JPH03149361A - Swash plate structure of variable displacement swash plate type compressor - Google Patents

Swash plate structure of variable displacement swash plate type compressor

Info

Publication number
JPH03149361A
JPH03149361A JP1286626A JP28662689A JPH03149361A JP H03149361 A JPH03149361 A JP H03149361A JP 1286626 A JP1286626 A JP 1286626A JP 28662689 A JP28662689 A JP 28662689A JP H03149361 A JPH03149361 A JP H03149361A
Authority
JP
Japan
Prior art keywords
swash plate
piston
shoe
curvature
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1286626A
Other languages
Japanese (ja)
Other versions
JP2762623B2 (en
Inventor
Hisao Kobayashi
久雄 小林
Masahiro Kawaguchi
真広 川口
Yoshitami Kondo
芳民 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyoda Automatic Loom Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Automatic Loom Works Ltd filed Critical Toyoda Automatic Loom Works Ltd
Priority to JP1286626A priority Critical patent/JP2762623B2/en
Publication of JPH03149361A publication Critical patent/JPH03149361A/en
Application granted granted Critical
Publication of JP2762623B2 publication Critical patent/JP2762623B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

PURPOSE:To convert rotational motion of a swash plate into reciprocation so smoothly by forming an outer diameter of the swash plate into an ellipse setting the axial direction of tilt rocking to the breadth, and setting this breadth down to the sum of a distance between a turning axis and a center of shoe curvature and a radius of shoe curvature. CONSTITUTION:In a variable displacement swash plate type compressor, when a turning shaft 7 is rotated, a double-ended piston 6 reciprocates in both cylinder bores 5a, 5b in response to a tilt angle of a swash plate 13, whereby a refrigerant gas is compressed. This swash plate 13 is formed into an ellipse whose outer diameter sets the axial direction of tilt rocking down to breadth, and since this breadth is formed into length almost equivalent to the sum of a distance between an axis of the turning shaft 7 and a center of curvature of a shoe 15 and a radium of curvature of this shoe 15, even if a spherical recess 6a formed in the piston 6 is made deeper, there is no mutual interference when the piston 6 is moved and set up in a neutral position where the swash plate 13 and the piston 6 are liable to interfere with each other. Thus rotary motion of the swash plate can be converted into reciprocation of the piston so stably and smoothly.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は両頭ピストンを備えた可変容量型斜板式圧縮機
の斜板構造に間するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a swash plate structure of a variable displacement swash plate compressor equipped with a double-ended piston.

[従来の技術] 従来この種の可変容量型斜板式圧縮機としては、例えば
第5図に示ず構成のものが特開平−138382号公報
に開示されている。この圧msではシリンダブロック5
1に形成された複数のシリンダボア52内に両頭ピスト
ン53が収容されると共に、シリンダボア52と平行な
軸線上に回転軸54が配置され、その回転軸54にはス
ライダ(ガイドプッシュ)55が摺動可能に嵌挿されて
いる。スライダ55の球面部55aには周縁部がシュー
56を介して両頭ピストン53に係合される斜板57が
回動可能に嵌合され、斜板57の前面に形成された連結
部57aが回転III 54のフIフント軸部54aに
対してそのカイト孔54bに嵌挿されるガイドピン58
を介して連結され、斜板57がスライダ55の摺動に伴
って揺動可能となっており、その揺動中心Cが斜板57
の周縁側に設定されている。これによりピストン53の
一側のシリンダボア52における圧縮行程上死点が定位
置に規定され、斜板傾角が両側に近い小容量側のL1縮
作用領域でも実質的な圧縮及び吐出か行われる。
[Prior Art] As a conventional variable displacement swash plate compressor of this type, for example, one having a configuration not shown in FIG. 5 is disclosed in Japanese Patent Application Laid-Open No. 138382. At this pressure ms, cylinder block 5
A double-headed piston 53 is housed in a plurality of cylinder bores 52 formed in the cylinder bore 1, and a rotating shaft 54 is arranged on an axis parallel to the cylinder bore 52, and a slider (guide push) 55 slides on the rotating shaft 54. It can be inserted easily. A swash plate 57 whose peripheral edge is engaged with the double-ended piston 53 via a shoe 56 is rotatably fitted into the spherical portion 55a of the slider 55, and a connecting portion 57a formed on the front surface of the swash plate 57 rotates. A guide pin 58 that is inserted into the kite hole 54b of the shaft portion 54a of the III 54.
The swash plate 57 can swing as the slider 55 slides, and the center of swing C is connected to the swash plate 57.
It is set on the periphery side. As a result, the top dead center of the compression stroke in the cylinder bore 52 on one side of the piston 53 is defined at a fixed position, and substantial compression and discharge are performed even in the L1 compression action region on the small capacity side where the swash plate inclination angle is close to both sides.

斜板傾角は吐出圧領域又は吸入圧領域に切換え接続さ1
1、る制御圧室59の容積を変える摺動制御体60及び
斜板57を介して、前後面シリンダボア52内の圧力に
よる斜板揺動力と制御圧室59内の圧力との対抗により
制御されるようになっており一摺動制御体60は回転軸
54上に摺動可能に支持されている。この圧力対抗によ
り揺動する斜板57が回転軸54に付ijする作用力は
斜板57間のカイトピン58を介して回転軸54側のガ
イド孔54bに受は止められ、カイトピン58とカイト
孔54bとのカイト関係により斜板傾角が制御されるよ
うになっている。
The swash plate inclination is switched and connected to the discharge pressure area or suction pressure area.
1. Controlled by the opposition between the swash plate rocking force caused by the pressure in the front and rear cylinder bores 52 and the pressure in the control pressure chamber 59 via the sliding control body 60 that changes the volume of the control pressure chamber 59 and the swash plate 57. The sliding control body 60 is slidably supported on the rotating shaft 54. The acting force exerted on the rotating shaft 54 by the swash plate 57, which oscillates due to the pressure opposition, is received by the guide hole 54b on the rotating shaft 54 side via the kite pin 58 between the swash plates 57, and the kite pin 58 and the kite hole The swash plate inclination angle is controlled by the kite relationship with 54b.

又、摺動制御休60の移動に対応I−で斜板57を回転
軸54に沿って移動可能かつ回転可能に支持する構成と
して、斜板57を回転軸54に治って摺動可能なスライ
ダ55にピンで連結支持する構成もある。
In addition, the swash plate 57 is movably and rotatably supported along the rotating shaft 54 by the I- corresponding to the movement of the slide control suspension 60, and the swash plate 57 is supported by a slider that can be slid on the rotating shaft 54. There is also a configuration in which it is connected and supported to 55 with a pin.

[発明か解決しようとする課題] この種の可変容量型斜板式圧縮機では斜板57の揺動中
心を両頭ピストン53を収容するシリンダボア52内に
設定する必要かあり、かつ斜板傾角が変化してもビス1
−ン53とシュー56間及びシュー56と斜板57間の
隙間が変化しないようにするため、シュー56は斜板5
7の厚さ方向の中央に中心を持つ球の一部を構成する必
要がある。
[Problem to be solved by the invention] In this type of variable capacity swash plate compressor, it is necessary to set the center of swing of the swash plate 57 within the cylinder bore 52 that accommodates the double-ended piston 53, and the swash plate inclination angle changes. Even if screw 1
- In order to prevent the gaps between the horn 53 and the shoe 56 and between the shoe 56 and the swash plate 57 from changing, the shoe 56 is attached to the swash plate 56.
It is necessary to form a part of a sphere whose center is at the center in the thickness direction of 7.

このため−斜板傾角が一定の固定容量型斜板式圧縮機と
比較してビスI〜ン53に形成される球面四部53aが
浅くなってシューう6どの引っ掛かりが小さくなり、ル
ffi機の運転時、特に圧縮容量か大きい時に、シュー
56と斜板57との摺動抵抗等によりシュー56が迫り
出し、第6図に示すようにピストン53と斜板57間に
楔を打ったようにシュー56が食い込むようになる。そ
の結果、斜板57の回転運動をビスl−ンの往復運動に
円滑に変換できなくなり、動力消費の増大や最悪の場合
は運転不能に至る虞がある。
For this reason, compared to a fixed capacity swash plate compressor with a constant swash plate inclination angle, the four spherical parts 53a formed on the screw I~n 53 are shallower, and the catch in the shoe 6 is reduced, making it easier to operate the LeFFI machine. When the compression capacity is large, the shoe 56 protrudes due to the sliding resistance between the shoe 56 and the swash plate 57, and the shoe 56 pushes out as shown in FIG. 56 starts to bite. As a result, the rotational motion of the swash plate 57 cannot be smoothly converted into the reciprocating motion of the screws, leading to an increase in power consumption or, in the worst case, to the inability to operate.

ピストン53の球面四部53aを深く形成することによ
り、シュー56の迫り出しによる前記不都合を解消する
ことが可能であるが、従来はこのことか非常に困難であ
った。なぜならば、ピストン53の球面四部53aを深
く形成するためには、一対のシュー56が斜板57の厚
さ方向の中央に中心を持つ球の一部を構成しなければな
らないという制約があるため、シュー56が収容される
ピストン53の収容部53I)の第7図における長さA
を小さくしなければならない、斜板57の厚さを薄くす
れば長さAを小さくできるが、斜板57の強度か弱くな
り耐久性、信頼性が悪くなるという問題が生じる。
By forming the four spherical parts 53a of the piston 53 deeply, it is possible to eliminate the above-mentioned disadvantage caused by the protruding shoe 56, but this has been extremely difficult in the past. This is because, in order to form the four spherical parts 53a of the piston 53 deeply, there is a restriction that the pair of shoes 56 must form part of a sphere whose center is at the center of the swash plate 57 in the thickness direction. , the length A in FIG. 7 of the accommodation portion 53I) of the piston 53 in which the shoe 56 is accommodated.
Although the length A can be reduced by reducing the thickness of the swash plate 57, the strength of the swash plate 57 is weakened, resulting in poor durability and reliability.

又、斜板57の厚さを変更せずに長さAを小さくすると
、大容量時〈斜板傾角が大の時)において斜板57とピ
ストン53どが干渉するという問題があった。そこで斜
板57とピストン53とが干渉する原因を究明した結果
、次のことが判明1〜な。
Further, if the length A of the swash plate 57 is reduced without changing the thickness, there is a problem that the swash plate 57 and the piston 53 interfere with each other when the capacity is large (when the swash plate inclination angle is large). As a result of investigating the cause of the interference between the swash plate 57 and the piston 53, the following findings were found.

固定容量型斜板式圧縮機の斜板57は第8図に示すよう
に、回転軸に嵌合される嵌合孔57cが中心部に形成さ
れると共に、嵌合孔57cの軸心と平行な外周面を有す
るボス部57bに対して所定角度をなす状態で斜板本体
か一体に形成されている。そして、斜板57の外周面を
加=[する際には、ボス部57bを把持した状態で軸り
を中心に全体を回転させて切削加工する。従って、斜板
57の外形は嵌合孔57cの軸心方向から見た場合円ど
なり、斜板本体の軸心方向から見た場合前記円の直径を
短径とした楕円となる。
As shown in FIG. 8, the swash plate 57 of the fixed capacity swash plate compressor has a fitting hole 57c formed in the center to fit into the rotating shaft, and a hole parallel to the axis of the fitting hole 57c. The swash plate body is integrally formed at a predetermined angle with respect to a boss portion 57b having an outer circumferential surface. When machining the outer circumferential surface of the swash plate 57, cutting is performed by rotating the entire body around the axis while holding the boss portion 57b. Therefore, the outer shape of the swash plate 57 is a circle when viewed from the axial direction of the fitting hole 57c, and an ellipse whose short axis is the diameter of the circle when viewed from the axial direction of the swash plate body.

一方、容量可変型斜板式圧縮機の場合は、斜板57が回
転軸54どなず角度は一定ではないため斜板57の外周
面を加工する際には、第9しに示すように斜板57の側
面に対して直角に突設されたボス部57bを把持した状
態で軸りを中心に全体を回転させて切削加工する。従っ
て、斜板57の外形は斜板本体の軸心方向から見た場合
円となる。そして、この形状の斜板57を形成する場合
、第5図に示すように最大容量においてピストン53が
リヤ側の圧縮行程上死点に配置された状態で、斜板57
がピストン53の収容部53bと干渉しないように〜か
つ斜板57とシュー56とが十分係合するように斜板5
7の直径が設定される。この状態で斜板57を回転軸5
4の軸線方向から見−た外形は、第10図に示ずように
揺動軸方向を長〜径とする楕円となる。そして、斜板5
7の回転に伴うシュー56の移動軌跡は鎖線で示すよう
にほぼ軸中心0を中心とする円となる。従って、第5図
の状態から斜板57が90度あるいは270度回転して
ピストン53が中間位置に移動した状態になると、第1
0図の斜線部分がピストン53の収容部53b内にはみ
出しtピストン53と干渉し易くなる。この状態を上か
ら見た場合第11図に示すように、斜板57はピストン
53の長平方向に対して傾いた状態となるので、斜板5
7はピストン53に対して第12図の斜線部分で干渉し
易くなる。前記斜板57のピストン53に対する傾きは
斜板傾角と対応し、最大容量時に最大となり容量の減少
に伴い小さくなる。収容部53bの深さを大きくすれば
、斜板57と収容部53bとの干渉を回避することが可
能となるが、ピストン53の強度が低下する。従って、
従来の強度を確保したまま収容部53bの長さAを小さ
くすることは難しい。
On the other hand, in the case of a variable capacity swash plate type compressor, since the angle of the swash plate 57 is not constant due to the rotating shaft 54, when machining the outer peripheral surface of the swash plate 57, it is necessary to While gripping the boss portion 57b that protrudes perpendicularly to the side surface of the plate 57, cutting is performed by rotating the entire plate 57 around its axis. Therefore, the outer shape of the swash plate 57 is a circle when viewed from the axial direction of the swash plate main body. When forming the swash plate 57 in this shape, as shown in FIG. 5, the swash plate 57 is
The swash plate 5 is arranged so that the swash plate 57 does not interfere with the accommodation portion 53b of the piston 53 and the swash plate 57 and the shoes 56 are sufficiently engaged.
A diameter of 7 is set. In this state, the swash plate 57 is
4, the outer shape as seen from the axial direction is an ellipse whose length and diameter are in the direction of the swing axis, as shown in FIG. And swash plate 5
The locus of movement of the shoe 56 as the shoe 7 rotates becomes a circle centered approximately at the axis center 0, as shown by the chain line. Therefore, when the swash plate 57 rotates 90 degrees or 270 degrees from the state shown in FIG. 5 and the piston 53 moves to the intermediate position, the first
The shaded portion in Figure 0 protrudes into the housing portion 53b of the piston 53 and tends to interfere with the piston 53. When this state is viewed from above, as shown in FIG. 11, the swash plate 57 is inclined with respect to the longitudinal direction of the piston 53.
7 tends to interfere with the piston 53 in the shaded area in FIG. The inclination of the swash plate 57 with respect to the piston 53 corresponds to the inclination angle of the swash plate, and is maximum at the maximum capacity and becomes smaller as the capacity decreases. If the depth of the housing portion 53b is increased, interference between the swash plate 57 and the housing portion 53b can be avoided, but the strength of the piston 53 will be reduced. Therefore,
It is difficult to reduce the length A of the accommodating portion 53b while maintaining the conventional strength.

本発明は前記の問題点に鑑みてなされたものであって、
その目的はシューを支承するためピストンに形成される
球面四部を深くすることができ、斜板の回転運動が安定
した状態で円滑にピストンの往復運動に変換されて動力
消費の低減及び信頼性の向上を図ることができる可変容
量型斜板式圧sIlの斜板梢造を提供することにある。
The present invention has been made in view of the above problems, and includes:
The purpose of this is to deepen the four spherical parts formed on the piston to support the shoes, and the rotating motion of the swash plate is smoothly converted into reciprocating motion of the piston in a stable state, reducing power consumption and improving reliability. It is an object of the present invention to provide a swash plate structure of a variable capacity type swash plate type pressure sIl that can improve the pressure.

[課題を解決ずるための手段] 前記の目的を達成するため本発明においては、両頭ピス
トンを往復動可能に収容するシリンダブロック内に回転
軸を回転可能に収容支持すると共に、該回転軸には両頭
ピストンを往復駆動する斜板を相対回転不能かつその周
縁側を中心として前後に揺動可能に支持し、その揺動中
心位置をリヤ側シリンダボア寄りに設定すると共に、回
転軸の回転に伴うmyth中心の回転領域上に前記両頭
ピストンの往復動領域を設定し、前記斜板の傾角変更に
よりピストンストロークを変更して容量を調節できるよ
うにした可変容量型斜板式圧amにおいて、斜板の外形
を斜板揺動の軸方向を短径とする楕円とし、短径を回転
軸の軸線とシューの曲率中心との距離と、シューの曲率
半径との和とほぼ等しい長さに、長径を最大容量時にピ
ストンが圧縮行程上死点位置に配置された状態で回転軸
とシューの曲率中心を含む断面において斜板の外周が当
該ピストンのシューの外側にはみ出さない長さにそれぞ
れ設定した。
[Means for Solving the Problems] In order to achieve the above object, in the present invention, a rotary shaft is rotatably housed and supported in a cylinder block that accommodates a double-ended piston so as to be able to reciprocate, and the rotary shaft has a A swash plate that reciprocates a double-headed piston is supported so that it cannot rotate relatively but can swing back and forth around its peripheral edge.The center of the swing is set near the rear cylinder bore, and the myth In a variable capacity swash plate type pressure am, in which a reciprocating area of the double-headed piston is set above a central rotation area, and the displacement can be adjusted by changing the piston stroke by changing the inclination of the swash plate, the outer shape of the swash plate is is an ellipse whose minor axis is in the axial direction of the swash plate, the minor axis is approximately equal to the sum of the distance between the axis of the rotating shaft and the center of curvature of the shoe, and the radius of curvature of the shoe, and the major axis is the maximum. The length was set so that the outer periphery of the swash plate would not protrude outside the shoe of the piston in a cross section including the rotating shaft and the center of curvature of the shoe when the piston was placed at the top dead center position of the compression stroke during displacement.

[作用] 前記のように梢成された可変容量型斜板式圧縮機におい
て回転軸が回転されると−斜板の傾角に 9 一 応じて両頭ピストンが往復動されて冷媒ガスの圧縮が行
われる。斜板はその外形が斜板揺動の軸方向を短径とす
る楕円形に形成され、その短径が回転軸の軸線とシュー
の曲率中心との距離と、シューの曲率半径との和とほぼ
等しい長さに形成されているので、ピストンに形成され
た球面四部を深くしても、斜板とピストンとが干渉し易
い中立位置にピストンが移動配置された際に−斜板とピ
ストンとは干渉しない。
[Operation] When the rotary shaft of the variable capacity swash plate compressor constructed as above is rotated, the double-headed piston is reciprocated in accordance with the inclination angle of the swash plate, thereby compressing the refrigerant gas. . The swash plate has an elliptical outer shape with its short axis in the axial direction of the swash plate's swing, and its short axis is the sum of the distance between the axis of the rotating shaft and the center of curvature of the shoe, and the radius of curvature of the shoe. Since they are formed to have approximately equal lengths, even if the four spherical surfaces formed on the piston are deepened, when the piston is moved to a neutral position where the swash plate and piston are likely to interfere, the swash plate and piston will does not interfere.

[実施例] 以下、本発明を具体化したー実施例を第1〜4図に従っ
て説明する。
[Examples] Examples that embody the present invention will be described below with reference to FIGS. 1 to 4.

第2.3図に示すように、シリンダブロック1は前後一
対のプロ・シフ体1a、1bを互いに接合して構成され
、その内部中央には斜板室2が形成されると共に−前後
両端面にはフロントハウジング3及びリヤハウジング4
が接合固定されている。
As shown in Fig. 2.3, the cylinder block 1 is constructed by joining a pair of front and rear pro-shift bodies 1a and 1b to each other, and a swash plate chamber 2 is formed in the center of the interior thereof. are front housing 3 and rear housing 4
is bonded and fixed.

シリンダブロック1には斜板室2のフロント側及びリヤ
側の対向する位置に複数組のシリンダボア5a、5b−
が形成され、両シリンダボア5a、5b内には両頭ピス
トン6か往復動可能に収容されているアシリンタブロッ
ク1にはフロント軸部7aと、リヤ軸部7bと、両者の
間に形成された偏平な連結部7Cとからなる回転軸7か
シリンダボア5a、5bと平行に延びるように回転可能
に支持され、連結部7Cにはガイド孔7dが形成されて
いる。回転軸7はフロント軸部7aがラジアルベアリン
グ8を介してフロント側のブロック体1aに支持され、
リヤ軸部7bがスライダ10に摺動可能に嵌挿された状
態で配設されている。スライダ10はリヤ側のブロック
体1bに摺動可能に嵌挿された筒状の移動体30に対し
て、ラジアルベアリング9a及びスラストベアリング9
bを介して回転自在に支持されている。
The cylinder block 1 has a plurality of pairs of cylinder bores 5a, 5b, located at opposite positions on the front side and rear side of the swash plate chamber 2.
The cylinder block 1 has a front shaft portion 7a, a rear shaft portion 7b, and a flat shaft portion formed between the two cylinder bores 5a and 5b. A rotating shaft 7 consisting of a connecting portion 7C is rotatably supported so as to extend parallel to the cylinder bores 5a and 5b, and a guide hole 7d is formed in the connecting portion 7C. The rotating shaft 7 has a front shaft portion 7a supported by a front block body 1a via a radial bearing 8,
The rear shaft portion 7b is slidably inserted into the slider 10. The slider 10 is connected to a radial bearing 9a and a thrust bearing 9 with respect to a cylindrical moving body 30 that is slidably fitted into the rear block body 1b.
It is rotatably supported via b.

スライダ10の前端両側には軸ピン11がリヤ軸部7b
と直交する状態で突設され、軸ピン11を介して斜板支
持体12が前記斜板室2内においてスライダ10に対し
て傾動可能に支持されている。斜板支持体12の外周後
縁には斜板13か嵌合固定され、前側には嵌合孔12b
を有する一対の連結部12aか突設されている。両連結
部12aは前記回転軸7の連結部7Cを挟持する状態に
配置され、嵌合孔12 bを貫通ずるカイトピン1−1
1がカイト孔7dに嵌会する状態で挿通されている。
A shaft pin 11 is attached to the rear shaft portion 7b on both sides of the front end of the slider 10.
A swash plate support 12 is supported in the swash plate chamber 2 via a shaft pin 11 so as to be tiltable with respect to the slider 10 . A swash plate 13 is fitted and fixed on the rear edge of the outer periphery of the swash plate support 12, and a fitting hole 12b is provided on the front side.
A pair of connecting portions 12a are provided in a protruding manner. Both connecting portions 12a are arranged to sandwich the connecting portion 7C of the rotating shaft 7, and the kite pin 1-1 is inserted through the fitting hole 12b.
1 is inserted into the kite hole 7d so as to fit therein.

これにより回転軸7の回転か斜板支持体12を介して斜
板13に伝達されると共に、カイトピン14とカイト孔
7dとの係合により、スライダ10の軸線方向への摺動
変位に応じて斜板13か揺動可能となり、この揺動中心
Cが斜板13の周縁側に設定されている。そして、前記
各両頭ピストン6は前記揺動中心Cを中心とした球の一
部となる形状に形成されると共に両頭ビスト・ン6の収
容部6bに形成された球面凹部6aと係合状態に保持さ
れるシュー15を介して前記斜板13の周縁部に係合さ
れ、斜板13の回転に伴って前後J\往復摺動されるよ
うになっている。シュー15の曲率半径を従来と同じに
して球面凹部6aの深さを深くするため、収容部61)
の長さAは従来より小さく形成されている。
As a result, the rotation of the rotating shaft 7 is transmitted to the swash plate 13 via the swash plate support 12, and due to the engagement between the kite pin 14 and the kite hole 7d, the rotation is transmitted to the swash plate 13 according to the sliding displacement of the slider 10 in the axial direction. The swash plate 13 can swing, and the center of swing C is set on the periphery side of the swash plate 13. Each of the double-headed pistons 6 is formed into a shape that becomes a part of a sphere centered on the swing center C, and is engaged with a spherical recess 6a formed in the housing portion 6b of the double-headed piston 6. It is engaged with the peripheral edge of the swash plate 13 via a shoe 15 that is held, and is slid back and forth back and forth as the swash plate 13 rotates. In order to keep the radius of curvature of the shoe 15 the same as the conventional one and increase the depth of the spherical recess 6a, a housing part 61) is used.
The length A is smaller than the conventional one.

第1図に示すように斜板13は斜板揺動の軸方向すなわ
ち、軸ピン11に支持される側を短径とする楕円となる
ように形成されている。短径の長さは回転軸7の軸線と
シ:L−15の曲率中心との距離より若干長く形成され
、長径は斜板13が最大容量時の斜板角度に配置された
状態で回転軸方向から見た外形か円形となり、かつピス
トン6が第2図に示ず圧縮行程上死点位置に配置された
状態で回転軸7とシュー15の曲率中心すなわち斜板1
3の揺動中心Cを含む断面において、斜板13の外周か
当該ビス1〜ン6のシュー15の外側にはみ出さない長
さに形成されている。すなわち、斜板13は従来、円形
に形成されていた斜板13の直径を長径として軸ピン1
1に支持される側の径を短くして短径とした楕円に形成
されている。
As shown in FIG. 1, the swash plate 13 is formed into an ellipse whose short axis is in the axial direction of the swash plate swinging, that is, the side supported by the shaft pin 11. The length of the minor axis is slightly longer than the distance between the axis of the rotating shaft 7 and the center of curvature of the shaft L-15, and the major axis is the length of the rotating shaft when the swash plate 13 is arranged at the swash plate angle at maximum capacity. The outer shape when viewed from the direction is circular, and the center of curvature of the rotating shaft 7 and the shoe 15, that is, the swash plate 1, with the piston 6 placed at the top dead center position of the compression stroke (not shown in FIG. 2).
In the cross section including the swing center C of No. 3, the outer periphery of the swash plate 13 is formed to a length that does not protrude outside the shoes 15 of the screws 1 to 6. That is, the swash plate 13 has been conventionally formed into a circular shape, but the diameter of the swash plate 13 is the long axis, and the shaft pin 1 is
It is formed into an ellipse with the diameter of the side supported by 1 being shortened and the minor axis.

シリンダブロック1と前後面ハウジング3,4との間に
はサイドプレート16.17及び弁板18゜19が介在
されている。前後面ハウジング3.4内には吸入室20
.21及び吐出室22.23か形成され、各吐出室22
.23は図示しない吐出口を介i−て外部冷却回路に連
結されている。フロリヤ側吸入室20は吸入通路24を
介して斜板室2に連通ずるとともに、フロント側サイド
プレート16の吸入孔16a及び吸入弁18 a、を介
してフロント側圧縮室I) fに接続されている。フロ
ント側吐出室22はフロン1一側サイドプレート16の
吐出孔16b及び吐出弁25を介してフロント側吐出室
ト)fに接続されている。リヤ側吸入室21は吸入通路
26を介して斜板室2に連通ずるとともに、サイドプレ
ー1−1 フーi二の吸入孔1 フ 21及び吸入弁1
9aを介してリヤ側圧縮室Prに接続されている。リヤ
側吐出室23はサイドプレートコフ上の吐出孔17I)
及び吐出弁27を介1〜てリヤ側圧縮室Prに接続され
ている。
Side plates 16, 17 and valve plates 18 and 19 are interposed between the cylinder block 1 and the front and rear housings 3, 4. There is a suction chamber 20 inside the front and rear housings 3.4.
.. 21 and discharge chambers 22 and 23 are formed, each discharge chamber 22
.. 23 is connected to an external cooling circuit via a discharge port (not shown). The floral side suction chamber 20 communicates with the swash plate chamber 2 via a suction passage 24, and is also connected to the front side compression chamber I) through a suction hole 16a of the front side plate 16 and a suction valve 18a. . The front side discharge chamber 22 is connected to the front side discharge chamber (t)f via the discharge hole 16b of the side plate 16 on one side of the freon 1 and the discharge valve 25. The rear side suction chamber 21 communicates with the swash plate chamber 2 via the suction passage 26, and also includes the side play 1-1, the suction hole 1 of the hood 21, and the suction valve 1.
It is connected to the rear side compression chamber Pr via 9a. The rear side discharge chamber 23 has a discharge hole 17I on the side plate cuff)
and is connected to the rear compression chamber Pr via the discharge valve 27.

リヤ側吸入室21の後側には該吸入室21と連通ずる制
御圧室28が配設され、制御圧室28内には制御体29
が前後方向へスライド可能に嵌入されている。制御体2
9の前端はスライダ]0を支持する前記移動体30の後
部に当接し、制御圧室28の圧力変化に応じてスライダ
10か制御体2つ及び移動体30を介して軸方向に移動
可能になっている。
A control pressure chamber 28 communicating with the suction chamber 21 is disposed on the rear side of the rear suction chamber 21, and a control body 29 is disposed within the control pressure chamber 28.
is inserted so that it can slide forward and backward. Control body 2
The front end of the slider 9 comes into contact with the rear part of the movable body 30 that supports the slider 0, and is movable in the axial direction via the slider 10 or the two control bodies and the movable body 30 according to pressure changes in the control pressure chamber 28. It has become.

制御圧室28、リヤ側吐出室23、斜板室2及び外部冷
媒ガス回路(図示せず)と斜板室2とを接続する吸入管
路(図示せず)は図示しない容1制御弁機構に接続され
ており、制御体29の前後の変位が吸入管路内の吸入圧
の変動により制御されるようになっている。すなわち、
吸入管路内の吸入圧に基く容量制御弁機構内の弁の開閉
により制御圧室28が吐出圧相当の高圧と吸入圧相当の
低圧との間で変更され、斜板13が第2図に示す傾角最
大位置と図示しない頭角最小位置との間でその傾角が変
わって圧縮容量が調節されるようになっている。
The control pressure chamber 28, the rear discharge chamber 23, the swash plate chamber 2, and the suction pipe (not shown) that connects the swash plate chamber 2 with an external refrigerant gas circuit (not shown) are connected to a control valve mechanism (not shown). The longitudinal displacement of the control body 29 is controlled by fluctuations in the suction pressure within the suction pipe. That is,
By opening and closing the valve in the capacity control valve mechanism based on the suction pressure in the suction pipe, the control pressure chamber 28 is changed between a high pressure equivalent to the discharge pressure and a low pressure equivalent to the suction pressure, and the swash plate 13 is moved to the position shown in FIG. The compression capacity is adjusted by changing the inclination between the maximum inclination position shown and the minimum head angle position not shown.

次に、前記のように構成された斜板式可変容量圧縮機の
作用を説明する。
Next, the operation of the swash plate type variable capacity compressor configured as described above will be explained.

さて一回転軸7の回転により斜板13が回転されると、
その斜板13の傾角に応じて両頭ピストン6が往復動さ
れ、冷媒ガスが吸入室20.21 からシリンダボア5
a、5bの圧縮室Pf、Pr内に吸入され、各圧縮室P
f、Prで圧縮された後に吐出室22.23内へ吐出さ
れる。両頭ピストン6には斜板傾角が最大に設定された
最大容量時において、第2図に示すようにピストン6に
よるリヤ側での圧縮動作が完了する直前、あるいはフロ
ント側での圧縮動作が完了する直前にシリンダボア5a
、5b内の圧力により最も大きな力が作用するので、斜
板13はその反力と釣り合う力でシュー15を介してピ
ストン6を押す必要がある。同図に示すように斜板13
の外周縁がシュー15の外端近くまで延出しているので
、斜板13とシュー15の接触面積が大きくなって斜板
13の押圧力がシュー15に円滑に伝達される。
Now, when the swash plate 13 is rotated by one rotation of the rotation shaft 7,
The double-headed piston 6 is reciprocated according to the inclination angle of the swash plate 13, and the refrigerant gas is transferred from the suction chamber 20.21 to the cylinder bore 5.
It is sucked into the compression chambers Pf and Pr of a and 5b, and each compression chamber P
After being compressed by f and Pr, it is discharged into the discharge chamber 22.23. When the double-headed piston 6 is at its maximum capacity with the swash plate inclination set to its maximum angle, the piston 6 has a swash plate immediately before the compression operation on the rear side is completed, or the compression operation on the front side is completed, as shown in Fig. 2. Cylinder bore 5a just before
, 5b exerts the greatest force, so the swash plate 13 must push the piston 6 via the shoe 15 with a force that balances the reaction force. As shown in the figure, the swash plate 13
Since the outer peripheral edge of the shoe 15 extends close to the outer end of the shoe 15, the contact area between the swash plate 13 and the shoe 15 becomes large, and the pressing force of the swash plate 13 is smoothly transmitted to the shoe 15.

この状態で斜板13を回転軸7の軸線方向から見た外形
は、第4図に示すように円となる。そして、斜板13の
回転に伴うシュー15の移動軌跡は鎖線で示すようにほ
ぼ軸中心Oを中心とする円となる。従って、第2図の状
態から斜板13が90度あるいは270度回転してピス
トン6が第3図に示す中間位置に移動した状態となって
も、斜板13の外周縁とシュー15との関係は第2図と
同1ロー− じ状態に保持され、従来装置と異なり斜板13の外周縁
がシュー15と対応する部分より収容部6bの内側には
み出すことはなく、斜板13とピストン6との干渉が確
実に防止される。
In this state, the outer shape of the swash plate 13 when viewed from the axial direction of the rotating shaft 7 is a circle as shown in FIG. The locus of movement of the shoe 15 as the swash plate 13 rotates becomes a circle approximately centered on the axial center O, as shown by the chain line. Therefore, even if the swash plate 13 rotates 90 degrees or 270 degrees from the state shown in FIG. 2 and the piston 6 moves to the intermediate position shown in FIG. The relationship is maintained in the same row state as in FIG. 2, and unlike the conventional device, the outer peripheral edge of the swash plate 13 does not protrude inside the housing portion 6b from the part corresponding to the shoe 15, and the swash plate 13 and the piston Interference with 6 is reliably prevented.

又、収容部6bの長さAを小さくして球面凹部6aが深
く形成され、しかも前記のようにシュー15と斜板13
の外周部との関係が常に一定の状態となるので−従来と
異なりシュー15が迫り出すことが防止されると共に、
球面凹部6aとシュー15との係合状態が安定して、圧
をiamの運転時に斜板13の回転運動が安定した状態
で円滑にピストン6の往復運動に変換される。
In addition, the length A of the accommodating portion 6b is reduced to form a deep spherical recess 6a, and as described above, the shoe 15 and the swash plate 13 are
Since the relationship with the outer periphery of the shoe 15 is always constant, the shoe 15 is prevented from protruding unlike the conventional case, and
The engagement state between the spherical recess 6a and the shoe 15 is stable, and the rotational movement of the swash plate 13 is smoothly converted into the reciprocating movement of the piston 6 in a stable state during the operation of the iam.

なお、本発明は前記実施例に限定されるものではなく、
例えば、斜板13を軸ピン11によりスライダ10に回
動可能に支持する構成に代えて、従来装置のようにスラ
イダの先端に形成した球面部で支持する梢成としたり、
斜板支持体12と斜板13とを一体形成してもよい、又
、斜板13の形状は斜板13の外形を斜板揺動の軸方向
を短径とする楕円とし、短径を回転軸7の軸線とシュー
15の曲率中心との距離と、シュー15の曲率半径との
和とほぼ等しい長さに、長径を最大容量時にピストン6
が圧縮行程上死点位置に配置された状態で回転軸7とシ
ュー15の曲率中心を含む断面において斜板13の外周
が当該ピストン6のシュニ15の外側にはみ出さない長
さにそれぞれ設定された楕円であればよく、かならずし
も最大容量時に回転軸7の軸線方向から見た斜板13の
外形が円形となる必要はない。
Note that the present invention is not limited to the above embodiments,
For example, instead of the configuration in which the swash plate 13 is rotatably supported on the slider 10 by the shaft pin 11, a top configuration in which the swash plate 13 is supported by a spherical part formed at the tip of the slider as in the conventional device may be used.
The swash plate support 12 and the swash plate 13 may be integrally formed, and the shape of the swash plate 13 is an ellipse whose minor axis is in the axial direction of the swash plate swing. When the piston 6 is at maximum capacity, the major diameter is approximately equal to the sum of the distance between the axis of the rotating shaft 7 and the center of curvature of the shoe 15, and the radius of curvature of the shoe 15.
The outer periphery of the swash plate 13 is set to a length that does not protrude outside the shoe 15 of the piston 6 in a cross section including the rotating shaft 7 and the center of curvature of the shoe 15 when the shoe 15 is placed at the top dead center position of the compression stroke. The outer shape of the swash plate 13 when viewed from the axial direction of the rotating shaft 7 at maximum capacity does not necessarily have to be circular.

[発明の効果] 以−E詳述したように本発明によれば、斜板の厚さやピ
ストン及びシューの大きさを変更することなく、シュー
と係合する球面凹部を深くでき、斜板の回転運動が安定
した状態で円滑にピストンの往復運動に変換されるので
、動力消費の低減及び信頼性の向上を図ることができる
[Effects of the Invention] As described in detail below, according to the present invention, the spherical recess that engages with the shoes can be deepened without changing the thickness of the swash plate or the sizes of the pistons and shoes. Since rotational motion is smoothly converted into reciprocating motion of the piston in a stable state, it is possible to reduce power consumption and improve reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

ピストンが圧縮行程上死点位置に移動した状態を示す圧
縮機の断面図、第3図は同じくピストンが中立位置に移
動した状態を示ず圧maの断面図、第4図は作用を示す
概略図、第5図は従来411成の斜板式可変容量圧縮機
の断面図、第6.フ図はピストン、斜板及びシューの関
係を示す部分断面図、第8図は固定容量型斜板式圧縮機
の斜板の断面図、第9図は従来の可変容量型斜板式圧縮
機の斜板の断面図、第10図は同じく作用を示す概略図
5第11図はピストンが中立位置配置された状態の斜板
とピストンの関係を示す一部破断部分断面図、第12図
はピストンの部分斜視図である。 シリンダブロック1、シリンダボア5a、5b、両頭ピ
ストン6、球面四部6a、収容部6b、回転軸7、スラ
イダ10、軸ビン11、斜板13、シュー15、制御圧
室28、制御体29、揺動中心C。 特許出願人  株式会社豊田自動織機製作所代理人  
  弁理士  恩田博宣(ほか1名)又〉−ノ ロ1H17,臂
A cross-sectional view of the compressor showing the piston moving to the top dead center position of the compression stroke, FIG. 3 is a cross-sectional view of the pressure ma without showing the piston moving to the neutral position, and FIG. 4 is a schematic diagram showing the action. Figure 5 is a sectional view of a conventional swash plate type variable capacity compressor of 411 configuration, and Figure 6. Fig. 8 is a cross-sectional view of the swash plate of a fixed displacement swash plate compressor, and Fig. 9 is a sectional view of a conventional variable displacement swash plate compressor. A cross-sectional view of the plate, FIG. 10 is a schematic diagram showing the operation.5 FIG. FIG. Cylinder block 1, cylinder bores 5a, 5b, double-headed piston 6, four spherical parts 6a, housing part 6b, rotating shaft 7, slider 10, shaft pin 11, swash plate 13, shoe 15, control pressure chamber 28, control body 29, rocking Center C. Patent applicant Toyota Industries Corporation representative
Patent attorney Hironobu Onda (and 1 other person) - Noro 1H17, Tsuji

Claims (1)

【特許請求の範囲】 1、両頭ピストンを往復動可能に収容するシリンダブロ
ック内に回転軸を回転可能に収容支持すると共に、該回
転軸には両頭ピストンを往復駆動する斜板を相対回転不
能かつその周縁側を中心として前後に揺動可能に支持し
、その揺動中心位置をリヤ側シリンダボア寄りに設定す
ると共に、回転軸の回転に伴う揺動中心の回転領域上に
前記両頭ピストンの往復動領域を設定し、前記斜板の傾
角変更によりピストンストロークを変更して容量を調節
できるようにした可変容量型斜板式圧縮機において、 斜板の外形を斜板揺動の軸方向を短径とする楕円とし、
短径を回転軸の軸線とシューの曲率中心との距離と、シ
ューの曲率半径との和とほぼ等しい長さに、長径を最大
容量時にピストンが圧縮行程上死点位置に配置された状
態で回転軸とシューの曲率中心を含む断面において斜板
の外周が当該ピストンのシューの外側にはみ出さない長
さにそれぞれ設定した可変容量型斜板式圧縮機の斜板構
造。
[Claims] 1. A rotary shaft is rotatably housed and supported in a cylinder block that reciprocably accommodates a double-headed piston, and a swash plate for reciprocating the double-headed piston is mounted on the rotary shaft and is relatively non-rotatable. The double-headed piston is supported so as to be able to swing back and forth around its peripheral edge, and its swing center position is set near the rear cylinder bore, and the double-headed piston moves reciprocatingly over the rotational region of the swing center as the rotating shaft rotates. In a variable capacity swash plate type compressor in which the capacity can be adjusted by setting a range and changing the piston stroke by changing the inclination angle of the swash plate, the outer shape of the swash plate is set such that the axial direction of the swash plate swings is the minor axis. As an ellipse,
The short axis should be approximately equal to the sum of the distance between the axis of the rotating shaft and the center of curvature of the shoe, and the radius of curvature of the shoe, and the long axis should be set at maximum capacity when the piston is at the top dead center position of the compression stroke. A swash plate structure for a variable capacity swash plate compressor, in which the outer periphery of the swash plate is set to a length that does not protrude outside the shoe of the piston in a cross section that includes the rotating shaft and the center of curvature of the shoe.
JP1286626A 1989-11-02 1989-11-02 Swash plate structure of variable capacity swash plate compressor Expired - Lifetime JP2762623B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1286626A JP2762623B2 (en) 1989-11-02 1989-11-02 Swash plate structure of variable capacity swash plate compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1286626A JP2762623B2 (en) 1989-11-02 1989-11-02 Swash plate structure of variable capacity swash plate compressor

Publications (2)

Publication Number Publication Date
JPH03149361A true JPH03149361A (en) 1991-06-25
JP2762623B2 JP2762623B2 (en) 1998-06-04

Family

ID=17706849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1286626A Expired - Lifetime JP2762623B2 (en) 1989-11-02 1989-11-02 Swash plate structure of variable capacity swash plate compressor

Country Status (1)

Country Link
JP (1) JP2762623B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009127470A (en) * 2007-11-21 2009-06-11 Sanden Corp Variable displacement swash plate type compressor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009127470A (en) * 2007-11-21 2009-06-11 Sanden Corp Variable displacement swash plate type compressor

Also Published As

Publication number Publication date
JP2762623B2 (en) 1998-06-04

Similar Documents

Publication Publication Date Title
JP3125952B2 (en) Variable capacity swash plate compressor
JP2956193B2 (en) Oscillating swash plate type variable displacement compressor
JPH0968162A (en) Swash plate type variable capacity compressor
JPH05288147A (en) Variable capacity cam plate type compressor
JP3550707B2 (en) Piston in oscillating swash plate compressor
JP2002106465A (en) Method of machining piston for compressor
JP3951437B2 (en) Piston support structure of compressor
JPH07189898A (en) Piston in rotary swash plate type compressor
JPH03149361A (en) Swash plate structure of variable displacement swash plate type compressor
JP2993215B2 (en) Variable displacement swash plate compressor
JP3060679B2 (en) Oscillating swash plate type variable displacement compressor
JP2947243B2 (en) Piston structure in swash plate compressor
JP2924564B2 (en) Piston in oscillating swash plate compressor
JP3049965B2 (en) Variable capacity swash plate compressor
JP2713759B2 (en) Variable displacement swash plate compressor
JP3155858B2 (en) Swash plate compressor
JPH04179873A (en) Oscillative tilting plate type variable volume compressor and processing method for oscillative tilting plate and shoe for retaining piston
JP3259487B2 (en) Variable capacity swash plate compressor
JP3060671B2 (en) Swash plate type variable capacity compressor
JPH087102Y2 (en) Swash plate structure in variable displacement swash plate compressor
JP2573362Y2 (en) Piston guide structure for variable displacement swash plate compressor
JPH06307333A (en) Swash plate type compressure with variable capacity
KR100614023B1 (en) Variable displacement compressor
JP2003113772A (en) Variable displacement type hydraulic rotary machine with swash plate
KR20010014520A (en) Variable displacement compressor