JPH03150841A - Manufacture of semiconductor thin film crystal - Google Patents

Manufacture of semiconductor thin film crystal

Info

Publication number
JPH03150841A
JPH03150841A JP28981189A JP28981189A JPH03150841A JP H03150841 A JPH03150841 A JP H03150841A JP 28981189 A JP28981189 A JP 28981189A JP 28981189 A JP28981189 A JP 28981189A JP H03150841 A JPH03150841 A JP H03150841A
Authority
JP
Japan
Prior art keywords
crystal
substrate
substance
magnetic field
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28981189A
Other languages
Japanese (ja)
Inventor
Tomoo Yamamoto
知生 山本
Yasuyuki Nanishi
▲やす▼之 名西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP28981189A priority Critical patent/JPH03150841A/en
Publication of JPH03150841A publication Critical patent/JPH03150841A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To selectively obtain a thin semiconductor film of high quality only on such a part of a substrate crystal covered partly with different type substance that is not covered therewith in a low substrate temperature region by transporting excited substance onto the crystal by a dispersive magnetic field, and crystalline growing it. CONSTITUTION:The intensity of a magnetic field is reduced from a cavity resonance type plasma generating chamber 7 toward a growing chamber 1. As a result, a plasma is dispersively output. Thus, a microwave electron cyclotron resonance plasma source and a dispersive magnetic field are combined to transport ions of one or a plurality of semiconductor forming elements, or reducing or inactive element together with electrons to the surface at a predetermined acute angle with the normal line of a substrate. Thus, horizontal migration of atoms on the surface of the substrate is increased, and a crystal is selectively grown only on the substrate crystal not covered with foreign substance because of the accelerating of isolation from the surface.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、半導体薄膜の結晶成長方法に関するものであ
り、詳しくは異種物質で部分的に覆われた基板結晶上に
、覆われていない部分のみに選択的に、かつ高品質な半
導体薄膜を得る結晶成長方法に関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method for growing crystals of semiconductor thin films. The present invention relates to a crystal growth method for selectively obtaining high-quality semiconductor thin films.

(従来の技術) 従来、異種物!(マスク材料)で部分的に覆われた基板
結晶上に、選択的に超格子構造の半導体結晶を成長する
方法として、分子線エピタキシャル(MBE)法、有機
金属分子線エピタキシャル(MOMBE)法があった。
(Conventional technology) Conventionally, different materials! Molecular beam epitaxial (MBE) method and metal organic molecular beam epitaxial (MOMBE) method are available as methods for selectively growing a semiconductor crystal with a superlattice structure on a substrate crystal partially covered with (mask material). Ta.

MBE法では選択性を得るために高温を要し、再成長時
に基板上に形成された微細構造を崩壊するという問題点
があった。一方、MOMBE法ではMBE法に比べて低
温で選択性が得られるものの、成長層である有機金属ガ
スから炭素が不純物として成長膜中に混入するという問
題点があった。
The MBE method requires high temperatures to obtain selectivity, and has the problem of destroying the fine structure formed on the substrate during regrowth. On the other hand, although the MOMBE method provides selectivity at a lower temperature than the MBE method, there is a problem in that carbon is mixed into the grown film as an impurity from the organometallic gas forming the growth layer.

これらの問題点を解決するためにECRプラズマ励起M
BE (ECR−MBE)法が発明されたが、基板の法
線方向に成長種物質を入射させる従来の基板支持法では
成長温度の低温化には限界があり、また、プラズマ励起
された原子の衝撃により結晶欠陥が生じて結晶特性を劣
化させるという問題点があった。
To solve these problems, ECR plasma excitation M
The BE (ECR-MBE) method was invented, but the conventional substrate support method, in which the growth seed material is incident in the normal direction of the substrate, has a limit in lowering the growth temperature. There was a problem in that the impact caused crystal defects and deteriorated crystal properties.

上記に述べた従来方法では、低い基板温度領域において
良好な選択性が得られない、高品質の膜が得られないな
ど、選択成長を利用する際に不都合を生じていた。
The conventional methods described above have disadvantages when using selective growth, such as not being able to obtain good selectivity in a low substrate temperature region and not being able to obtain a high quality film.

そこで本発明は上記の欠点を改善するために提案された
もので、異種物質で部分的に覆われた基板結晶上に、低
基板温度領域において覆われていない部分のみに選択的
にかつ高品質な半導体薄膜を得る方法を提供することを
目的とするものである。
Therefore, the present invention was proposed in order to improve the above-mentioned drawbacks.The present invention was proposed to improve the above-mentioned drawbacks, and to selectively and high-quality only the uncovered portions in a low substrate temperature region on a substrate crystal partially covered with a foreign material. The object of the present invention is to provide a method for obtaining a semiconductor thin film.

(課題を解決するための手段) 本発明は、マイクロ波電子サイクロトロン共鳴プラズマ
源と発散磁界を組合わせることにより、1つもしくは複
数の半導体構成元素あるいは還元性もしくは不活性元素
のイオンを電子とともに基板の法線方向とある一定の鋭
角を保ちながらその表面に輸送し、そのままもしくは基
板設置室に他の半導体構成元素を含むガスを導入しつつ
、低基板温度領域において、異種物質で部分的に覆われ
た基板結晶上の覆われていない部分のみに選択的に結晶
欠陥の少ない結晶成長を行うことを最も主要な特徴とす
る。
(Means for Solving the Problems) The present invention uses a combination of a microwave electron cyclotron resonance plasma source and a divergent magnetic field to bring ions of one or more semiconductor constituent elements or reducing or inert elements into a substrate together with electrons. It is transported to the surface while maintaining a certain acute angle with the normal direction of the substrate, and is partially covered with a foreign substance in a low substrate temperature region, either as it is or while introducing a gas containing other semiconductor constituent elements into the substrate installation chamber. The main feature is that crystal growth with fewer crystal defects is selectively performed only on the uncovered portions of the substrate crystal.

(作用) 本発明によるならば、数十エレクトロンボルトの低エネ
ルギー粒子を基板表面での衝突エネルギーを抑制して基
板に輸送でき、成長膜中にダメージを生じさせず、a基
板温度領域で結晶成長できる作用を有するものである。
(Function) According to the present invention, low-energy particles of several tens of electron volts can be transported to the substrate while suppressing the collision energy on the substrate surface, and crystal growth can be achieved in the substrate temperature range A without causing damage to the grown film. It has the ability to

以上のような本発明による方法においては、基板法線方
向と成長原子の入射方向がある一定の鋭角を持つために
基板に到達した原子の基板水平方向の運動量が増加し、
マイグレーシランが増加する。ここに、マイグレーショ
ンとは、この場合基板表面に到達した原子が、結晶格子
位置に組み込まれるまで、その表面上を移動することを
いうものである。同時に、垂直方向の衝突エネルギーの
減少にともなう成長原子とマスク表面の衝突J%iI擦
力の減少により、マスク表面での原子の付着確率が減少
して脱離過程が促進される。そのため、基板結晶上には
存在する組み込まれるべき結晶格子位置がマスク上には
ないため、マスク材料をマイグレートする原子は脱離し
、その結果基板結晶上に選択的に結晶成長が起こる。ま
た、垂直方向の衝突エネルギーの減少により選択的に成
長した成長層にはダメージのない高品質な結晶が得られ
ることになる。換言すれば、気相状態にある物質にその
基板到達時の水平方向の運動量を与えると、上記で説明
したようなマイグレーションが増加し、基板表面よりの
原子の脱離を促す、その結果、マスク材料上にある原子
は表面から脱離し、マスク材料で覆われていない基板結
晶上に選択的に半導体が形成される。また、本発明によ
る方法においてはマスク表面での水平方向の運動量の増
加にともなう脱離過程の促進により選択性が向上するた
め、上記の説明にある選択的な成長が、通常の基板支持
法を用いた結晶成長法の場合選択性が生じないような低
い基板温度領域においても可能となる。
In the method according to the present invention as described above, since the normal direction of the substrate and the incident direction of the growing atoms have a certain acute angle, the momentum of the atoms reaching the substrate in the horizontal direction of the substrate increases.
Migration silan increases. In this case, migration refers to the movement of atoms that have reached the substrate surface on the surface until they are incorporated into the crystal lattice position. At the same time, the collision J%iI friction force between the growing atoms and the mask surface decreases as the vertical collision energy decreases, so that the probability of atoms adhering to the mask surface decreases and the desorption process is promoted. Therefore, since the crystal lattice positions that exist on the substrate crystal and should be incorporated are not on the mask, the atoms migrating the mask material are detached, and as a result, crystal growth occurs selectively on the substrate crystal. Furthermore, due to the reduction in collision energy in the vertical direction, high quality crystals with no damage to the selectively grown growth layer can be obtained. In other words, when a material in the gas phase is given horizontal momentum when it reaches the substrate, migration as explained above increases, promoting the detachment of atoms from the substrate surface, and as a result, the mask Atoms on the material are detached from the surface, and a semiconductor is selectively formed on the substrate crystal not covered by the mask material. In addition, in the method according to the present invention, selectivity is improved by promoting the desorption process as the horizontal momentum increases at the mask surface. This becomes possible even in a low substrate temperature range where selectivity does not occur with the crystal growth method used.

(実施例) 次に本発明の実施例について説明する。なお、実施例は
一つの例示であって、本発明の精神を逸脱しない範囲で
、種々の変更あるいは改良を行いうろことは言うまでも
ない。
(Example) Next, an example of the present invention will be described. It should be noted that the embodiments are merely illustrative, and it goes without saying that various changes and improvements may be made without departing from the spirit of the present invention.

第1図は本発明において用いられる製造装置の概略を示
す。
FIG. 1 schematically shows a manufacturing apparatus used in the present invention.

第1図aにおいてlは成長室で、内部に基板結晶2がそ
の法線方向と成長種物質の入射方向が鋭角θをなすよう
に支持されている(第1図b)。
In FIG. 1a, reference numeral 1 denotes a growth chamber, in which a substrate crystal 2 is supported so that its normal direction and the direction of incidence of the growth seed material form an acute angle θ (FIG. 1b).

3は排気ポンプへの連結口、4はガス導入口、5はプラ
ズマ遮蔽板、6は固体材料蒸発用セル、7は空洞共振形
プラズマ生成室、8はプラズマ、9は方形導波管、10
はマグネット、11は石英窓を示す、第1図Cに示すよ
うに空洞共振形プラズマ生成室7から成長室1に向かっ
て磁界の強さを減少させており、その結果プラズマが発
散して引き出されるものである。すなわち、本発明にお
いて、発散磁界はプラズマ生成室から基板結晶方向に向
かって磁界の強さが減少する磁界分布を有することを特
徴の一つとしている。
3 is a connection port to an exhaust pump, 4 is a gas inlet, 5 is a plasma shielding plate, 6 is a solid material evaporation cell, 7 is a cavity resonant plasma generation chamber, 8 is plasma, 9 is a rectangular waveguide, 10
11 is a magnet, and 11 is a quartz window. As shown in FIG. It is something that can be done. That is, one of the features of the present invention is that the divergent magnetic field has a magnetic field distribution in which the strength of the magnetic field decreases from the plasma generation chamber toward the substrate crystal direction.

次に本発明による製造方法の実施例を説明する。Next, an example of the manufacturing method according to the present invention will be described.

実施例1: 第2図aに示すように、GaAs基板21の上にホトリ
ソグラフィ技術により形成したラインアンドスペース状
の酸化シリコン製マスク材料22を設け、GaAs基板
21の上のみに選択的にGaAs単結晶23を形成した
。この実施例の場合、マイクロ波電子サイクロトロン共
鳴プラズマ源には、水素で希釈したアルシンを導入し、
固体材料蒸発用セルからガリウムを蒸発させて結晶成長
を行った。このとき、基板法線方向とガリウムおよびア
ルシンの入射方向は鋭角θである。
Example 1: As shown in FIG. 2a, a line-and-space silicon oxide mask material 22 formed by photolithography is provided on a GaAs substrate 21, and GaAs is selectively applied only on the GaAs substrate 21. A single crystal 23 was formed. In this example, arsine diluted with hydrogen is introduced into the microwave electron cyclotron resonance plasma source;
Crystal growth was performed by evaporating gallium from a solid material evaporation cell. At this time, the normal direction of the substrate and the incident direction of gallium and arsine form an acute angle θ.

実施例1の成長条件 アルシン流量: 40 scc■ Gaセル温度:  900’C マイクロ波周波数: 2.45 GH2マイクロ波電カ
ニloow 成長速度:0.5n/h 成長時間:1時間 基板温度=400℃ 酸化シリコン製マスク材料の厚さ: 0.08nライン
アンドスペースの間隔:Ln/Inガリウムおよびアル
シンの基板入射角度θ:20度図に示すように、上部か
らみて基板が露出しているところのみに結晶が成長し、
マスク材料上には成長が起こっていない。
Growth conditions for Example 1 Arsine flow rate: 40 scc Ga cell temperature: 900'C Microwave frequency: 2.45 GH2 microwave low Growth rate: 0.5 n/h Growth time: 1 hour Substrate temperature = 400°C Thickness of silicon oxide mask material: 0.08n Line and space spacing: Ln/In Substrate incident angle θ of gallium and arsine: 20 degrees As shown in the figure, only where the substrate is exposed when viewed from the top crystals grow,
No growth is occurring on the mask material.

比較例1: 第2図すは、実施例の基板支持を用いたECR−MB2
法により、実施例1で用いたものと同一の基板上に成長
させた場合である。その成長条件は次のごとくである。
Comparative Example 1: Figure 2 shows ECR-MB2 using the substrate support of the example.
This is the case where the crystals were grown on the same substrate as that used in Example 1 by the method. The growth conditions are as follows.

比較例1の成長条件 アルシン流ii : 4Q scc+wGaセル温度:
 900℃ マイクロ波周波数: 2.45 GHzマイクロ波電カ
ニ1oow 成長速度:0.5Jll/h 成長時間:1時間 基板温度:400°C 酸化シリコン製マスク材料の厚さ: 0.08nライン
アンドスペースの間隔=1n/inガリウムおよびアル
シンの基板入射角度:0度図において24はマスク材料
上に成長したMB2法による多結晶領域を示す0図から
れかるように、マスク材料上にも結晶成長が起こり、し
かも品質の劣化が甚だしい多結晶となっている。
Growth conditions for Comparative Example 1 Arsine flow ii: 4Q scc+wGa cell temperature:
900°C Microwave frequency: 2.45 GHz Microwave electric crab 1oow Growth rate: 0.5 Jll/h Growth time: 1 hour Substrate temperature: 400°C Thickness of silicon oxide mask material: 0.08n line and space Spacing = 1n/in Substrate incident angle for gallium and arsine: 0 degrees In the figure, 24 indicates the polycrystalline region grown by the MB2 method on the mask material. As can be seen from the figure, crystal growth also occurs on the mask material. Moreover, it is a polycrystalline material with severe deterioration in quality.

以上の実施例1と比較例1との比較から、本発明による
方法によれば、基板表面での原子の脱離が促されマスク
材料上への結晶堆積のない選択的な結晶成長が可能とな
ることがわかる。
From the comparison between Example 1 and Comparative Example 1 above, it can be seen that the method according to the present invention promotes the desorption of atoms on the substrate surface and enables selective crystal growth without crystal deposition on the mask material. I know what will happen.

実施例2: 第3図aにおいてGaAs基板31の上に酸化シリコン
製ラインアンドスペース状のマスク材料32を設け、基
板31の深さ0.81までエツチングしたときの断面図
を示す、この第3図aを基板として、実施例1と同様に
本発明による方法を用いてGaAsを選択的に基板材料
の露出部に成長する(第3図b)33は成長層である。
Embodiment 2: In FIG. 3a, a line-and-space mask material 32 made of silicon oxide is provided on a GaAs substrate 31 and the substrate 31 is etched to a depth of 0.81 mm. Using Figure a as a substrate, GaAs is selectively grown on exposed portions of the substrate material using the method of the present invention in the same manner as in Example 1 (Figure 3B) 33 is a growth layer.

このとき成長条件は、実施例1の場合と同じである。そ
の際、成長させる厚みを元の基板表面の位置までである
0、8Rとし、その後、酸化シリコン製ラインアンドス
ペース状のマスク材料32を取り除くことによりて、第
3図Cに示すようにGaAs基板31の中に成長層33
が埋め込まれた形が実現できた。
At this time, the growth conditions were the same as in Example 1. At that time, the thickness to be grown is set to 0.8R, which is up to the position of the original substrate surface, and then, by removing the line-and-space mask material 32 made of silicon oxide, the GaAs substrate is grown as shown in FIG. 3C. Growth layer 33 inside 31
We were able to create a shape with embedded .

上述の実施例1.実施例2では、選択的に成長させる半
導体としてGaAsとしたが例えばInP、 GaAs
基板、 InAsおよびそれらの混晶などの化合物半導
体結晶成長の場合にもGaAs成長の場合と同様の結晶
成長を行わせることができる。またマスク材料として石
英を用いたが、5rsNa* AItOsr AsN+
 5iCTails、 Ti1tなどの絶縁性薄膜を用
いても石英をマスク材料としたときと同様に基板露出部
にのみ結晶成長を行わせることができる。また、マイク
ロ波電子サイクロトロン共鳴による励起はV族元素を含
むガスに対して行ったが、たとえば■族元素を含むガス
、さらには水素、アルゴンなどの成長層内にはほとんど
残留しないものを用いることもできる。なお後者の場合
は、成長膜構成元素は従来の分子線エピタキシャル法と
同様の方法により供給することとなる。
Example 1 above. In Example 2, GaAs was used as the semiconductor to be selectively grown, but for example, InP, GaAs
The same crystal growth as in the case of GaAs growth can be performed also in the case of compound semiconductor crystal growth such as substrate, InAs, and their mixed crystals. Although quartz was used as a mask material, 5rsNa* AItOsr AsN+
Even if an insulating thin film such as 5iCTails or Ti1t is used, crystal growth can be performed only on the exposed portion of the substrate in the same way as when quartz is used as a mask material. In addition, excitation by microwave electron cyclotron resonance was performed on a gas containing group V elements, but it is also possible to use gases containing group I elements, or hydrogen, argon, etc. that hardly remain in the growth layer. You can also do it. In the latter case, the elements constituting the grown film will be supplied by a method similar to the conventional molecular beam epitaxial method.

さらに、上記実施例ではGaAs基板の上に基板材料と
同一材料のGaAsの結晶を成長させたが、基板材料と
異なる材料の結晶を成長させる、すなわちヘテロエピタ
キシャル成長させる場合にも、本発明の方法は適用する
ことができる。
Furthermore, in the above embodiment, a GaAs crystal made of the same material as the substrate material was grown on the GaAs substrate, but the method of the present invention can also be applied when growing a crystal made of a material different from the substrate material, that is, when performing heteroepitaxial growth. Can be applied.

本発明においてマイクロ波電子サイクロトロン共鳴プラ
ズマによる励起は、成長させるべき結晶の構成元素およ
び還元性もしくは不活性元素からなるグループから選ば
れた一つもしくは複数の気相物質に対して行うことを一
つの特徴としている。
In the present invention, excitation by microwave electron cyclotron resonance plasma is performed on one or more gas phase substances selected from the group consisting of constituent elements of the crystal to be grown and reducing or inert elements. It is a feature.

上記の気相物質グループとしては、トリエチルガリウム
などの有機金属ガス(構成元素)、アルシン(構成元素
)、水素(還元性)、ヘリウム(不活性)、アルゴン(
不活性)などを用いることができる。
The above gas phase substance groups include organometallic gases (constituent elements) such as triethyl gallium, arsine (constituent elements), hydrogen (reducing), helium (inert), and argon (constituent elements).
(inert) etc. can be used.

(発明の効果) 以上説明したように、本発明による方法によれば、基板
表面での原子の水平方向へのマイグレーシヨンの増加が
図れ、かつ表面からの脱離を促進するため異種物質で覆
われていない基板結晶上にのみに選択的に結晶成長がで
きる。また本発明による方法では、原子の基板への衝突
エネルギーを抑制して結晶成長が行われるため欠陥の少
ない高品質結晶が比較的低い基板温度で得られる利点が
ある。
(Effects of the Invention) As explained above, according to the method of the present invention, it is possible to increase horizontal migration of atoms on the surface of the substrate, and to promote desorption from the surface, the atoms are covered with a foreign substance. Crystal growth can be selectively performed only on uncoated substrate crystals. Further, in the method according to the present invention, since crystal growth is performed while suppressing the energy of collision of atoms with the substrate, there is an advantage that a high quality crystal with few defects can be obtained at a relatively low substrate temperature.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図aは本発明において用いられる装置の概略図、第
1図すは基板支持部の拡大図、第1図Cは発散磁界の分
布、第2図aは基板上に形成した酸化シリコン製ライン
アンドスペース状マスク上に本発明による方法でGaA
sを成長させた場合の断面図、第2図すは第2図aのと
きと同一の基板上に従来の基板支持法を用いたECR−
MBE成長させたGaAs膜の断面図、第3図aは基板
上に形成した酸化シリコン製ラインアンドスペース状マ
スクを用いて基板をエツチングした時の断面図、第3図
すは第3図aの上に本発明による方法でGaAsをエツ
チングする前の高さまで成長させたときの断面図、第3
図Cは酸化シリコン製ラインアンドスペース状マスクを
取り除いたときの断面図を示す。 l・・・・成長室 2・・・・基板結晶 ・排気ポンプへの連結口 ・ガス導入口 ・プラズマ遮蔽板 ・固体材料蒸発用セル ・プラズマ成長室 ・プラズマ ・方形導波管 ・マグネット ・石英窓 図 (0) 2・−基版殆品 8− フ゛ラズマ 9−−一方a幕展1 10−77矛ツト 11−一尿危
Figure 1a is a schematic diagram of the device used in the present invention, Figure 1 is an enlarged view of the substrate support, Figure 1C is the distribution of the divergent magnetic field, and Figure 2a is the silicon oxide film formed on the substrate. GaA is deposited on a line-and-space mask using the method according to the present invention.
Figure 2 is a cross-sectional view of the case where s is grown.
A cross-sectional view of a GaAs film grown by MBE, Figure 3a is a cross-sectional view of the substrate etched using a silicon oxide line-and-space mask formed on the substrate, and Figure 3a is a cross-sectional view of the GaAs film grown by MBE. Above is a cross-sectional view of GaAs grown to the height before etching using the method according to the present invention;
Figure C shows a cross-sectional view when the silicon oxide line-and-space mask is removed. l...Growth chamber 2...Substrate crystal, connection port to exhaust pump, gas inlet, plasma shielding plate, solid material evaporation cell, plasma growth chamber, plasma, rectangular waveguide, magnet, quartz Window drawing (0) 2.--Most of the basic editions 8--Plasma 9--On the other hand, a-curtain exhibition 1 10-77 contradictions 11-Ichiurin crisis

Claims (5)

【特許請求の範囲】[Claims] (1)気相状態にある物質からの、表面構造に特徴を持
つ基板結晶上へ半導体薄膜結晶を成長させる場合、前記
気相状態にある物質をマイクロ波電子サイクロトロン共
鳴プラズマにより励起して結晶成長を行う方法において
、前記の励起された物質を発散磁界により基板結晶上に
輸送させ結晶成長を行うことを特徴とする半導体薄膜結
晶の製造方法。
(1) When growing a semiconductor thin film crystal from a substance in a gas phase onto a substrate crystal with a characteristic surface structure, the substance in a gas phase is excited by microwave electron cyclotron resonance plasma to grow the crystal. A method for manufacturing a semiconductor thin film crystal, characterized in that the excited substance is transported onto a substrate crystal by a divergent magnetic field to grow the crystal.
(2)発散磁界はプラズマ生成室から基板結晶方向に向
って磁界の強さが減少する磁界分布を有することを特徴
とする請求項1記載の半導体薄膜結晶の製造方法。
(2) The method for manufacturing a semiconductor thin film crystal according to claim 1, wherein the diverging magnetic field has a magnetic field distribution in which the strength of the magnetic field decreases from the plasma generation chamber toward the substrate crystal direction.
(3)マイクロ波電子サイクロトロン共鳴プラズマによ
る励起は、成長されるべき結晶の構成元素及び還元性も
しくは不活性元素からなるグループから選ばれた1つも
しくは複数の気相物質に対して行うことを特徴とする請
求項1記載の半導体薄膜結晶の製造方法。
(3) Excitation by microwave electron cyclotron resonance plasma is performed on one or more gas phase substances selected from the group consisting of constituent elements of the crystal to be grown and reducing or inert elements. 2. The method for manufacturing a semiconductor thin film crystal according to claim 1.
(4)表面構造に特徴を持つ基板結晶として、成長させ
る半導体物質と異なる物質で表面の一部を覆った構造を
もつ基板結晶上への成長を行うことを特徴とする請求項
1記載の半導体薄膜結晶の製造方法。
(4) The semiconductor according to claim 1, wherein the substrate crystal having a characteristic surface structure is grown on a substrate crystal whose surface is partially covered with a substance different from the semiconductor substance to be grown. Method for manufacturing thin film crystals.
(5)前記気相状態にある物質の基板結晶への入射方向
と基板の法線方向がある一定の鋭角(90度未満の角)
を有するような基板支持法を用いることを特徴とする請
求項1記載の半導体薄膜結晶の製造方法。
(5) A certain acute angle (angle less than 90 degrees) between the direction of incidence of the substance in the gaseous state on the substrate crystal and the normal direction of the substrate.
2. The method of manufacturing a semiconductor thin film crystal according to claim 1, wherein a substrate supporting method having the following steps is used.
JP28981189A 1989-11-07 1989-11-07 Manufacture of semiconductor thin film crystal Pending JPH03150841A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28981189A JPH03150841A (en) 1989-11-07 1989-11-07 Manufacture of semiconductor thin film crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28981189A JPH03150841A (en) 1989-11-07 1989-11-07 Manufacture of semiconductor thin film crystal

Publications (1)

Publication Number Publication Date
JPH03150841A true JPH03150841A (en) 1991-06-27

Family

ID=17748076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28981189A Pending JPH03150841A (en) 1989-11-07 1989-11-07 Manufacture of semiconductor thin film crystal

Country Status (1)

Country Link
JP (1) JPH03150841A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8783906B2 (en) 2010-04-16 2014-07-22 Evolucia, Inc. Solid state outdoor overhead lamp assembly

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8783906B2 (en) 2010-04-16 2014-07-22 Evolucia, Inc. Solid state outdoor overhead lamp assembly

Similar Documents

Publication Publication Date Title
KR960015609B1 (en) Plasma operation apparatus
JP3093904B2 (en) Method for growing compound semiconductor crystal
US6596555B2 (en) Forming of quantum dots
Suemune et al. Incidence angle effect of a hydrogen plasma beam for the cleaning of semiconductor surfaces
JPH0652716B2 (en) Semiconductor crystalline film manufacturing equipment
Jiang et al. Approach of selective nucleation and epitaxy of diamond films on Si (100)
US5904553A (en) Fabrication method for a gate quality oxide-compound semiconductor structure
JPH03150841A (en) Manufacture of semiconductor thin film crystal
JPH03255622A (en) Method and apparatus for doping semiconductor
JPS63237517A (en) Selective formation of iii-v compound film
Yamamoto et al. Selective area growth of GaAs by electron-cyclotron resonance plasma-excited molecular-beam epitaxy (ECR-MBE)
JP3235805B2 (en) Semiconductor crystal growth method
JPS6348817A (en) Epitaxial growth method
JPS62172714A (en) Manufacture of compound semiconductor thin film
JPH025513A (en) Manufacture of semiconductor thin film
JPH0641400B2 (en) Method for producing silicon carbide single crystal
JPH026386A (en) Method for forming compound semiconductor crystal thin film
JP3240021B2 (en) Method for growing compound semiconductor crystal
JP2686699B2 (en) Method for forming GaN mask for selective growth
Yamamoto et al. Desorption process of Ga atoms from the mask surface in selective area growth of GaAs by electron-cyclotron-resonance plasma-excited molecular-beam epitaxy (ECR-MBE)
JPH03197385A (en) Preparation of substrate for depositing diamond thin film
JPS62229823A (en) Method of growing added compound semiconductor crystal
JPH0287682A (en) Semiconductor radiation detector and manufacture thereof
JPH04199507A (en) Solid phase diffusion of n-type impurity to iii-v compound semiconductor
JPH0777202B2 (en) Plasma processing device