JPH031474A - Ignition plug - Google Patents

Ignition plug

Info

Publication number
JPH031474A
JPH031474A JP13563589A JP13563589A JPH031474A JP H031474 A JPH031474 A JP H031474A JP 13563589 A JP13563589 A JP 13563589A JP 13563589 A JP13563589 A JP 13563589A JP H031474 A JPH031474 A JP H031474A
Authority
JP
Japan
Prior art keywords
sleeve
insulator
nitride
thermal conductivity
metal shell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13563589A
Other languages
Japanese (ja)
Inventor
Takafumi Oshima
崇文 大島
Shigeyasu Yamada
山田 茂保
Hiroyuki Tanabe
田辺 宏之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP13563589A priority Critical patent/JPH031474A/en
Publication of JPH031474A publication Critical patent/JPH031474A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent drop of the insulation resistance and provide a wide range operation for an ignition plug by furnishing a cylindrical insulation sleeve, wherein the insulating substance consists of a material having a thermal conductivity over 60W/mK and a gap is provided between it and a longer leg part extending from the front stage to the open end. CONSTITUTION:The center electrode 2 of an ignition plug is covered with an insulating substance 4 consisting of ceramic of nitride type having a thermal conductivity over 60W/mK, for ex. Al nitride and Si nitride. A less thermal conductivity than 60W/mK drops the heat radiating speed to generate preignition, while exceeding this value can suppress such phenomena even though a sleeve is furnished around the longer leg part. The insulating substance 4 is fitted with an insulative sleeve 10 around the longer leg part 9. The sleeve 10 shall have an axial length L of no less than 1mm and be located within L0+1mm, where L0 is the axial length portion of the body piece 3 from the sleeve 10 end on the step 6 side to the open end. That is, 1mm<=L<=L0+1mm, wherein L0+1mm<=10mm.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、点火栓のトリーイング劣化の対策に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to measures against treeing deterioration of spark plugs.

[従来の技術〕 窒化物系セラミクスは、大変優れた熱伝導性を有する。[Conventional technology] Nitride ceramics have very good thermal conductivity.

このため、点火栓の絶縁体に、窒化アルミニウムなどの
窒化物系セラミクスを用いると、点火栓のワイドレンジ
化が図られることが知られている。
For this reason, it is known that if nitride ceramics such as aluminum nitride are used as the insulator of the ignition plug, the range of the ignition plug can be expanded.

[発明が解決しようとする課題] しかるに、窒化物系セラミクスは、従来絶縁体に用いら
れてきたアルミナ等に比較して、温度が高温となった際
の、抵抗値の低下度合いが大きい。
[Problems to be Solved by the Invention] However, compared to alumina and the like that have been conventionally used as insulators, nitride-based ceramics have a greater degree of decrease in resistance value when the temperature becomes high.

一方、第3図に示すように、絶縁体101は、絶縁体1
01の周囲に形成された段102が、主体金具103の
内周に形成された棚104に当接L、軸方向の移動が規
制されている。主体金具103の内周は、棚104を形
成するために、内周に突出した棚部105が形成されて
いる。棚部105は、主体金具103の内周に突出した
形状であるため、中心電極に高電圧が印加された際に、
棚部105と、棚部105に対向する脚長部106との
間(図中斜線部分)に電界の集中が発生しやすい。
On the other hand, as shown in FIG.
A step 102 formed around the metal shell 103 contacts a shelf 104 formed on the inner periphery of the metal shell 103, thereby restricting movement in the axial direction. A shelf portion 105 is formed on the inner periphery of the metal shell 103 to form a shelf 104 that protrudes from the inner periphery. Since the shelf portion 105 has a shape that protrudes from the inner periphery of the metal shell 103, when a high voltage is applied to the center electrode,
Electric field concentration tends to occur between the shelf portion 105 and the long leg portion 106 facing the shelf portion 105 (the shaded area in the figure).

このため、脚長部106の温度が高く、脚長部106の
絶縁性能が低下した状態で、中心電極に高電圧が印加さ
れると、棚部105付近における電界の集中によって、
脚長部106の表面にコロナ放電が発生L、脚長部10
6の表面に絶縁破壊経路Aが形成される(トリーイング
劣化)、この絶縁破壊経路Aが形成されると、点火ミス
が起こるとともに、絶縁破壊経路Aが成長して、ついに
は、絶縁体101の絶縁抵抗が低下L、失火に至る。
Therefore, when a high voltage is applied to the center electrode while the temperature of the long leg portion 106 is high and the insulation performance of the long leg portion 106 is reduced, the concentration of the electric field near the shelf portion 105 causes
Corona discharge occurs on the surface of the long leg portion 106 L, the long leg portion 10
A dielectric breakdown path A is formed on the surface of the insulator 101 (treeing deterioration). When this dielectric breakdown path A is formed, an ignition error occurs and the dielectric breakdown path A grows, and finally, the insulation breakdown path A grows. Insulation resistance decreases L, leading to misfire.

本発明は、上記事情に鑑みてなされたもので、その目的
は、絶縁破壊経路の発生を抑えて点火ミスを無くすとと
もに、絶縁破壊経路の発生による絶縁体の絶縁抵抗の低
下を防ぐ点火栓の提供にある。
The present invention has been made in view of the above circumstances, and its purpose is to suppress the occurrence of dielectric breakdown paths to eliminate ignition errors, and to prevent the decrease in insulation resistance of the insulator due to the occurrence of dielectric breakdown paths. On offer.

[課題を解決するための手段] 上記の目的を達成するために、本発明の点火栓は、次の
技術的手段を採用する。
[Means for Solving the Problems] In order to achieve the above object, the spark plug of the present invention employs the following technical means.

(発明) 本発明の点火栓は、中心電極と、内周に棚を備えた筒状
の主体金具と、前記棚に当接する段を備えるとともに、
この段を介して小径とされ、前記主体金具との間に空隙
を隔てて対向する脚長部を備えた絶縁体とからなり、前
記絶縁体が窒化物系セラミクス材料よりなる。
(Invention) The ignition plug of the present invention includes a center electrode, a cylindrical metal shell with a shelf on the inner periphery, and a step that comes into contact with the shelf, and
The insulator is made of a nitride-based ceramic material and has a small diameter through this step and has a long leg portion facing the metal shell with a gap therebetween.

そして、前記絶縁体は、熱伝導率が60W / m K
以上の材料よりなるとともに、前記段より開放端へ向か
う、前記脚長部との間に隙間を有した筒状の絶縁性スリ
ーブを備える。
The insulator has a thermal conductivity of 60W/mK.
A cylindrical insulating sleeve made of the above-mentioned material and having a gap with the leg length extending from the step toward the open end is provided.

(実施態様) 前記スリーブの軸方向長をL、前記スリーブの前記段側
端部から開放端までの前記主体金具の軸方向長をLOと
すると、 law≦L≦1.0+1mm の式を満足する。
(Embodiment) When the axial length of the sleeve is L, and the axial length of the metal shell from the step side end of the sleeve to the open end is LO, the following formula is satisfied: law≦L≦1.0+1 mm .

[作用および効果] (発明に対応した作用) 上記のように構成された点火栓は、脚長部の温度上昇に
より脚長部の抵抗値が低下しても、スリーブによって、
少なくとも段近傍の脚長部と主体金具との間の絶縁性が
保持される。
[Operations and Effects] (Operations Corresponding to the Invention) The ignition plug configured as described above has the effect that even if the resistance value of the long leg portion decreases due to a rise in the temperature of the long leg portion, the sleeve
Insulation is maintained at least between the long leg portion near the stage and the metal shell.

この結果、脚長部の棚近傍における電界の集中が緩和さ
れ、絶縁破壊経路の形成が防がれる。
As a result, the concentration of the electric field near the shelf of the long leg portion is alleviated, and the formation of a dielectric breakdown path is prevented.

なお、絶縁体の熱伝導率が60W/mK未満の場合は、
放熱速度が低下L、プレイグニツシヨンが発生するが、
絶縁体の熱伝導率を60W/mK以上とすることにより
、脚長部の周囲にスリーブを設けても、プレイグニツシ
ヨンの発生を抑えることができる。
In addition, if the thermal conductivity of the insulator is less than 60W/mK,
The heat dissipation rate decreases and pre-ignition occurs, but
By setting the thermal conductivity of the insulator to 60 W/mK or more, it is possible to suppress the occurrence of pre-ignition even if a sleeve is provided around the long leg portion.

(発明の効果) 本発明は、以上の作用で説明したように、脚長部の温度
が1−昇しても、絶縁破壊経路の形成が防がれる。この
結果、絶縁破壊経路の形成による点火ミスを無くすとと
もに、絶縁破壊経路の形成による絶縁体の絶縁抵抗の低
下を防ぐことができ、失火を防止する。
(Effects of the Invention) As described above, the present invention prevents the formation of a dielectric breakdown path even if the temperature of the long leg portion increases by 1-1. As a result, ignition errors due to the formation of a dielectric breakdown path can be eliminated, and a decrease in insulation resistance of the insulator due to the formation of a dielectric breakdown path can be prevented, thereby preventing misfires.

(実施態様の作用) スリーブの軸方向長しと、前記スリーブの前記段側端部
から開放端までの前記主体金具の軸方向長LOとの関係
が、1醜≦L≦L0+1mmの式を満足する。
(Effects of the Embodiment) The relationship between the axial length of the sleeve and the axial length LO of the metal shell from the step side end of the sleeve to the open end satisfies the following formula: 1mm≦L≦LO+1mm do.

これは、L < I Waの関係では、実験的に絶縁破
壊経路がスリーブを回り込んで形成されるためである。
This is because in the relationship L < I Wa, a dielectric breakdown path is experimentally formed around the sleeve.

また、L0+1mm+m<Lの関係では、熱伝導率を6
0W/mKとしても、放熱速度が劣化L、プレイグニツ
シヨンが発生するためである。
Also, in the relationship L0+1mm+m<L, the thermal conductivity is 6
This is because even at 0 W/mK, the heat dissipation rate deteriorates L and pre-ignition occurs.

(実施態様の効果) 1fitIII≦L≦LO+1+nmの式を満足するこ
とにより、スリーブが絶縁破壊経路の形成を防ぐととも
に、プレイグニツシヨンの発生を防ぐことができる。
(Effects of the Embodiment) By satisfying the equation 1fitIII≦L≦LO+1+nm, the sleeve can prevent the formation of a dielectric breakdown path and also prevent the occurrence of pre-ignition.

[実施例] 次に、本発明の点火栓を、図に示す一実施例に基づき説
明する。
[Example] Next, a spark plug of the present invention will be described based on an example shown in the drawings.

(実施例の構成) 第1図は、内燃機関の燃焼室に配される、点火栓の要部
断面図である。
(Configuration of Example) FIG. 1 is a sectional view of a main part of an ignition plug disposed in a combustion chamber of an internal combustion engine.

点火栓1は、大別して、中心電極2、主体金具3、絶縁
体4から構成される。
The ignition plug 1 is roughly composed of a center electrode 2, a metal shell 3, and an insulator 4.

中心電極2は、図示しない点火装置から高電圧が印加さ
れる絶縁体4の軸芯を貫通する電極体である。
The center electrode 2 is an electrode body that passes through the axis of an insulator 4 to which a high voltage is applied from an ignition device (not shown).

主体金具3は、内燃機関(図示しない)に螺合される筒
状の金具で、端部に、外側電極5が溶接などによって接
合されている。この外側電極5は、棒状を呈L、端部が
中心電極2との間に火花間隙pを介して対向するように
、曲折されている。
The metal shell 3 is a cylindrical metal fitting that is screwed into an internal combustion engine (not shown), and an outer electrode 5 is joined to the end by welding or the like. The outer electrode 5 has a rod-like shape L and is bent so that its end faces the center electrode 2 with a spark gap p in between.

一方、主体金具3は、内周に、絶縁体4の段6(下達す
る)が、金属パツキン7を介して当接する棚8を備える
。この棚8は、絶縁体4の保持を行うためのものである
On the other hand, the metal shell 3 includes a shelf 8 on its inner periphery, with which the step 6 (downward) of the insulator 4 comes into contact with a metal packing 7 interposed therebetween. This shelf 8 is for holding the insulator 4.

絶縁体4は、窒化アルミニウム、窒化珪素などよりなる
熱伝導率が60W/mK以上の窒化物系セラミクスで、
中心電極2の周囲を覆い、中心電極2を絶縁保持する筒
状体を呈する。絶縁体4は、主体金具3との間に空隙を
隔てて対向する脚長部9を備える0脚長部9は、端部に
向かって細くなるテーパー形状を呈する。絶縁体4は、
脚長部9と他の部分との境に段6を有L、他の部分は、
この段6を介して大径とされている。なお、段6は、主
体金具3の棚8に、金属パツキン7を介して当接L、軸
方向の移動が規制される。
The insulator 4 is a nitride-based ceramic made of aluminum nitride, silicon nitride, etc. and has a thermal conductivity of 60 W/mK or more.
It has a cylindrical body that covers the center electrode 2 and holds the center electrode 2 insulated. The insulator 4 includes a long leg portion 9 that faces the metal shell 3 with a gap therebetween, and the long leg portion 9 has a tapered shape that becomes thinner toward the end. The insulator 4 is
There is a step 6 at the border between the long leg part 9 and other parts, and the other parts are
The diameter is increased through this stage 6. Note that the step 6 abuts L on the shelf 8 of the metal shell 3 via the metal packing 7, and its movement in the axial direction is restricted.

絶縁体4は、脚長部9の周囲に絶縁体4と一体に焼結さ
れた絶縁性のスリーブ10を備える。このスリーブ10
は、脚長部9の段6側から開放端へ向かって延びる筒状
体で、脚長部9との間に隙間11を形成する。
The insulator 4 includes an insulating sleeve 10 that is sintered integrally with the insulator 4 around the leg length 9. This sleeve 10
is a cylindrical body extending from the stage 6 side of the long leg portion 9 toward the open end, and forms a gap 11 between the long leg portion 9 and the long leg portion 9 .

スリーブ10の軸方向長しは、1−以上で、かつスリー
ブ10の段6側の端部から開放端までの主体金具3の軸
方向長L0+1mm以下に設けられている(つまり、1
m≦L≦1.0 + 1 mm)。なお、LO+1■≦
10m1である。
The axial length of the sleeve 10 is 1 - or more, and the axial length L0 + 1 mm of the metal shell 3 from the end of the sleeve 10 on the stage 6 side to the open end (that is, 1 mm or less).
m≦L≦1.0 + 1 mm). In addition, LO+1■≦
It is 10m1.

L<1−の関係では、脚長部9の高温時、実験的に絶縁
破壊経路がスリーブ10を回り込んで形成される。また
、LO+ 1 rrn< L (ただしI、O+1閣≦
10m)の関係では、熱伝導率を60W/mKとしても
、絶縁体4の放熱が追い付かず、耐プレイグニッション
が劣化する。このため、II+aII≦L≦1.O+1
+aの式を満足することにより、スリーブ10が絶縁破
壊経路の形成を防ぐとともに、プレイグニツシヨンの発
生を防ぐ。
In the relationship L<1-, when the long leg portion 9 is at a high temperature, a dielectric breakdown path is experimentally formed around the sleeve 10. Also, LO+ 1 rrn< L (However, I, O+1 kaku≦
10 m), even if the thermal conductivity is 60 W/mK, the heat dissipation of the insulator 4 cannot keep up, and the pre-ignition resistance deteriorates. Therefore, II+aII≦L≦1. O+1
By satisfying the formula +a, the sleeve 10 prevents the formation of a dielectric breakdown path and also prevents pre-ignition from occurring.

なお、実施例では、L=LO/2とした。In addition, in the example, L=LO/2.

(実験データ) 上記実施例の点火栓1のトリーイング劣化に対する実験
データを、第2図に示す。
(Experimental Data) Experimental data regarding treeing deterioration of the spark plug 1 of the above example is shown in FIG.

図中に示す比較品とは、脚長部の周囲にスリーブ10を
有しない従来品で、実施例の点火栓1と同一の熱価のも
のである。
The comparative product shown in the figure is a conventional product that does not have the sleeve 10 around the long leg portion, and has the same heat value as the ignition plug 1 of the example.

なお、本実験データは、2000ccの6気筒エンジン
を使用した。そして、5500rpm(フルスロットル
)を5分間運転した後に、1分間に5回の加減速を実施
するテストを1サイクルとL、このテストサイクルを繰
り返し行った。また、中心電極2への印加電圧は、最大
25kVとした。
Note that this experimental data used a 2000cc 6-cylinder engine. After operating at 5500 rpm (full throttle) for 5 minutes, this test cycle was repeated for 1 cycle and L, in which a test was performed in which acceleration and deceleration were performed 5 times per minute. Further, the voltage applied to the center electrode 2 was set to a maximum of 25 kV.

そして、火花間隙pで正規の火花放電が起こらない(点
火ミスを発生する)状態となった時に、トリーイング劣
化を判断L、図中にΔ印で示した。
When a normal spark discharge does not occur in the spark gap p (ignition error occurs), treeing deterioration is judged L and is indicated by a Δ mark in the figure.

なお、図中○印は、5000サイクル行っても、トリー
イング劣化の確認されなかったものを示す。
Note that the circle mark in the figure indicates that no treeing deterioration was observed even after 5000 cycles.

(実施例の作用) 点火栓1が過酷な使用条件で使用され、脚長部9の温度
が上昇すると、窒化物系セラミクス(AjN)で形成さ
れた脚長部9の絶縁抵抗値が減少する。しかるに、段6
側の脚長部つと主体金具3との間は、スリーブ10によ
って、絶縁状態が保持される。このため、棚6の近傍に
おける、主体金具3と脚長部9との間の電界の集中が緩
和される。
(Effects of the Embodiment) When the spark plug 1 is used under harsh conditions and the temperature of the long leg portion 9 increases, the insulation resistance value of the long leg portion 9 formed of nitride ceramics (AjN) decreases. However, step 6
An insulating state is maintained between the side long leg portions and the metal shell 3 by the sleeve 10. Therefore, concentration of the electric field between the metal shell 3 and the long leg portions 9 in the vicinity of the shelf 6 is alleviated.

この結果、絶縁体4を窒化物系セラミクスで形成しても
、絶縁破壊経路の形成を抑えることができる。
As a result, even if the insulator 4 is formed of nitride-based ceramics, the formation of dielectric breakdown paths can be suppressed.

(実施例の効果) 第2図に示されるように、比較品は、約1200〜20
00サイクルの間でトリーイング劣化が発生するのに対
L、本実施例の点火栓1は、4500サイクルまで、ト
リーイング劣化の発生を抑える。つまり、従来品に比較
して、飛躍的に絶縁破壊経路の形成を抑えることができ
る。
(Effects of Example) As shown in Figure 2, the comparative product has a
Whereas treeing deterioration occurs during 00 cycles, the spark plug 1 of this embodiment suppresses the occurrence of treeing deterioration up to 4500 cycles. In other words, compared to conventional products, the formation of dielectric breakdown paths can be dramatically suppressed.

このことは、通常の内燃機関の使用状態において、絶縁
破壊経路の形成をほぼ無くすことが可能となる。この結
果、絶縁破壊経路の形成による点火ミスを無くすととも
に、絶縁破壊経路の形成による絶縁体4の絶縁抵抗の低
下を防ぎ、失火を防止L、ワイドレンジ化を達成するこ
とができる。
This makes it possible to substantially eliminate the formation of dielectric breakdown paths under normal internal combustion engine operating conditions. As a result, it is possible to eliminate ignition errors due to the formation of a dielectric breakdown path, prevent a decrease in the insulation resistance of the insulator 4 due to the formation of a dielectric breakdown path, prevent misfires, and achieve a wide range.

図は実験データを示すグラフ、 大検の要部断面図である。The figure is a graph showing experimental data, It is a sectional view of the main part of the major examination.

図中 1・・・点火栓 3・・・主体金具 6・・・段 9・・・脚長部 11・・・隙間In the diagram 1... Spark plug 3...Main metal fittings 6th stage 9...Leg length 11... Gap

Claims (1)

【特許請求の範囲】 1)中心電極と、 内周に棚を備えた筒状の主体金具と、 前記棚に当接する段を備えるとともに、この段を介して
小径とされ、前記主体金具との間に空隙を隔てて対向す
る脚長部を備えた絶縁体とからなり、 前記絶縁体が窒化物系セラミクス材料よりなる点火栓に
おいて、 前記絶縁体は、 熱伝導率が60W/mK以上の材料よりなるとともに、 前記段より開放端へ向かう、前記脚長部との間に隙間を
有した筒状の絶縁性スリーブを備えることを特徴とする
点火栓。 2)前記スリーブの軸方向長をL、 前記スリーブの前記段側端部から開放端までの前記主体
金具の軸方向長をL0とすると、1mm≦L≦L0+1
mm の式を満足する、請求項1記載の点火栓。
[Scope of Claims] 1) A center electrode, a cylindrical metal shell with a shelf on its inner periphery, and a step that abuts the shelf, and a small diameter through this step, which connects the metal shell with the center electrode. and an insulator having long legs facing each other with a gap in between, the insulator being made of a nitride-based ceramic material, wherein the insulator is made of a material with a thermal conductivity of 60 W/mK or more. An ignition plug characterized in that the ignition plug includes a cylindrical insulating sleeve that extends from the step toward the open end and has a gap between it and the long leg portion. 2) If the axial length of the sleeve is L, and the axial length of the metal shell from the step side end of the sleeve to the open end is L0, then 1 mm≦L≦L0+1.
The spark plug according to claim 1, which satisfies the formula: mm.
JP13563589A 1989-05-29 1989-05-29 Ignition plug Pending JPH031474A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13563589A JPH031474A (en) 1989-05-29 1989-05-29 Ignition plug

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13563589A JPH031474A (en) 1989-05-29 1989-05-29 Ignition plug

Publications (1)

Publication Number Publication Date
JPH031474A true JPH031474A (en) 1991-01-08

Family

ID=15156420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13563589A Pending JPH031474A (en) 1989-05-29 1989-05-29 Ignition plug

Country Status (1)

Country Link
JP (1) JPH031474A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006310129A (en) * 2005-04-28 2006-11-09 Denso Corp Device and method for manufacturing spark plug
US7723906B2 (en) 2006-12-08 2010-05-25 Denso Corporation Spark plug designed to minimize drop in insulation resistance
US20150337793A1 (en) * 2013-02-11 2015-11-26 Contour Hardening, Inc. Combustion ignition system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006310129A (en) * 2005-04-28 2006-11-09 Denso Corp Device and method for manufacturing spark plug
US7723906B2 (en) 2006-12-08 2010-05-25 Denso Corporation Spark plug designed to minimize drop in insulation resistance
US20150337793A1 (en) * 2013-02-11 2015-11-26 Contour Hardening, Inc. Combustion ignition system

Similar Documents

Publication Publication Date Title
JP3859410B2 (en) Spark plug
BR112015000768A2 (en) spark plug
JPH0831352B2 (en) Spark plug
JPH09283259A (en) Spark plug
US4939409A (en) Spark plug with a surface discharge section
EP3273553A1 (en) Spark plug
WO2011118087A1 (en) Spark plug
JPH10308272A (en) Semi-surface discharge spark plug
KR101118401B1 (en) Spark plug
US20040080252A1 (en) Spark plug for use in internal combustion engine
US4439708A (en) Spark plug having dual gaps
JPH031474A (en) Ignition plug
US2926275A (en) Pgras
JPH04286890A (en) Speak plug for internal combustion engine
JPH031472A (en) Ignition plug
US10090648B1 (en) Spark plug
JPH06196247A (en) Spark plug for internal combustion engine
JPH03266386A (en) Manufacture of spark plug
JP6734889B2 (en) Spark plug
JP2561709Y2 (en) Spark plug
JP7070196B2 (en) Spark plug for internal combustion engine
JPH07272826A (en) Spark plug
JPH077691B2 (en) Spark plug for internal combustion engine
JPH0311067B2 (en)
JPH02152185A (en) Spark plug including ceramic insulating body in nitride family