JPH03155630A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH03155630A
JPH03155630A JP29552189A JP29552189A JPH03155630A JP H03155630 A JPH03155630 A JP H03155630A JP 29552189 A JP29552189 A JP 29552189A JP 29552189 A JP29552189 A JP 29552189A JP H03155630 A JPH03155630 A JP H03155630A
Authority
JP
Japan
Prior art keywords
film
sog
polymer
oxygen
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29552189A
Other languages
Japanese (ja)
Inventor
Hiroshi Yamamoto
宏 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP29552189A priority Critical patent/JPH03155630A/en
Publication of JPH03155630A publication Critical patent/JPH03155630A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To improve wettability with SOG by heat treating a silicon oxide film in an atmosphere containing ozone or oxygen plasma after the film is etched back and polymer is removed with organic solvent such as etch-back phenol. CONSTITUTION:A thin aluminum alloy film is patterned by dry etching to form an interconnection 13 of a first layer. Then, an interlayer insulating film 14 is deposited by a reduced pressure CVD, etc., with monosilane and oxygen as materials. Then, the entire surface is etched back by anysotropic dry etching using gas such as CF4, etc. Thereafter, polymer on the surface is removed by cleaning with organic solvent such as phenol and with pure water. Then, in order to remove the polymer which cannot be removed by the solvent and enhance wettability of SOG, oxygen containing ozone is fed to be heat treated at an ambient temperature.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体装置の製造方法、特にSOG塗布の前
処理に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing a semiconductor device, and particularly to a pretreatment for SOG coating.

〔従来の技術〕[Conventional technology]

従来微細化された半導体装置の配線方法は、例えば第2
図の如く、半導体素子が形成された半導体基板21上の
フィールド絶縁膜22にコンタクトホールを形成した後
、配線用のアルミニウム合金(例えばAl−8i)を0
.5〜1.0μmスパッタする。次にフォトレジストを
マスクにして、前記アルミニウム合金薄膜をドライエツ
チングによりバターニングして一層目の配線23を形成
する。続いて層間絶縁膜24をCVD等により積層する
が、平坦性を高めるために、必要膜厚よりも厚く堆積し
た後、全面を異方性のドライエツチングによってエッチ
バックする。その後、表面のポリマー除去のためにフェ
ノール系の有機溶剤による洗浄、さらに純水による洗浄
を行なう。さらに、平坦性を高めるために、5OG25
を全面塗布し、400℃前後でキュアを行なっている。
Conventional wiring methods for miniaturized semiconductor devices include, for example, the second
As shown in the figure, after forming a contact hole in a field insulating film 22 on a semiconductor substrate 21 on which a semiconductor element is formed, an aluminum alloy (for example, Al-8i) for wiring is removed.
.. Sputter 5 to 1.0 μm. Next, using a photoresist as a mask, the aluminum alloy thin film is patterned by dry etching to form the first layer wiring 23. Subsequently, an interlayer insulating film 24 is laminated by CVD or the like, but in order to improve flatness, the interlayer insulating film 24 is deposited thicker than necessary, and then the entire surface is etched back by anisotropic dry etching. Thereafter, cleaning with a phenolic organic solvent and further cleaning with pure water are performed to remove the polymer from the surface. Furthermore, in order to improve flatness, 5OG25
was applied to the entire surface and cured at around 400°C.

続いて、−層目の配線23等とのコンタクトをとるため
にスルーホール26を開孔後、二層目の配線27を形成
している。最終的にパシベーション膜として窒化シリコ
ン膜28を成長させた後、外部電極取り出し用のポンデ
ィングパッド29を開孔している。
Subsequently, a through hole 26 is opened to make contact with the -th layer wiring 23, etc., and then a second layer wiring 27 is formed. After finally growing a silicon nitride film 28 as a passivation film, a bonding pad 29 for taking out an external electrode is opened.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら従来技術では、層間絶縁膜堆積後のエッチ
バックで発生するポリマーをフェノール系の有機溶剤に
よって処理しているが、完全には除去できない。また、
フェノール系の有機溶剤によって酸化シリコン膜の表面
状態が変化して、つづ<SOGの塗布工程で、SOGと
のぬれ性が悪く、塗布膜厚の部分的なばらつきが発生し
ていた。
However, in the prior art, polymer generated during etch-back after deposition of an interlayer insulating film is treated with a phenolic organic solvent, but cannot be completely removed. Also,
The surface state of the silicon oxide film was changed by the phenol-based organic solvent, resulting in poor wettability with SOG during the subsequent SOG coating process, and local variations in coating film thickness occurred.

また、SOGのキュア時に下層のCVD酸化シリコン膜
との収縮率の違いからクラック30等を生じていた。
Furthermore, during curing of the SOG, cracks 30 and the like were generated due to the difference in shrinkage rate with the underlying CVD silicon oxide film.

しかるに本発明は、かかる課題を解決するものであり、
その目的とするところは、多層配線間の層間絶縁膜のS
OG膜厚の均一性の向上と、クラック発生の防止により
、信頼性の高い微細半導体装置を安定供給することであ
る。
However, the present invention solves these problems,
The purpose of this is to
The objective is to stably supply highly reliable fine semiconductor devices by improving the uniformity of the OG film thickness and preventing cracks from occurring.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の半導体装置の製造方法は、 a)アルミニウムもしくはその合金薄膜による配線を形
成する工程と、 b)層間絶縁膜を形成する工程と、 C)層間絶縁膜を全面エッチバックする工程とd)フェ
ノール系の有機溶剤によって洗浄する工程と、 e)表面を少なくとも数%のオゾンを含む酸素雰囲気ま
たは、酸素プラズマ中で熱処理する工程と、f)SOG
 (Spin  On  Grass)を塗布する工程
と、 う 、th)SOGをキュアする工程とからなることを特徴
とする。
The method for manufacturing a semiconductor device of the present invention includes: a) forming a wiring using a thin film of aluminum or its alloy; b) forming an interlayer insulating film; C) etching back the entire surface of the interlayer insulating film; and d) a step of cleaning with a phenolic organic solvent; e) a step of heat-treating the surface in an oxygen atmosphere containing at least several percent ozone or in an oxygen plasma; and f) a step of SOG.
The method is characterized by comprising a step of applying (Spin On Grass) and a step of curing SOG.

〔実 施 例〕〔Example〕

以下本発明の実施例における工程を、第1図に基づいて
詳細に説明する。
Hereinafter, steps in an embodiment of the present invention will be explained in detail based on FIG.

まず(a)図の如く、サブミクロンルールの集積回路製
造において、トランジスタや抵抗等の半導体素子が形成
された半導体基板11上のフィールド絶縁膜12にコン
タクトホールを開孔する。
First, as shown in FIG. 1(a), in manufacturing an integrated circuit according to the submicron rule, a contact hole is formed in a field insulating film 12 on a semiconductor substrate 11 on which semiconductor elements such as transistors and resistors are formed.

続いて(b)図のごとく、配線用のアルミニウムーシリ
コン合金を0.5〜1.0μmスパッタする。次にフォ
トレジストをマスクにして、前記アルミニウム合金薄膜
をドライエツチングによりパターニングして一層目の配
線13を形成する。続いて層間絶縁膜14を、モノシラ
ンと酸素を原料とした減圧CVD等により約1μm堆積
する。続いて(c)図のごとく全面をCF4等のガスを
用いた異方性のドライエツチングによって約0.4μm
エッチバックする。その後、表面のポリマー除去のため
にフェノール系の有機溶剤による洗浄及び、純水による
洗浄を行なう。次に、有機溶剤によって除去できなかっ
たポリマーの除去及び、SOGとのぬれ性を高めるため
に、約300℃の炉内で、  96のオゾンを含んだ酸
素を流して約5分間、常圧で熱処理を行なう。さらに、
平坦性を高めるために、5OG15を全面塗布し、窒素
雰囲気中で400℃前後で30分間キュアを行なってい
る。続いて、−層目の配線13等とのコンタクトをとる
ためにスルーホール16を開孔後、二層目の配線17を
形成している。最終的にパシベーション膜として窒化シ
リコン膜18を成長させた後、外部電極取り出し用のポ
ンディングパッド19を開孔し、(d)図のごとく完成
する。
Subsequently, as shown in the figure (b), an aluminum-silicon alloy for wiring is sputtered to a thickness of 0.5 to 1.0 μm. Next, using a photoresist as a mask, the aluminum alloy thin film is patterned by dry etching to form the first layer wiring 13. Subsequently, an interlayer insulating film 14 of about 1 μm is deposited by low pressure CVD using monosilane and oxygen as raw materials. Next, as shown in (c), the entire surface is etched by anisotropic dry etching using a gas such as CF4 to a thickness of approximately 0.4 μm.
Have sex back. Thereafter, cleaning with a phenolic organic solvent and pure water are performed to remove the polymer from the surface. Next, in order to remove the polymer that could not be removed with the organic solvent and to improve the wettability with SOG, it was heated in a furnace at about 300°C and heated with oxygen containing 96 ozone for about 5 minutes at normal pressure. Perform heat treatment. moreover,
In order to improve flatness, 5OG15 was applied over the entire surface and cured at around 400° C. for 30 minutes in a nitrogen atmosphere. Subsequently, a through hole 16 is opened to make contact with the -th layer wiring 13, etc., and then a second layer wiring 17 is formed. Finally, after growing a silicon nitride film 18 as a passivation film, a bonding pad 19 for taking out an external electrode is opened to complete the process as shown in FIG.

この様にしてなる半導体装置のSOG膜厚の部分的な膜
厚のばらつきを激減し、平坦性不良による配線の断線や
ステップカバレッジの不足等、信頼性上における問題は
なくなった。また、SOGに起因するクラックの発生も
なくなり歩留りが向上した。
In this manner, local variations in the SOG film thickness of the semiconductor device are drastically reduced, and reliability problems such as wire breakage and insufficient step coverage due to poor flatness are eliminated. In addition, cracks caused by SOG were no longer generated, and the yield was improved.

ここで、オゾンによる処理温度は、高い方が除去の効果
が良好であったが、450℃以上ではアルミニウム配線
の変形等を生じ好ましくない。また、圧力に関しては、
常圧のみならず減圧でも効果が認められた。また、実施
例ではオゾンについて述べているが、酸素プラズマ中で
の熱処理に於いても同様の結果が得られた。
Here, the higher the ozone treatment temperature, the better the removal effect, but if it is higher than 450° C., the aluminum wiring may be deformed, which is not preferable. Also, regarding pressure,
The effect was observed not only at normal pressure but also at reduced pressure. Further, although ozone is described in the examples, similar results were obtained in heat treatment in oxygen plasma.

なお、実施例では、酸化シリコン膜の製造方法としてモ
ノシラン−酸素系の減圧CVDIIを例としたが、TE
01 [S i  (OC2Hs ) a ]系のプラ
ズマCVD膜、TE01−03系の酸化シリコン膜でも
同様の効果が認められた。
In the examples, monosilane-oxygen-based low-pressure CVDII was used as an example of a method for manufacturing a silicon oxide film, but TE
Similar effects were observed for the 01 [S i (OC2Hs) a ]-based plasma CVD film and the TE01-03-based silicon oxide film.

〔発明の効果〕〔Effect of the invention〕

以上の如く本発明によれば、酸化シリコン膜のエッチバ
ック、フェノール系の有機溶剤によるポリマー除去後に
オゾンまたは、酸素プラズマを含む雰囲気中で熱処理す
ることによって、SOGとのぬれ性を改善することがで
き、信頼性を向上する効果があり、微細半導体装置の実
用化と安定供給が可能となる。
As described above, according to the present invention, the wettability with SOG can be improved by heat-treating the silicon oxide film in an atmosphere containing ozone or oxygen plasma after etching back the silicon oxide film and removing the polymer with a phenolic organic solvent. This has the effect of improving reliability, and enables the practical application and stable supply of fine semiconductor devices.

1L21  ・ ・ 12.22・ ・ 13.23φ 拳 14.24嗜 ・ 15.25 ・ ・ 16.26ゆ 命 17.27拳 ・ 18.28φ 拳 19.29・ Φ 10.20・ ・ 30・ ・ ・ ・ ・ 半導体基板 フィールド絶縁膜 第一層目の配線 層間絶縁膜 SOG スルーホール 第二層目の配線 プラズマ窒化膜 ポンディングパッド 0GOS クラック 以1L21 ・・ 12.22・・ 13.23φ fist 14.24 ・ 15.25 ・・ 16.26 life 17.27 fist・ 18.28φ fist 19.29・ Φ 10.20・・ 30・・・・・・ semiconductor substrate field insulation film First layer wiring interlayer insulation film SOG through hole Second layer wiring plasma nitride film pounding pad 0GOS crack Below

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(d)は、本発明の一実施例による半導
体装置の製造工程を示す概略断面図である。 第2図は、従来の半導体装置の製造工程を示す概略断面
図である。
FIGS. 1(a) to 1(d) are schematic cross-sectional views showing the manufacturing process of a semiconductor device according to an embodiment of the present invention. FIG. 2 is a schematic cross-sectional view showing the manufacturing process of a conventional semiconductor device.

Claims (1)

【特許請求の範囲】 a)アルミニウムもしくはその合金薄膜による配線を形
成する工程と、 b)層間絶縁膜を形成する工程と、 c)層間絶縁膜を全面エッチバックする工程とd)フェ
ノール系の有機溶剤によって洗浄する工程と、 e)表面を少なくとも数%のオゾンを含む酸素雰囲気ま
たは、酸素プラズマ中で熱処理する工程と、f)SOG
(SpinOnGrass)を塗布する工程と、 g)SOGをキュアする工程とからなることを特徴とす
る半導体装置の製造方法。
[Claims] a) a step of forming a wiring using aluminum or its alloy thin film; b) a step of forming an interlayer insulating film; c) a step of etching back the entire surface of the interlayer insulating film; and d) a step of etching back the entire surface of the interlayer insulating film; a step of cleaning with a solvent; e) a step of heat treating the surface in an oxygen atmosphere containing at least several percent ozone or in an oxygen plasma; and f) a step of SOG.
1. A method for manufacturing a semiconductor device, comprising the steps of: applying (SpinOnGrass); and g) curing SOG.
JP29552189A 1989-11-14 1989-11-14 Manufacture of semiconductor device Pending JPH03155630A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29552189A JPH03155630A (en) 1989-11-14 1989-11-14 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29552189A JPH03155630A (en) 1989-11-14 1989-11-14 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH03155630A true JPH03155630A (en) 1991-07-03

Family

ID=17821700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29552189A Pending JPH03155630A (en) 1989-11-14 1989-11-14 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH03155630A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5882425A (en) * 1997-01-23 1999-03-16 Semitool, Inc. Composition and method for passivation of a metallization layer of a semiconductor circuit after metallization etching
JP2016162848A (en) * 2015-02-27 2016-09-05 ルネサスエレクトロニクス株式会社 Semiconductor device manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5882425A (en) * 1997-01-23 1999-03-16 Semitool, Inc. Composition and method for passivation of a metallization layer of a semiconductor circuit after metallization etching
JP2016162848A (en) * 2015-02-27 2016-09-05 ルネサスエレクトロニクス株式会社 Semiconductor device manufacturing method
CN105931984A (en) * 2015-02-27 2016-09-07 瑞萨电子株式会社 Method Of Manufacturing Semiconductor Device

Similar Documents

Publication Publication Date Title
JP3128811B2 (en) Method for manufacturing semiconductor device
JPS6030153A (en) Semiconductor device
JPH0936116A (en) Multilayer wiring forming method
JPH0345895B2 (en)
US5393709A (en) Method of making stress released VLSI structure by the formation of porous intermetal layer
JP3149739B2 (en) Multilayer wiring formation method
KR0138853B1 (en) Curing method of spin-on glass by plasma process
JPH03155630A (en) Manufacture of semiconductor device
US6740471B1 (en) Photoresist adhesion improvement on metal layer after photoresist rework by extra N2O treatment
JP2750860B2 (en) Method for manufacturing semiconductor device
KR100693785B1 (en) Method for forming interlayer dielectric in semiconductor memory device
JPH0653134A (en) Manufacture of semiconductor device
KR960002077B1 (en) Fabricating method of semiconductor device
JP3327994B2 (en) Method for manufacturing semiconductor device
JP3624823B2 (en) Semiconductor device and manufacturing method thereof
JP3718261B2 (en) Manufacturing method of semiconductor integrated circuit device
JP2727605B2 (en) Semiconductor device and manufacturing method thereof
JPH0629282A (en) Manufacture of semiconductor device
JP2757618B2 (en) Method for manufacturing semiconductor device
JPH0414224A (en) Manufacture of semiconductor device
JPH0334323A (en) Manufacture of semiconductor device
KR100652294B1 (en) Method for forming inter-layer dielectrics of semiconductor device
JPS62221120A (en) Manufacture of semiconductor device
TW305060B (en) The method for eliminating void of metal interconnection
KR980005374A (en) Method of manufacturing semiconductor device