389A JPH03159005A (en) 1989-11-17 1989-11-17 Conductive composition for conductive film formation

Publications (1)

Publication Number Publication Date
JPH03159005A true JPH03159005A (en) 1991-07-09

Family

ID=17844636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29729389A Pending JPH03159005A (en) 1989-11-17 1989-11-17 Conductive composition for conductive film formation

Country Status (1)

Country Link
JP (1) JPH03159005A (en)

Similar Documents

Publication Publication Date Title
US4122232A (en) Air firable base metal conductors
TWI786109B (en) Conductive composition, manufacturing method of conductor, and forming method of wiring of electronic parts
US4318830A (en) Thick film conductors having improved aged adhesion
TW201841843A (en) Electrically conductive composition and method for producing terminal electrode
JPH01192781A (en) Thick film copper conductor composition
JP2017199543A (en) Conductive composition, method for manufacturing conductor, and method for forming wiring of electronic component
US3516949A (en) Copper/vanadium oxide compositions
JP2795467B2 (en) Good adhesive metal paste
JPH04277406A (en) Copper conductor paste
JPS61185806A (en) Conductive resin paste
JPH0367402A (en) Conducting composition material
JPH04190502A (en) Copper conductor paste
JPH03159005A (en) Conductive composition for conductive film formation
JPH0945130A (en) Conductor paste composite
JPS63283184A (en) Circuit substrate covered with conductor composition
JP6836184B2 (en) Composition for forming a thick film conductor and a method for producing a thick film conductor
JPH0447604A (en) Conductive resin composition
JPH0596396A (en) Creamy solder
JPH01137516A (en) Composite for forming conductive coating
JPH07282621A (en) Electrode material, chip-shaped electronic part using this electrode material and surface treating method for electrode layer
JPH01107592A (en) Electric circuit board
JP2743558B2 (en) Copper conductor paste
JPH03152803A (en) Solderable conductive paste
JPH03246990A (en) Formation of thick film conductor
JPH0465010A (en) Copper conductive paste