JPH03151139A - Method for measuring cast ingot shape in electromagnetic casting device - Google Patents

Method for measuring cast ingot shape in electromagnetic casting device

Info

Publication number
JPH03151139A
JPH03151139A JP28831889A JP28831889A JPH03151139A JP H03151139 A JPH03151139 A JP H03151139A JP 28831889 A JP28831889 A JP 28831889A JP 28831889 A JP28831889 A JP 28831889A JP H03151139 A JPH03151139 A JP H03151139A
Authority
JP
Japan
Prior art keywords
shape
coil
molten metal
ingot
metal column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28831889A
Other languages
Japanese (ja)
Inventor
Koji Nagae
光司 長江
Norifumi Hayashi
林 典史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP28831889A priority Critical patent/JPH03151139A/en
Publication of JPH03151139A publication Critical patent/JPH03151139A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To produce a cast ingot having high accurate shape by measuring the shape of the cast ingot with a magnetic flux density detecting sensor provided between a coil in electromagnetic casting device and molten metal column. CONSTITUTION:While holding the molten metal column 6 to the shape corresponding to the coil shape with electromagnetic pressure generated by energizing to the coil 3, the solidified cast ingot position 9 formed at the lower part of the molten metal column 6 is cooled. The sensor 13 for detecting the magnetic flux density is provided between the coil 3 and the molten metal column 6 in the electromagnetic casting device 1 making the cast ingot 1 having the prescribed shape by cooling and solidifying the molten metal column 6 through the solidified cast ingot position 9, and the shape of cast ingot 11 is measured with the detected signal of the sensor 13. By this method, fine variation of shape in the cast ingot can be measured and the cast ingot having high accurate shape can be easily obtd.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、金属を電磁気的に鋳造する電磁鋳造装置にお
ける鋳塊形状の測定方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for measuring the shape of an ingot in an electromagnetic casting apparatus that electromagnetically casts metal.

[従来の技術] 従来から、金属、特にアルミニウムまたはその合金等の
連続鋳造法の一つとして電磁鋳造法が知られている。こ
の電磁鋳造法(表 コイルへの通電により発生する交番
磁場内に底台を配設し、この底台上に供給される溶湯を
電磁圧によって保持せしめ、コイル形状に対応した形状
の溶湯柱を形成し、そしてこの溶湯柱の下部に形成され
る凝固鋳塊部位の側部局面に冷却水を噴出せしめ、凝固
鋳塊部位を介して所定形状の鋳塊を連続的に造塊するも
のである。
[Prior Art] Electromagnetic casting has been known as one of the continuous casting methods for metals, particularly aluminum or alloys thereof. This electromagnetic casting method involves placing a base in an alternating magnetic field generated by energizing a coil, and holding the molten metal supplied onto the base using electromagnetic pressure to form a column of molten metal that corresponds to the shape of the coil. Cooling water is jetted onto the side surfaces of the solidified ingot formed at the bottom of this molten metal column, and ingots of a predetermined shape are continuously produced through the solidified ingot. .

この電磁鋳造法によって造塊された鋳塊(上表面欠陥が
ほとんどなく、無面削圧延が可能と言われている。その
ため、この電磁鋳造法にあっては、そのままの状態で無
面削圧延が可能になるように、鋳塊形状である鋳塊の断
面の大きさを一定に制tMI。
Ingots formed by this electromagnetic casting method (it is said that there are almost no defects on the upper surface and can be rolled without surface finishing. In order to make this possible, the size of the cross-section of the ingot, which is the ingot shape, is kept constant.

即ち、鋳塊形状を正確に測定し制御することが重要とな
る。
That is, it is important to accurately measure and control the shape of the ingot.

この鋳塊形状の測定方法として1表電磁鋳造時の溶湯拘
束条件が、電磁圧Prr+=溶湯静圧ρgh(但しhは
溶湯保持高さ)であり、hが低下するとρghが小さく
なって、鋳塊がコイルから遠ざかり、またhが上昇する
とρghが大きくなって鋳塊がコイルに近づくという原
理に基づき、鋳型内の湯面しベルによって鋳塊形状を一
定に制御する方法が知られている。
As a method of measuring this ingot shape, the molten metal constraint conditions during electromagnetic casting in Table 1 are electromagnetic pressure Prr + = molten metal static pressure ρgh (where h is the molten metal holding height), and as h decreases, ρgh decreases and casting Based on the principle that as the ingot moves away from the coil and as h increases, ρgh increases and the ingot approaches the coil, a method is known in which the shape of the ingot is controlled to be constant using a leveling bell in the mold.

また、特公昭61−9097号公報に開示のように、例
えば矩形形状のコイルの電気パラメータ(電流、電圧)
によって鋳塊形状の変化を測定しし、この電気パラメー
タを所定に制御する方法も知られている。
In addition, as disclosed in Japanese Patent Publication No. 61-9097, for example, electrical parameters (current, voltage) of a rectangular coil
There is also a known method of measuring changes in the shape of an ingot and controlling the electrical parameters to a predetermined value.

[発明が解決しようとする課題] しかしながら、これらの方法にあっては、次のような問
題点がある。即ち、前者の方法にあって【友場面レベル
が一定になるように制御しても、例えば冷却水量や冷却
点、溶湯流動等の他の要因によって鋳塊形状が不安定に
なることがあり、このような形状変化を測定することは
できない。
[Problems to be Solved by the Invention] However, these methods have the following problems. In other words, in the former method, even if the surface level is controlled to be constant, the shape of the ingot may become unstable due to other factors such as the amount of cooling water, the cooling point, the flow of the molten metal, etc. Such shape changes cannot be measured.

また後者の方法にあっては、鋳塊形状の変化は、即コイ
ルのインピーダンス変化となるため、このコイルの電流
、電圧等の電気パラメータによって、鋳塊形状の変化を
ある程度測定し得るものの、矩形形状のコイルに通電さ
れる電流等の変化だけでは、該コイル形状と相似形をな
す鋳塊各部の形状変イし特に鋳塊の軽微な形状変化を測
定することが困難である。
In the latter method, changes in the shape of the ingot immediately result in changes in the impedance of the coil. By simply changing the current applied to a shaped coil, the shapes of various parts of the ingot that are similar to the coil shape change, and it is particularly difficult to measure slight changes in the shape of the ingot.

そこで、本発明は上記の問題点を解決することを目的と
し、鋳塊の軽微な形状変化をも測定し得る電磁鋳造装置
における鋳塊形状の測定方法を提供するものである。
SUMMARY OF THE INVENTION The present invention aims to solve the above-mentioned problems and provides a method for measuring the shape of an ingot in an electromagnetic casting apparatus, which can measure even slight changes in the shape of an ingot.

[課題を解決するための手段] かかる目的を達成すぺく、本発明1よ コイルへの通電により発生する電磁圧で金属の溶湯柱を
コイル形状に対応した形状に保持しつつ、該溶湯柱の下
部に形成される凝固鋳塊部位を冷却せしめ、該凝固鋳塊
部位を介して上記溶湯柱を冷賦凝固せしめることによっ
て、所定形状の鋳塊を造塊するようにした電磁鋳造装置
において、上記コイルと溶湯柱との間の磁束密度を検出
するセンサーを設け、該センサーの検出信号によって上
記鋳塊の形状を測定することを特徴とする。
[Means for Solving the Problems] In order to achieve the above object, the present invention 1 maintains a molten metal column in a shape corresponding to the coil shape using electromagnetic pressure generated by energizing the coil, and In the electromagnetic casting apparatus, an ingot of a predetermined shape is formed by cooling a solidified ingot portion formed at the lower part and cooling and solidifying the molten metal column through the solidified ingot portion. A sensor is provided to detect the magnetic flux density between the coil and the molten metal column, and the shape of the ingot is measured based on the detection signal of the sensor.

[作用] 上記構成を具備する本発明の測定方法にあっては、電磁
鋳造装置のコイルと溶湯柱とのrBl 即ちコイルの電
磁圧によって該コイルと溶湯柱との間に形成される間隙
に例えば複数個のセンサーを配設する。そして、コイル
への通電電流の周波数が一定ならli  センサーで検
出される起電圧が上記間隙の磁束密度によって決定され
るという原理に基づき、間隙の磁束密度を、該間隙の磁
束によって誘導される起電圧で検出する。この起電圧を
、例えば予め実験等によって求めた換算表により鋳塊形
状の変位量に換算し、この変位量によって鋳塊形状を測
定する。そして、この測定結果に基づいて、例えばコイ
ルへの通電電流値等を制御することによって所定形状の
鋳塊が造塊される。
[Function] In the measuring method of the present invention having the above configuration, the rBl between the coil of the electromagnetic casting apparatus and the molten metal column, that is, the gap formed between the coil and the molten metal column by the electromagnetic pressure of the coil, for example. Install multiple sensors. Based on the principle that if the frequency of the current flowing through the coil is constant, the electromotive force detected by the li sensor is determined by the magnetic flux density in the gap, the magnetic flux density in the gap is determined by the electromotive force induced by the magnetic flux in the gap. Detected by voltage. This electromotive force is converted into the amount of displacement of the ingot shape using a conversion table determined in advance through experiments, for example, and the shape of the ingot is measured based on this amount of displacement. Then, based on the measurement results, an ingot having a predetermined shape is formed by controlling, for example, the value of current applied to the coil.

[実施例] 以下本発明の一実施例を図面に基づいて詳細に説明する
[Example] An example of the present invention will be described in detail below based on the drawings.

第1図は本発明に係わる測定方法を適用した電磁鋳造装
置1の概略構成図である。
FIG. 1 is a schematic diagram of an electromagnetic casting apparatus 1 to which a measuring method according to the present invention is applied.

図において、所定形状の底台2の周囲に(よ例えば矩形
枠体形状のコイル3が配設される。また、底台2の上方
には湯口4が配設さ札 この湯口4から底台2上にアル
ミニウム等の溶湯5が供給される。そして、底台2上に
供給され未だ溶融状態にある溶湯5(よ その側部周面
が、上記コイル3への通電により発生する電磁圧で、凝
固にいたるまで保持されることによって、底台2上にコ
イル3の形状と相似形(矩形断面形状)の溶湯柱6が形
成されるようになっている。
In the figure, a coil 3 in the shape of a rectangular frame (for example, a rectangular frame shape) is disposed around a base 2 having a predetermined shape.A sprue 4 is disposed above the base 2. A molten metal 5 such as aluminum is supplied onto the base 2.Then, the molten metal 5 that is supplied onto the base 2 and is still in a molten state (the side circumferential surface of the molten metal 5 that is still in a molten state) By holding the molten metal until solidification, a molten metal column 6 having a shape similar to that of the coil 3 (rectangular cross-sectional shape) is formed on the base 2.

また、底台2上に形成される溶湯柱6の周囲に(上 コ
イル3による電磁圧と供給される溶湯5の流体圧とを平
衡させるスクリーン7と、冷却水供給器8が配設される
。この冷却水供給器8(上溶湯柱6の下部に形成される
凝固鋳塊部位9の側部局面(外表面)に冷却水10を噴
出し、凝固鋳塊部位9を介して溶湯柱6を連続的(もし
くは半連続的)に冷却、凝固させる。そして、これによ
って生成された鋳塊が底台2の下降に伴って下方に連続
的に引き抜かれることによって、所定形状の鋳塊]]が
連続的に得られる。
Further, a screen 7 that balances the electromagnetic pressure generated by the coil 3 and the fluid pressure of the supplied molten metal 5, and a cooling water supply device 8 are arranged around the molten metal column 6 formed on the base 2. This cooling water supply device 8 (spouts cooling water 10 to the side surfaces (outer surfaces) of the solidified ingot region 9 formed at the bottom of the upper molten metal column 6, and supplies the molten metal column 6 through the solidified ingot region 9). is continuously (or semi-continuously) cooled and solidified.Then, the ingot thus produced is continuously pulled downward as the bottom platform 2 descends, thereby forming an ingot into a predetermined shape.] is obtained continuously.

さらに、上記コイル3の内側面には、後述する方法によ
って溶湯柱6とコイル3との間隙]2の磁束密度を検出
するセンサー13が配設される。
Furthermore, a sensor 13 is disposed on the inner surface of the coil 3 to detect the magnetic flux density in the gap 2 between the molten metal column 6 and the coil 3 by a method described later.

このセンサー13は、第2図に示す位置に複数個(例え
ば]]個)配設さね、その構成は、例えば第3図に示す
ように構成する。即ち、センサー13は、絶縁材からな
る円筒状の絶縁パイプ14と、この絶縁パイプ14の外
周面に巻回したサーチコイル15等を有する。そして、
このセンサー13の検出信号は、第1図に示すように制
御装置16に出力される。なお、第1図中電源装置]7
は、制御装置]6によって制御さ、h、]コイルに所定
の電流を供給する。
A plurality of sensors 13 (for example, ) are arranged at the positions shown in FIG. 2, and their configuration is, for example, as shown in FIG. 3. That is, the sensor 13 includes a cylindrical insulating pipe 14 made of an insulating material, a search coil 15 wound around the outer peripheral surface of the insulating pipe 14, and the like. and,
The detection signal of this sensor 13 is output to a control device 16 as shown in FIG. In addition, the power supply device in Figure 1] 7
is controlled by a controller ]6, which supplies a predetermined current to the coil.

以上が電磁鋳造装置1の説明である。ここで、本発明に
係わる鋳塊形状の測定方法の原理について説明する。
The above is the explanation of the electromagnetic casting apparatus 1. Here, the principle of the ingot shape measuring method according to the present invention will be explained.

まず、上記サーチコイル15中の磁束Φの変化は、次式
(1)の起電圧eを誘導する。
First, a change in the magnetic flux Φ in the search coil 15 induces an electromotive force e expressed by the following equation (1).

但しn:サーチコイル15の巻数(ターン数)。However, n: the number of turns (number of turns) of the search coil 15.

この式(1)の時間微分d/dtを複素近似すると、 e=−nj ωΦ   ・ ・ ・ ・ ・ ・ (2
)となり、この式(2)から、 e=nclJBS    ・・・・・・ (3)の式が
導かれる。但し、 ω:角周波数(=2πf、f:周波数)B:磁束密度 S:サーチコイル15内の磁束通過面積この式(3)か
ら明かなように、コイル3への通電電流の周波数fが一
定でかつサーチコイル15の寸法Sが同じならば、検出
される起電圧eは磁束密度Bにより決定される。
If we apply a complex approximation to the time differential d/dt of this equation (1), we get e=-nj ωΦ ・ ・ ・ ・ ・ ・ (2
), and from this formula (2), the formula e=nclJBS (3) is derived. However, ω: Angular frequency (=2πf, f: frequency) B: Magnetic flux density S: Magnetic flux passing area within the search coil 15 As is clear from this equation (3), the frequency f of the current flowing to the coil 3 is constant. If the dimensions S of the search coil 15 are the same, the detected electromotive force e is determined by the magnetic flux density B.

ところで、通電中のコイル3からの磁束は、コイル3を
中心として第4図に示すように発生する。
By the way, the magnetic flux from the coil 3 which is energized is generated around the coil 3 as shown in FIG. 4.

即ち、同図(a)に示すように、溶湯柱6がコイル3よ
り遠い場合は、間隙12の磁束密度Bが低くセンサー1
3から検出される起電圧eは小さくなる。また、同図(
b)に示すように、逆に溶湯柱6がコイル3に近い場合
は、センサー13で検出される起電圧eは大きくなる。
That is, as shown in FIG. 3(a), when the molten metal column 6 is farther away than the coil 3, the magnetic flux density B in the gap 12 is low and the sensor 1
3, the electromotive force e detected becomes smaller. Also, the same figure (
As shown in b), on the other hand, when the molten metal column 6 is close to the coil 3, the electromotive force e detected by the sensor 13 becomes large.

したがって、間隙12の距離dによって該間隙12の磁
束密度Bが変化することになり、これに対応してセンサ
ー13から検出される起電圧eも変化する。以上の原理
に基づいて、本実施例はセンサー13から検出される起
電圧eにより、溶湯柱6の形状を連続的に測定、即ちオ
ンライン測定し、鋳塊]1の形状を所定形状に制御しよ
うとするものである。
Therefore, the magnetic flux density B of the gap 12 changes depending on the distance d of the gap 12, and the electromotive force e detected by the sensor 13 changes accordingly. Based on the above principle, in this embodiment, the shape of the molten metal column 6 is continuously measured, that is, measured online, using the electromotive force e detected by the sensor 13, and the shape of the ingot 1 is controlled to a predetermined shape. That is.

次に、第5図の実測データについて説明する。Next, the measured data shown in FIG. 5 will be explained.

このデータは下記条件によって、第2図のA点及びB点
に配設したセンサー]3で検出した起電圧eの波形であ
る。
This data is the waveform of the electromotive force e detected by the sensor ] 3 placed at points A and B in FIG. 2 under the following conditions.

(条件) 絶縁パイプ14の材質 :ベーク サーチコイル15の内径=10mm (=絶縁パイプ14の外径) 供給磁束密度:500〜800ガウス この条件によれ(戴理論上は次式、即ち、によって0.
74〜1.18Vの起電圧eが発生するが、実測値とし
ては、第5図(a)に示すように、A点テハ、 0.9
40〜1.075V (変化幅:0.135V)の起電
圧eが、また、同図(b)に示すように、B点では、0
.918〜1゜020V (変化幅:0.102V)の
起電圧eが測定された。なお、第5図(a)  (b)
において、横軸は時間t、縦軸は起電圧eを示し、符号
には鋳塊11の形状の変位量を示す。
(Conditions) Material of insulated pipe 14: Inner diameter of bake search coil 15 = 10 mm (=outer diameter of insulated pipe 14) Supply magnetic flux density: 500 to 800 Gauss According to these conditions (Theoretically, 0 according to the following formula, that is, ..
An electromotive voltage e of 74 to 1.18V is generated, and the actual measured value is 0.9 at point A, as shown in Fig. 5(a).
The electromotive force e of 40 to 1.075V (variation range: 0.135V) becomes 0 at point B, as shown in Figure (b).
.. An electromotive voltage e of 918 to 1°020V (change width: 0.102V) was measured. In addition, Fig. 5 (a) (b)
, the horizontal axis represents time t, the vertical axis represents electromotive force e, and the symbol represents the amount of displacement of the shape of the ingot 11.

この実測データから、コイル3設置時の鋳塊との距離d
により若干の補正は必要であるものの、略0.IV/1
0mmの変位量換算、即ちセンサー13から検出された
起電力が0.IVO時、鋳塊11の形状が10mm変位
したものとして、換算することが可能である。
From this measured data, the distance d from the ingot when installing coil 3 is
Although some correction is necessary, it is approximately 0. IV/1
In terms of displacement of 0 mm, that is, the electromotive force detected from the sensor 13 is 0. The conversion can be made assuming that the shape of the ingot 11 is displaced by 10 mm during IVO.

ここで、上記測定方法を使用した鋳塊形状の制御方法の
一例について第6図のフローチャートに基づいて説明す
る。なお、このフローチャートは、制御装置]6(第1
図参照)内の図示しないマイクロプロセッサからなるC
PU (中央処理装置)等によって処理される。
Here, an example of a method of controlling the shape of an ingot using the above measurement method will be explained based on the flowchart of FIG. 6. Note that this flowchart is based on the control device]6 (first
C consisting of a microprocessor (not shown) in
Processed by a PU (central processing unit) or the like.

制御が開始(ステップ]00)されると、まず、所定の
電磁圧が得られるコイル3への通電電流値I、変位量の
規格値k、基準電圧e9等をそれぞれ入力設定(ステッ
プ1]O)する。そして、コイル3に通電し溶湯柱6を
電磁圧で拘束しなから造塊を開始すると、上記間隙12
に配設した複数個のセンサー13により、間隙12の磁
束密度Bに応じた起電圧eが検出される。
When the control is started (step 00), first, the current value I to be applied to the coil 3, the standard value k of the displacement amount, the reference voltage e9, etc. to obtain a predetermined electromagnetic pressure are input and set (step 1) O )do. Then, when the coil 3 is energized and the molten metal column 6 is restrained by electromagnetic pressure before ingot formation is started, the above-mentioned gap 12
An electromotive force e corresponding to the magnetic flux density B of the gap 12 is detected by a plurality of sensors 13 arranged in the gap 12 .

制御装置16は、このセンサー13で検出された起電圧
e乞読み込み(ステップ120)、基準電圧e9との差
、即ち変化値Δeを算出(ステップ]30)する。また
、予め設定した換算表により変化値Δeに対応する変位
量Δkを算出(ステップ140)する。この変位量Δに
の算出(上 上記の実測データをもとに、00IV/1
0mmの変位量換算、即ち、例えば変化値Δeが0.0
5vの時は変位量Δkを5mmとして算出する。
The control device 16 reads the electromotive force e detected by the sensor 13 (step 120) and calculates the difference from the reference voltage e9, that is, the change value Δe (step 30). Further, a displacement amount Δk corresponding to the change value Δe is calculated using a preset conversion table (step 140). Calculation of this displacement Δ (above) Based on the above actual measurement data, 00IV/1
0mm displacement conversion, that is, for example, the change value Δe is 0.0
When the voltage is 5V, the displacement amount Δk is calculated as 5mm.

そして、ステップ140で算出した変位量Δkが規格値
により大きいか否かを判断(ステップ150)する。こ
の判断でNoの場合は、コイル3への通電電流値iの補
正(ステップ]60)を行う。この補正(友例えば変位
量Δkがプラスの場合、即ち、溶湯柱6が基準位置(上
記基準電圧e6が得られる位置)に対してコイル3に近
づき起電圧が大きくなった場合は、電流値iを増加させ
て電磁圧を高くし溶湯柱6を基準位置まで遠ざけ、また
変位量Δkがマイナスの場合、即ち、溶湯柱6が基準位
置に対してコイル3から遠ざかり起電圧が小さくなった
場合は、電流値iを減少させて電磁圧を低くし溶湯柱6
を基準位置まで近づける。
Then, it is determined whether the displacement amount Δk calculated in step 140 is larger than the standard value (step 150). If this determination is No, the current value i applied to the coil 3 is corrected (step 60). For example, when the displacement Δk is positive, that is, when the molten metal column 6 approaches the coil 3 with respect to the reference position (the position where the above reference voltage e6 is obtained) and the electromotive force becomes large, the current value i is increased to increase the electromagnetic pressure and move the molten metal column 6 away from the reference position, and when the displacement Δk is negative, that is, when the molten metal column 6 moves away from the coil 3 with respect to the reference position and the electromotive force becomes small, , the current value i is decreased to lower the electromagnetic pressure, and the molten metal column 6
bring it closer to the reference position.

この電流値iの補正が終了すると、例えば所定時間の連
続鋳造が終了か否かを判断(ステップ170)し、この
判断でNoの場合は上記ステップ]20に戻る。そして
、ステップ170の判断でYESになるまで、ステップ
120からステップ160を繰り返し、所定形状の鋳塊
11を得て一連の作業を終了(ステップ190)する。
When the correction of the current value i is completed, it is determined whether or not continuous casting for a predetermined period of time has ended, for example (step 170), and if the determination is No, the process returns to step 20 above. Then, steps 120 to 160 are repeated until the determination in step 170 becomes YES, obtaining an ingot 11 of a predetermined shape, and the series of operations is completed (step 190).

一方、上記ステップ150の判断でYESの場合、即ち
、変位量Δkが規格値により大きくなった場合は、造塊
無駄を防ぐため(二直ちにコイル3への通電を遮断する
等、鋳造を停止(ステ・ツブ180)L、ステップ19
0に移る。
On the other hand, if the determination in step 150 is YES, that is, if the displacement Δk has become larger than the standard value, in order to prevent waste of ingots (secondarily, stop the casting by immediately cutting off the current to the coil 3, etc.). Step 180) L, Step 19
Move to 0.

なお、上記フローチャートにおいて(よ変位量Δkに基
づいてコイル3への通電電流値iを制御(増減)したが
、例えば変位量Δkに基づいて湯面しベルを制御(湯面
レベルを上下)するようにしてもよい。
In the above flowchart, the current value i to the coil 3 is controlled (increased or decreased) based on the displacement amount Δk, but for example, the hot water level bell may be controlled (raise or lower the hot water level) based on the displacement amount Δk. You can do it like this.

また、制御装置16で算出した変位量Δkを、予め設定
した所定値kl(但しkl<k)と比較し、変位量Δk
が所定値に1より大きくなった場合にのみ、コイル3へ
の電流値i等を増減するように制御することもできる。
Further, the displacement amount Δk calculated by the control device 16 is compared with a predetermined value kl (kl<k), and the displacement amount Δk
It is also possible to control the current value i, etc. to be applied to the coil 3 to be increased or decreased only when the current value i becomes greater than 1 to a predetermined value.

さらに、ステップ140における変位量換算も、上記実
施例(0,I V/10mm)に限定されず、コイル3
の形状あるいはセンサー13の構成(絶縁パイプ14の
材質、サーチコイル15の内径)等に応じて、例えば予
め実験等によって求めた適宜の換算値(換算表)を使用
することができる。
Furthermore, the displacement amount conversion in step 140 is not limited to the above embodiment (0, IV/10 mm),
Depending on the shape of the sensor 13 or the configuration of the sensor 13 (the material of the insulated pipe 14, the inner diameter of the search coil 15), for example, an appropriate conversion value (conversion table) determined in advance through experiments or the like can be used.

このように上記実施例にあっては、溶湯柱6の形状変化
が間隙12の磁束密度Bの変化に対応するという原理に
基づき、間隙12に配設した複数個のセンサー13で起
電圧eを検出する。そして、この起電圧eによって溶湯
柱6の形状の変位量Δkを算出し、この変位量Δkに基
づいて溶湯柱6の形状変化を測定する。したがって、溶
湯柱6の各部の形状変化をオンライン測定することがで
き、軽微な形状変化をも検出し得て、高精度な形状の鋳
塊11を得ることができる。
In the above embodiment, based on the principle that the change in the shape of the molten metal column 6 corresponds to the change in the magnetic flux density B in the gap 12, the electromotive force e is determined by the plurality of sensors 13 disposed in the gap 12. To detect. Then, the amount of displacement Δk of the shape of the molten metal column 6 is calculated using this electromotive force e, and the change in the shape of the molten metal column 6 is measured based on this amount of displacement Δk. Therefore, changes in the shape of each part of the molten metal column 6 can be measured on-line, even slight changes in shape can be detected, and an ingot 11 with a highly accurate shape can be obtained.

また、センサー13からの検出信号をコイル3への通電
電流値i等にフィードバックすることにより、溶湯柱6
の形状の変位量Δkが規格値に外になるのを防止し得る
とともに、造塊中に規格外となった場合は、直ちに鋳造
を停止することができ、造塊無駄を防ぎ造塊の歩留りを
向上させ得る。
In addition, by feeding back the detection signal from the sensor 13 to the current value i to the coil 3, etc., the molten metal column 6
It is possible to prevent the displacement amount Δk of the shape from exceeding the standard value, and if it becomes out of the standard value during ingot making, casting can be stopped immediately, preventing wasted ingots and increasing the yield of ingots. can be improved.

さらに、鋳塊]]の表面形状の凹凸精度が向上するため
、無面削圧延を行った場合には、凹凸に起因する欠陥が
なくなり、品質向上あるいは圧延品の歩留りを向上させ
得る。
Furthermore, since the accuracy of the unevenness of the surface shape of the ingot is improved, when surfaceless rolling is performed, defects caused by unevenness are eliminated, and the quality or yield of the rolled product can be improved.

なお、上記実施例において、センサー13の個数を多く
して測定点を多くする程、鋳塊]]の形状を三次元的に
精度よく測定できることはいうまでもない。また、上記
実施例においては、センサー13を絶縁パイプ]4とサ
ーチコイル15とで構成したが、本発明はこれに何ら限
定されるものではなく、間隙]2の磁束密度を測定し得
る適宜のセンサーを使用することができる等、本発明の
要旨を逸脱しない範囲において、種々変更可能である。
In the above embodiment, it goes without saying that the more the number of sensors 13 and the number of measurement points are increased, the more accurately the shape of the ingot can be measured three-dimensionally. Further, in the above embodiment, the sensor 13 is composed of the insulated pipe 4 and the search coil 15, but the present invention is not limited to this in any way. Various modifications can be made without departing from the gist of the present invention, such as the use of sensors.

[発明の効果] 以上詳述したように、本発明の電磁鋳造装置における鋳
塊形状の測定方法によれば、鋳塊の軽微な形状変化を測
定することができ、高精度な形状の鋳塊を容易に得るこ
とができる。また、このことにより、造塊の歩留り向上
及び鋳塊表面の品質を向上させることができるとともに
圧延品の歩留りを向上させることができる等の効果を奏
する。
[Effects of the Invention] As detailed above, according to the method for measuring the shape of an ingot in an electromagnetic casting apparatus of the present invention, slight changes in the shape of an ingot can be measured, and an ingot with a highly accurate shape can be obtained. can be easily obtained. Furthermore, this provides effects such as being able to improve the yield of ingots and the quality of the surface of the ingot, as well as improving the yield of rolled products.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係わる鋳塊形状の測定方法を適用した
電磁鋳造装置の一例を示す概略構成図、第2図はセンサ
ーの配置状態を示す平面図、第3図はセンサーの斜視図
、第4図は間隙の磁束の状態を示し、同図(a)は溶湯
柱がコイルから遠い場合の状態図、同図(b)は近い場
合の状態図、第5図は起電圧の実測データの波形説明図
、第6図は制御方法の一例を示すフローチャートである
。 1・・・電磁鋳造装置、  2・・・底台、3・・・コ
イル、     5・・・溶フ詠6・・・溶湯柱、  
   8・・・冷却水供給器、9・・・凝固鋳塊部位、
1]・・・鋳塊、12・・・間隙、     13・・
・センサー14・・・絶縁パイプ、  15・・・サー
チコイル、]6・・・制御装置。
FIG. 1 is a schematic configuration diagram showing an example of an electromagnetic casting apparatus to which the ingot shape measuring method according to the present invention is applied, FIG. 2 is a plan view showing the arrangement of sensors, and FIG. 3 is a perspective view of the sensor. Figure 4 shows the state of magnetic flux in the gap, Figure (a) is a state diagram when the molten metal column is far from the coil, Figure (b) is a state diagram when it is close, and Figure 5 is actual measured data of electromotive force. FIG. 6 is a flowchart showing an example of a control method. 1... Electromagnetic casting device, 2... Bottom stand, 3... Coil, 5... Molten caster 6... Molten metal column,
8... Cooling water supply device, 9... Solidified ingot part,
1]...Ingot, 12...Gap, 13...
-Sensor 14...Insulated pipe, 15...Search coil, ]6...Control device.

Claims (1)

【特許請求の範囲】 1 コイルへの通電により発生する電磁圧で金属の溶湯
柱をコイル形状に対応した形状に保持しつつ、該溶湯柱
の下部に形成される凝固鋳塊部位を冷却せしめ、該凝固
鋳塊部位を介して上記溶湯柱を冷却、凝固せしめること
によって、所定形状の鋳塊を造塊するようにした電磁鋳
造装置において、 上記コイルと溶湯柱との間の磁束密度を検出するセンサ
ーを設け、該センサーの検出信号によつて上記鋳塊の形
状を測定することを特徴とする電磁鋳造装置における鋳
塊形状の測定方法。
[Claims] 1. Cooling the solidified ingot portion formed at the bottom of the molten metal column while holding the molten metal column in a shape corresponding to the coil shape using electromagnetic pressure generated by energizing the coil, In an electromagnetic casting apparatus that forms an ingot of a predetermined shape by cooling and solidifying the molten metal column through the solidified ingot portion, detecting the magnetic flux density between the coil and the molten metal column. 1. A method for measuring the shape of an ingot in an electromagnetic casting apparatus, characterized in that a sensor is provided and the shape of the ingot is measured based on a detection signal from the sensor.
JP28831889A 1989-11-06 1989-11-06 Method for measuring cast ingot shape in electromagnetic casting device Pending JPH03151139A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28831889A JPH03151139A (en) 1989-11-06 1989-11-06 Method for measuring cast ingot shape in electromagnetic casting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28831889A JPH03151139A (en) 1989-11-06 1989-11-06 Method for measuring cast ingot shape in electromagnetic casting device

Publications (1)

Publication Number Publication Date
JPH03151139A true JPH03151139A (en) 1991-06-27

Family

ID=17728629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28831889A Pending JPH03151139A (en) 1989-11-06 1989-11-06 Method for measuring cast ingot shape in electromagnetic casting device

Country Status (1)

Country Link
JP (1) JPH03151139A (en)

Similar Documents

Publication Publication Date Title
KR810002034B1 (en) Electomagnetic casting apparatus
JP5755438B2 (en) Control device and method for metal casting machine
US4441541A (en) Method of and apparatus for determining the melt level in a continuous-casting mold
CN110014130B (en) Control method and control system for electromagnetic stirring of steel continuous casting crystallizer
JPH03151139A (en) Method for measuring cast ingot shape in electromagnetic casting device
JPH11745A (en) Device and method for continuously melting and casting metal
JPH02117750A (en) Method for detecting molten metal surface level in metal strip continuous casting
CN110794882A (en) Front box liquid level control system and use method thereof
TW201606270A (en) Eddy current mold level measuring device and mold level measuring method
JP3088917B2 (en) Continuous casting method of molten metal
JP4414609B2 (en) Method and apparatus for detecting drift in molten steel in continuous casting of steel
JP2714437B2 (en) Method and apparatus for measuring meniscus flow velocity of molten metal
JP2005014063A (en) Method and device for measuring flow velocity of molten steel
JPH02205234A (en) Method for detecting molten metal surface level in cast strip continuous casting
JPS63123555A (en) Method and apparatus for supplying powder for continuous casting
KR100466179B1 (en) Measuring method of molten steel level in electromagnetic casting
JPH03291531A (en) Calibrating method for eddy current type molten metal level gauge
JPH05138319A (en) Method and instrument for measuring molten metal surface level
KR20000040403A (en) Method for measuring level of molten metal within mold for electromagnetic successive cast process
JPH02142659A (en) Apparatus for controlling molten metal surface at the time of starting up continuous casting
JPH02303663A (en) Method for controlling molten steel surface level in mold
KR100423743B1 (en) In-mold position measuring device for electromagnetic continuous casting equipment
JPH08215813A (en) Tracking method when developing event in continuous casting
JPH07223060A (en) Method for adjusting molten metal surface level in metal continuous casting
JPH02142658A (en) Apparatus for controlling continuous casting process