WO2011118087A1 - Spark plug - Google Patents

Spark plug Download PDF

Info

Publication number
WO2011118087A1
WO2011118087A1 PCT/JP2010/071433 JP2010071433W WO2011118087A1 WO 2011118087 A1 WO2011118087 A1 WO 2011118087A1 JP 2010071433 W JP2010071433 W JP 2010071433W WO 2011118087 A1 WO2011118087 A1 WO 2011118087A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulator
metal shell
tip
center electrode
axis
Prior art date
Application number
PCT/JP2010/071433
Other languages
French (fr)
Japanese (ja)
Inventor
かおり 岸本
裕之 亀田
Original Assignee
日本特殊陶業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本特殊陶業株式会社 filed Critical 日本特殊陶業株式会社
Priority to JP2011535740A priority Critical patent/JP5271420B2/en
Publication of WO2011118087A1 publication Critical patent/WO2011118087A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/40Sparking plugs structurally combined with other devices
    • H01T13/41Sparking plugs structurally combined with other devices with interference suppressing or shielding means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/02Details
    • H01T13/16Means for dissipating heat
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/20Sparking plugs characterised by features of the electrodes or insulation

Definitions

  • the present invention relates to a spark plug used for an internal combustion engine or the like.
  • a spark plug is attached to a combustion device such as an internal combustion engine (engine) and used to ignite a mixture in a combustion chamber.
  • a spark plug is provided at an insulator having an axial hole, a center electrode inserted into the axial hole, a metal shell provided on the outer periphery of the insulator, and a tip end of the metal shell. And a ground electrode that forms a spark discharge gap therebetween.
  • the metal shell and the insulator are directly or indirectly engaged with the annular projection projecting toward the axial line on the inner peripheral surface of the metal shell and the stepped portion provided on the outer peripheral surface of the insulator. It fixes in the state which was carried out (for example, refer patent document 1 grade
  • the tip temperature of the insulator is overheated to a predetermined temperature (for example, 1100 ° C.) or more, the tip of the overheated insulator may become an ignition source. That is, there is a possibility that a phenomenon (so-called pre-ignition) of igniting to air-fuel mixture may occur even though the spark plug is before ignition.
  • a predetermined temperature for example, 1100 ° C.
  • the heat at the tip of the insulator can be conducted smoothly to the center electrode by reducing the difference in diameter between the outer diameter of the center electrode and the inner diameter of the insulator.
  • a method has been proposed to prevent the overheating of the insulator tip and the occurrence of preignition resulting from this.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a spark plug which can realize excellent pre-ignition resistance without changing the difference in diameter between the center electrode and the insulator. It is to do.
  • the spark plug of this configuration comprises: a rod-like center electrode extending in an axial direction; An insulator provided on an outer periphery of the center electrode; A cylindrical metal shell provided on the outer periphery of the insulator; A spark plug including a ground electrode extending from a front end portion of the metal shell;
  • the metal shell has an annular projection projecting toward the axis on the inner peripheral portion of the metal shell,
  • the insulator is A step which is directly or indirectly locked to the annular projection;
  • a long leg extending from the tip of the step toward the tip,
  • the inner diameter of the metal shell at the end position of the metal shell is A (mm), and the outer diameter of the insulator is B (mm),
  • the inner diameter of the metal shell is C (mm) and the outer diameter of the insulator is D (mm) at a position 4 mm from the front end of the metal shell along the axis.
  • the outer diameter of the long leg portion is Y (mm) at a position on the rear end
  • the “inner diameter A of the metal shell” means the inner peripheral surface of the metal shell as the axial direction front end It means the inside diameter of the circle formed by the virtual surface extended to the side and the virtual surface extended to the axial line side of the end surface of the metal shell.
  • the inner diameter A of the metal shell at the tip position of the metal shell and the outer diameter B (mm) of the insulator satisfy B / A ⁇ 0.570, and the metal shell along the axis line CL1
  • D / C ⁇ 0.660 is satisfied. That is, the heat at the tip of the insulator is drawn to the metal shell side from the step portion of the insulator and the like via the annular projection and the like.
  • the insulator tip particularly easily heated (insulator Among the above, the amount of heat received from the front end to a position 4 mm from the front end according to the size of the inner diameter of the metal shell (that is, the ability to draw the heat of the insulator by the metal shell) It can be suppressed to a minute.
  • the rear end side exceeds 4 mm from the front end of the metal shell along the axis.
  • the outer diameter Y of the leg length portion at the position of (1) is configured to satisfy B ⁇ Y. That is, a portion of the leg length portion that corresponds to the heat drawing path of the insulator tip portion is configured to have a sufficiently large cross-sectional area. Therefore, the heat of the insulator tip can be effectively conducted to the metal shell side.
  • the inner diameter A at the end of the metal shell is relatively small so as to satisfy A ⁇ 8.7, by satisfying B / A ⁇ 0.570, between the metal shell and the insulator.
  • the opening of the space formed in is configured to have a certain size. For this reason, in the combustion cycle, where the high temperature combustion gas and the low temperature fresh air intrude alternately into the space (so-called gas volume), the insulator is heated and cooled in a well-balanced manner by the combustion gas and the new air. It will be done. As a result, overheating of the insulator can be prevented more reliably.
  • the preignition resistance is improved by changing the diameter difference between the metal shell and the insulator without changing the diameter difference between the center electrode and the insulator. Can. Therefore, it is possible to more reliably prevent a situation such as cracking of the insulator due to thermal expansion of the center electrode.
  • the insulator In order to realize sufficient withstand voltage performance in the insulator, it is necessary to secure the thickness of the insulator to a certain extent. Therefore, it is desirable to configure the insulator to satisfy 0.472 ⁇ B / A and 0.472 ⁇ D / C.
  • the amount of heat received at the insulator tip can be further suppressed, and the pre-ignition resistance can be further improved.
  • the tip of the center electrode From the viewpoint of improving the ignition performance, it is effective to dispose the tip of the center electrode so as to project toward the tip in the axial direction so that the ignition position is closer to the center of the combustion chamber.
  • the center electrode having the function of drawing the heat of the insulator as in the case of the metal shell will be heated more, and thus the heat of the tip of the insulator will not be drawn easily. I will.
  • the insulator can also be disposed so as to protrude toward the end in the axial direction along with the protrusion of the center electrode, the insulator tip end is further heated. That is, when the tip of the center electrode is disposed so as to protrude toward the tip end side in the axial direction, there is a possibility that the pre-ignition resistance is lowered.
  • the distance E (mm) from the tip of the metal shell along the axis to the tip of the center electrode is 2.0 ⁇ E. Therefore, while the improvement of the ignition performance can be expected, there is a concern about the reduction of the pre-ignition resistance, but the adoption of the configuration 1 and the like makes it possible to more effectively improve the pre-ignition resistance. In other words, the operation and effect of the configuration 1 and the like are particularly effective when the center electrode is disposed to be protruded and there is a concern that the pre-ignition resistance is lowered.
  • the center electrode is disposed so as to protrude excessively, the durability of the center electrode is reduced.
  • the center electrode is extremely heated, the heat buildup of the insulator via the center electrode is deteriorated, and by adopting the configuration 1 or the like, the preignition resistance can be improved. There is a risk that the effect will be slightly reduced. Therefore, it is preferable to configure the center electrode or the like so as to satisfy E ⁇ 5.0 in order to exhibit the effects of the configuration 1 and the like more remarkably while preventing the deterioration in the durability of the center electrode.
  • the spark plug according to the present configuration has a cross section including the axis, An outline of a portion of the leg length facing the annular projection extends along the axis, When the shortest distance between the leg long portion and the annular projection along the direction orthogonal to the axis is F (mm), F ⁇ 0.5 It is characterized by satisfying.
  • the proximal end portion of the leg length portion and the annular projection sufficiently approach, and the surface area of the proximal end portion of the leg length portion approaching the annular projection is increased. it can. For this reason, heat is conducted more smoothly from the leg length portion to the metal shell, and as a result, the pre-ignition resistance can be further improved.
  • the boundary part of the step part and leg length part of the insulator or its vicinity part may contact with a metallic shell.
  • the boundary portion or the like comes in contact with the metal shell, there is a risk that a crack starting from the boundary portion may occur in the insulator.
  • the portion of the leg length facing the annular projection is formed to extend along the axis, so that the portion of the proximal end of the leg that approaches the annular projection is It is possible to prevent the contact of the boundary portion and the like with the metal shell more reliably while increasing the surface area. That is, by adopting the above-mentioned configuration 4, it is possible to further improve the pre-ignition resistance while preventing damage to the insulator.
  • the metal shell is A screw for screwing into a mounting hole of the combustion device; And a seat portion provided on the rear end side of the screw portion and formed larger in diameter than the screw diameter of the screw portion, The distance between the front end of the metal shell and the seat along the axis is 17.5 mm or more.
  • the distance from the end of the metal shell along the axis to the seat portion is 17.5 mm or more, and a sufficient contact area of the metal shell to the combustion device is secured. be able to. Therefore, the heat of the metal shell can be more smoothly transferred to the combustion device side, and thus the heat of the insulator can be more effectively drawn. As a result, the pre-ignition resistance can be further improved.
  • the spark plug according to this configuration is characterized in that a protrusion length of the tip of the center electrode with respect to the tip of the insulator along the axis is 1.8 mm or less.
  • the protrusion length is 1.8 mm or less, it is possible to reduce the amount of heat received by the center electrode, and it is possible to effectively suppress the reduction in the heat transfer performance of the insulator. As a result, the pre-ignition resistance can be further improved.
  • Configuration 7 In any one of the above configurations 1 to 6, in the spark plug having this configuration, the center electrode bulges radially outward to the rear end side of itself, and the flange portion engaged with the inner circumferential surface of the insulator Have A difference in diameter between the outer diameter of the center electrode and the inner diameter of the insulator may be 0.06 mm or more on the tip end side in the axial direction with respect to the tip end of the flange portion.
  • the difference in diameter between the outer diameter of the center electrode and the inner diameter of the insulator is sufficiently large, 0.06 mm or more. Therefore, even when the center electrode thermally expands, the gap between the center electrode and the insulator can be sufficiently maintained. As a result, damage to the insulator due to the thermal expansion of the center electrode can be prevented more reliably.
  • FIG. 4 is a partial enlarged cross-sectional view showing the configuration of the tip end portion of the spark plug. It is a partial expanded sectional view for demonstrating another example of an insulator. It is a partial expanded sectional view for demonstrating another example, such as a center electrode. It is a partial expanded sectional view which shows the diameter difference etc. of the outer diameter of a center electrode, and the internal diameter of an insulator. It is a graph which shows the result of the preignition test in the sample which changed B / A variously. It is a graph which shows the result of the preignition test in the sample which changed B / A variously.
  • (A), (b) is a partially broken enlarged front view which shows the structure of the spark plug in another embodiment.
  • (A), (b) is a partially broken enlarged front view which shows the structure of the spark plug in another embodiment.
  • (A), (b) is a partially broken enlarged front view which shows the structure of the spark plug in another embodiment.
  • (A), (b) is a partially broken enlarged front view which shows the structure of the spark plug in another embodiment.
  • (A), (b) is a partially broken enlarged front view which shows the structure of the metal shell etc. in another embodiment.
  • FIG. 1 is a partially cutaway front view showing a spark plug 1.
  • the direction of the axis CL1 of the spark plug 1 is referred to as the vertical direction in the drawing, and the lower side is referred to as the front end side of the spark plug 1 and the upper side is referred to as the rear end.
  • the spark plug 1 is composed of an insulator 2 as a tubular insulator and a tubular metal shell 3 for holding the insulator 2.
  • the insulator 2 is formed by firing alumina or the like, and in the outer shape portion thereof, the rear end side body portion 10 formed on the rear end side and the front end than the rear end side body portion 10 A large diameter portion 11 formed to project radially outward on the side, a middle body portion 12 formed smaller in diameter on the tip side than the large diameter portion 11, and a tip end than the middle body portion 12 And a leg length portion 13 formed smaller in diameter on the side.
  • the large diameter portion 11, the middle body portion 12, and most of the leg length portions 13 are accommodated in the metal shell 3.
  • a step portion 14 is formed at a connecting portion between the middle body portion 12 and the leg length portion 13, and the insulator 2 is engaged with the metal shell 3 at the step portion 14.
  • an axial hole 4 is formed through the insulator 2 along the axis line CL 1, and the center electrode 5 is inserted and fixed to the tip end side of the axial hole 4.
  • the center electrode 5 is composed of an inner layer 5A made of copper or a copper alloy and an outer layer 5B made of a Ni alloy containing nickel (Ni) as a main component. Further, the center electrode 5 has a bar-like (cylindrical) shape as a whole, and its tip end face is formed flat, and protrudes from the tip of the insulator 2.
  • the center electrode 5 is provided with a noble metal tip 31 made of a noble metal alloy (for example, a platinum alloy, an iridium alloy, etc.) at its tip.
  • the front end portion of the center electrode 5 is formed to have a diameter slightly smaller than that of its own rear end side portion, and an annular space between the front end side of the axial hole 4 and the center electrode 5 Pocket portion 30 is formed.
  • the thermo pocket portion 30 can make the distance from the center electrode 5 to the metal shell 3 along the surface of the insulator 2 and the distance between the center electrode 5 and the tip of the insulator 2 relatively large. For this reason, it is possible to more reliably prevent an abnormal spark discharge, such as a so-called side spark, etc., which crawls the surface of the insulator 2.
  • the center electrode 5 may be configured without the thermo pocket portion 30. Further, the center electrode 5 may be configured without providing the noble metal tip 31.
  • the center electrode 5 has a collar 5F formed radially outward at the rear end side of itself and substantially the same as extending from the tip of the collar 5F along the axis line CL1 And an outer diameter main body 5M.
  • the outer diameter DC of the rearmost end of the main body 5M is relatively small (e.g., 2.6 mm or less).
  • the terminal electrode 6 is inserted and fixed to the rear end side of the shaft hole 4 in a state of projecting from the rear end of the insulator 2.
  • a cylindrical resistor 7 is disposed between the center electrode 5 of the axial hole 4 and the terminal electrode 6. Both ends of the resistor 7 are electrically connected to the center electrode 5 and the terminal electrode 6 via the conductive glass seal layers 8 and 9 respectively.
  • the metal shell 3 is formed of a metal such as low carbon steel in a cylindrical shape, and a screw for attaching the spark plug 1 to a combustion device such as an internal combustion engine or a fuel cell reformer on the outer peripheral surface thereof.
  • a portion (male screw portion) 15 is formed.
  • a seat portion 16 having a diameter larger than that of the screw portion 15 is formed on the outer peripheral surface on the rear end side of the screw portion 15, and a ring-shaped gasket 18 is fitted in the screw neck 17 of the screw portion 15 rear end. There is.
  • the spark plug 1 is attached to the combustion device, the seat portion 16 is pressed against the combustion device via the gasket 18.
  • the rear end side of the metal shell 3 is provided with a tool engagement portion 19 having a hexagonal cross section for engaging a tool such as a wrench when attaching the spark plug 1 to the combustion device, and the rear end portion A caulking portion 20 for holding the insulator 2 is provided in FIG.
  • the spark plug 1 when the spark plug 1 is attached to the combustion device, in order to secure a sufficient contact area between the combustion device and the spark plug 1, from the end of the metal shell 3 along the direction of the axis CL1.
  • the distance ML to the seat portion 16 is 17.5 mm or more.
  • annular protrusion 21 which protrudes toward the axis line CL1 and which forms an annular shape centering on the axis line CL1 is formed.
  • the insulator 2 is inserted from the rear end side to the front end side of the metal shell 3, and the step portion 14 of the insulator 2 is engaged with the annular projection 21 of the metal shell 3.
  • the end openings are fixed by radially inward crimping, that is, by forming the crimped portions 20.
  • An annular plate packing 22 is interposed between the step portion 14 of the insulator 2 and the annular projection 21 of the metal shell 3. Thereby, the airtightness in the combustion chamber is maintained, and the fuel gas entering the gap between the leg length 13 of the insulator 2 exposed to the combustion chamber and the inner peripheral surface of the metal shell 3 does not leak to the outside.
  • ring members 23 and 24 are interposed between the metal shell 3 and the insulator 2, and the ring member 23 , 24 are filled with a powder of talc (talc) 25. That is, the metal shell 3 holds the insulator 2 via the plate packing 22, the ring members 23 and 24, and the talc 25.
  • a ground electrode 27 whose end face is bent to the front end portion of the center electrode 5 is joined.
  • a spark discharge gap 33 is formed between the noble metal tip 31 bonded to the center electrode 5 and the tip of the ground electrode 27. In the spark discharge gap 33, the spark discharge gap 33 is exposed to air substantially along the axis CL1. Spark discharge is to be performed.
  • the outer diameter of the insulator 2 (leg length 13) at the tip end position of the metal shell 3 along the direction of the axis CL1 is set to correspond to the inner diameter of the metal shell 3, and in the present embodiment, the metal shell 3 So that 0.472 ⁇ B / A ⁇ 0.570 (more preferably 0.472 ⁇ B / A ⁇ 0.540), where B (mm) is the outer diameter of the insulator 2 at the tip position of Is configured.
  • the said leg long part 13 is the rear end side in the axis line CL1 direction It has a tapered shape that gradually expands in diameter.
  • the ratio of the outer diameter of the leg length 13 to the inner diameter of the metal shell 3 does not become excessively large. It is formed.
  • the inner diameter of the metal shell 3 is C (mm) and the outer diameter of the insulator 2 (leg length 13) is D (mm) at a position 4 mm from the front end of the metal shell 3 along the axis CL1.
  • the leg length 13 is formed to satisfy 0.472 ⁇ D / C ⁇ 0.660.
  • the outer diameter of the leg long portion 13 at this position is Y (mm) at a position of 4 mm from the front end of the metal shell 3 along the axis line CL1 and at the rear end side, B ⁇ Y .
  • the inner diameter C of the metal shell 3 is set to 8.0 mm or more and 8.7 mm or less.
  • the length KL of the leg length 13 along the direction of the axis CL1 is relatively large (for example, 15 mm or more) in order to improve the contamination resistance.
  • the end of the center electrode 5 is disposed so as to protrude from the end of the metal shell 3 toward the end in the direction of the axis CL1 and from the end of the metal shell 3 along the axis CL1 to the center electrode 5 (noble metal tip 31) It is assumed that 2.0 ⁇ E ⁇ 5.0 is satisfied, where E (mm) is the distance to the tip of the lens.
  • a cylindrical equal diameter portion 13A having substantially the same outer diameter is formed at the rear end portion of the leg length portion 13, and the outer peripheral surface of the equal diameter portion 13A corresponds to the inner periphery of the annular protrusion 21. It faces to the surface extending along the axis line CL1 among the surfaces. That is, in the cross section including the axis line CL1, an outline of a portion of the leg length portion 13 (equal diameter portion 13A) facing the annular protrusion 21 extends along the axis line CL1.
  • the equal diameter portion 13A is configured to be relatively close to the annular protrusion 21, and is located between the equal diameter portion 13A and the annular protrusion 21 along a direction orthogonal to the axis line CL1.
  • F (mm) the shortest distance
  • F ⁇ 0.5 the shortest distance
  • the projection length PL of the tip of the center electrode 5 (the noble metal tip 31) with respect to the tip of the insulator 2 along the axis line CL1 is set to 1.8 mm or less.
  • the leg length portion 53 may be configured and the base end portion of the leg length portion 53 may be tapered without providing the equal diameter portion 13A.
  • an annular gap may be provided between the outer peripheral surface of the main portion 5 M of the center electrode 5 and the inner peripheral surface of the insulator 2.
  • the diameter difference DS between the outer diameter of the center electrode 5 (main portion 5M) and the inner diameter of the insulator 2 is 0.06 mm or more (DS / 2 is 0.03 mm or more). It is preferable to do.
  • B / A ⁇ 0.570 for the inner diameter A of the metal shell 3 and the outer diameter B (mm) of the insulator 2 at the tip end position of the metal shell 3 D / C ⁇ 0.660 for the inner diameter C of the metal shell 3 and the outer diameter D (mm) of the insulator 2 at a position 4 mm from the front end of the metal shell 3 along the axis line CL1 It is configured to meet the For this reason, the amount of heat received at the tip of the insulator 2 which is particularly easily heated is suppressed according to the size of the inner diameter of the metal shell 3 (that is, the ability to draw the heat of the insulator 2 by the metal shell 3). Can.
  • the outer diameter Y of the leg long portion 13 at a position on the rear end side exceeding 4 mm from the front end of the metal shell 3 along the axis line CL1 is configured to satisfy B ⁇ Y. That is, the portion of the leg length portion 13 corresponding to the path for drawing heat at the tip of the insulator 2 is configured to have a sufficiently large cross-sectional area. Therefore, the heat of the tip portion of the insulator 2 can be effectively conducted to the metal shell 3 side.
  • the inner diameter A at the end of the metal shell 3 has a relatively small diameter so as to satisfy A ⁇ 8.7, while the metal shell 3 and the insulator 2 are satisfied by satisfying B / A ⁇ 0.570.
  • the opening of the space formed between (the leg length 13) is configured to have a certain size. Therefore, in the combustion cycle, the combustion gas and the fresh air allow the insulator 2 to be heated in a well-balanced manner since the combustion gas and the fresh air alternately enter the space (so-called gas volume) into which the high temperature combustion gas and the low temperature fresh air intrude. It will be cooled. As a result, overheating of the insulator 2 can be prevented more reliably.
  • B / A ⁇ 0.570 and D / C ⁇ 0.660 while preventing overheating of the tip portion of the insulator 2 by satisfying A ⁇ 8.7 or the like.
  • a ⁇ 8.7 or the like By satisfying the above, the amount of heat received at the tip of the insulator 2 can be suppressed to the amount corresponding to the heat transfer performance of the metal shell 3. Further, by satisfying B ⁇ Y, the heat at the tip of the insulator 2 can be reduced. It can be effectively pulled to the metal shell 3 side. As a result, the pre-ignition resistance can be dramatically improved.
  • the preignition resistance is improved by changing the diameter difference between the metal shell 3 and the insulator 2 without changing the diameter difference between the center electrode 5 and the insulator 2. Can be improved. Therefore, it is possible to more reliably prevent a situation such as a crack in the insulator 2 due to the thermal expansion of the center electrode 5.
  • the insulator 2 is configured to satisfy 0.472 ⁇ B / A and 0.472 ⁇ D / C, sufficient withstand voltage performance can be secured in the insulator 2.
  • the distance E (mm) from the end of the metal shell 3 along the axis line CL1 to the end of the center electrode 5 is 2.0 ⁇ E ⁇ 5.0. Therefore, the ignition performance is improved, and the above-described effect of improving the pre-ignition resistance is significantly exhibited.
  • the shortest distance F between the leg length 13 and the annular projection 21 is 0.5 mm or less, heat is more efficiently conducted from the insulator 2 (leg length 13) to the metal shell 3 be able to. As a result, the pre-ignition resistance can be further improved.
  • an equal diameter portion 13A is provided at the base end portion of the leg length portion 13, and it is possible to increase the surface area of the portion of the leg length portion 13 which approaches the annular protrusion 21. Therefore, heat can be conducted more smoothly from the leg portion 13 to the metal shell 3. Furthermore, by providing the equal diameter portion 13A, the shortest portion of the insulator 2 while preventing the boundary portion between the step portion 14 and the leg length portion 13 or the vicinity thereof from coming into contact with the metal shell 3, It is possible to make the distance F smaller, and it is possible to further improve the pre-ignition resistance.
  • the protrusion length PL is set to 1.8 mm or less, the amount of heat received by the center electrode 5 can be reduced, and a decrease in the heat transfer performance of the insulator 2 can be effectively suppressed. As a result, the pre-ignition resistance can be further improved.
  • the center electrode 5 In the case where the diameter difference DS between the outer diameter of the center electrode 5 (main portion 5M) and the inner diameter of the insulator 2 is sufficiently large to be 0.06 mm or more, the center electrode 5 is thermally expanded. Also, the gap between the center electrode 5 and the insulator 2 can be sufficiently maintained. Therefore, breakage of the insulator 2 due to the thermal expansion of the center electrode 5 can be prevented more reliably.
  • the abnormal discharge can be suppressed by providing the thermo pocket portion 30, since the tip of the insulator 2 and the center electrode 5 are separated, the insulator 2 with the center electrode 5 interposed therebetween There is concern that the heat buildup of the In this respect, according to the present embodiment, the amount of heat received by the end portion of the insulator 2 is suppressed to a level corresponding to the ability of the metal shell 3 to draw the heat of the insulator 2. Even if the pulling is aggravated, overheating at the tip of the insulator 2 can be prevented more reliably. That is, it is particularly effective in the plug including the thermo pocket portion 30 to satisfy B / A ⁇ 0.570, D / C ⁇ 0.660, and the like for the insulator 2 and the metal shell 3.
  • the length KL of the leg length along the axis is 11 mm or 15 mm
  • the outer diameter DC of the tip of the center electrode is 2.1 mm or 2.
  • the ignition timing is advanced by a predetermined angle from the regular ignition timing, and the operation is continued for 2 minutes for each ignition timing. The Then, based on the waveform of the current applied to the sample, the ignition timing (preignition generation advance angle) at which the preignition occurred was specified. It should be noted that, as the preignition occurrence advance angle is larger, preignition is less likely to occur, that is, excellent in preignition resistance.
  • FIG. 6 shows test results of a preignition test on a sample in which the length KL of the leg length portion is 11 mm and the outer diameter DC of the center electrode tip portion is 2.6 mm.
  • FIG. 7 shows the test results of the sample in which the length KL of the leg length is 15 mm and the outer diameter DC is 2.6 mm in triangles, the length KL of the leg length is 15 mm, and the outer diameter DC is The test results of the sample of 2.1 mm are shown by squares. The longer the leg length is or the smaller the outer diameter of the tip of the center electrode, the more difficult it is to draw heat from the tip of the insulator, which tends to be disadvantageous in terms of pre-ignition resistance.
  • the inner diameter A of the metal shell was 8.4 mm
  • the outer diameter B of the insulator was changed to change the value of B / A.
  • the ratio (D / C) of the outer diameter D (mm) of the insulator to the inner diameter C (mm) of the metallic shell at a position 4 mm from the front end of the metallic shell along the axis was 66% or less .
  • a thermo pocket was provided between the center electrode and the tip of the axial hole in each sample.
  • the center electrode In the sample in which the outer diameter DC is 2.6 mm, in the sample in which the outer diameter of a portion corresponding to the thermo pocket portion in the center electrode is 2.5 mm and the outer diameter DC is 2.1 mm, the center electrode The outer diameter of the portion corresponding to the thermo pocket portion was 2.0 mm.
  • FIG. 8 shows test results for a sample in which the length KL of the leg length portion is 11 mm and the outer diameter DC of the center electrode tip portion is 2.6 mm.
  • FIG. 9 the test results of the sample in which the length KL of the leg length is 15 mm and the outer diameter DC of the center electrode tip is 2.6 mm are shown by triangles, the length KL of the leg length is 15 mm, and the center is The test results of the sample in which the outer diameter DC of the electrode tip portion is 2.1 mm are shown by squares.
  • the inner diameter A of the metal shell was 8.4 mm
  • B / A was 53.3%.
  • the inner diameter A is set to 8.7 mm or less
  • the insulator is heated and cooled in a well-balanced manner by the combustion gas and fresh air entering the space between the metal shell and the leg length, and the insulator tip portion
  • the amount of heat received at the tip of the insulator depends on the heat transfer performance by the metal shell. It is thought that it is attributable to the fact that the
  • a straight portion with a constant outer diameter extending from the front end toward the rear end is provided at the front end of the insulator, and the length along the axial direction of the straight portion (straight length) Spark plug samples with various changes in SL were prepared, and the above-described preignition test was performed on each sample.
  • the samples for which test results equal to or higher than the standard were obtained To give an evaluation.
  • samples which were inferior in preignition resistance to the above criteria were evaluated as “ ⁇ ”. Table 1 shows the test results of the test.
  • the amount of protrusion of the end of the insulator with respect to the end of the metal shell along the axis was 1.5 mm, and the inner diameter A of the end of the metal shell was 8.4 mm. Furthermore, it is made into the taper shape which diameter-expands the site
  • B / A is 53.3% and D / C is 63.8%
  • a sample with a straight length SL of 5.5 mm or less in other words, a portion of the insulator exceeding 4 mm from the front end to the rear end of the metal shell is the insulation at the front end position of the metal shell It has been found that the sample having a diameter larger than the outer diameter B (mm) of the insulator sufficiently exerts the effect by making B / A, D / C, etc. into the above-mentioned predetermined numerical range.
  • a (mm) be the inner diameter of the metal shell at the tip position of the metal shell
  • B (mm) be the outer diameter of the insulator, and lead the metal shell along the axis
  • the inner diameter of the metal shell is C (mm)
  • the outer diameter of the insulator is D (mm) at a position 4 mm from the rear end, and the position at the rear end beyond 4 mm from the front end of the metal shell along the axis
  • the outer diameter of the insulator (leg length) in Y is Y (mm)
  • B ⁇ By satisfying Y and A ⁇ 8.7, it can be said that very excellent pre-ignition resistance can be realized.
  • the sample of the insulator which changed the value of B / A variously was produced, and the withstand voltage test was done about each sample.
  • the outline of the withstand voltage test is as follows. That is, as shown in FIG. 12, the insulating oil IO is filled in a predetermined case CA, and the ring RG connected to the ground is disposed in the insulating oil IO. Then, after the electrode bar ES for high voltage application is inserted into the axial hole of the sample, the sample is disposed so that the outer periphery of the portion corresponding to the tip of the metal shell in the sample faces the inner periphery of the ring RG. did.
  • the spark is obtained by variously changing the distance E from the end of the metal shell along the axis to the end of the center electrode, with B / A being 57.0%, 53.3%, or 51.3%.
  • the above-described pre-ignition test was performed on a plug sample (inventive product sample) and a spark plug sample (conventional product sample) in which B / A was 60.7% and the distance E was variously changed. .
  • a value (advance angle advance value) obtained by subtracting the preignition occurrence advance angle in the conventional sample from the preignition occurrence advance angle in the invention sample was calculated for each distance E.
  • the test result of the said test is shown in FIG. In FIG.
  • the lead angle improvement value in a sample in which B / A is 57.0% is indicated by a circle
  • the lead angle improvement value in a sample in which B / A is 53.3% is indicated by a triangle
  • the advance improvement value in the sample in which B / A is 51.3% is indicated by a square.
  • the inner diameter A of the end of the metal shell was 8.4 mm
  • the amount of protrusion of the end of the center electrode with respect to the end of the insulator was 1.5 mm.
  • D / C ⁇ 0.660 is satisfied at least for the inventive product samples.
  • each invention sample had excellent pre-ignition resistance compared to the conventional sample
  • the sample with a distance E of less than 2.0 mm or more than 5.0 mm It was found that the improvement effect of the pre-ignition resistance due to the B / A being 57.0% or less is relatively small. This is because when the distance E is less than 2.0 mm, the tip of the insulator is not heated so much, so that even the conventional sample had some degree of pre-ignition resistance, and If the distance E is larger than 5.0 mm, it is considered that the heat dissipation of the insulator by the center electrode is deteriorated because the center electrode is extremely heated.
  • a sample (straight sample) of a spark plug provided with an equal diameter portion at the base end portion of the leg length portion and extending along the axis the outline of the portion of the leg length portion facing the annular projection
  • a sample of the spark plug tape-shaped sample configured to have a tapered shape expanding toward the rear end side without providing an equal diameter portion at the base end of the leg length portion, along the direction orthogonal to the axis.
  • the value (advancing angle fluctuation value) which subtracted the preignition generation advance angle in the taper-shaped sample which made the shortest distance F 0.45 mm from the preignition generation advance angle in each sample was computed for every sample.
  • the test result of the said test is shown in FIG. In FIG. 14, the test results of the straight sample are shown by circles, and the test results of the tapered sample are shown by triangles.
  • the inside diameter A of the end of the metal shell was 8.4 mm
  • the outside diameter DC of the end of the center electrode was 2.6 mm.
  • B / A was 53.3%
  • D / C was 63.8%.
  • the preignition resistance is further improved, and in particular, by setting the shortest distance F to 0.5 mm or less, the effect of improving the preignition resistance is obtained. It became clear that it was exhibited remarkably.
  • the straight sample can realize more excellent pre-ignition resistance as compared to the tapered sample. This is considered to be due to the fact that the heat of the insulator is conducted more smoothly to the metal shell side because the portion approaching the annular protrusion is increased on the surface of the base end portion of the leg length portion.
  • the distance from the end of the metal shell along the axis to the center of the spark discharge gap is 3 mm or 5 mm, and the end of the center electrode with respect to the end of the insulator along the axis
  • the sample of the spark plug which changed protrusion length PL variously was produced.
  • the tip of the sample is heated under the condition that the tip of the center electrode becomes 900 ° C. when the protrusion length PL is 1.0 mm
  • the temperature of the tip of the insulator is analyzed by FEM (finite element method) did.
  • FIG. 15 is a graph showing the relationship between the protrusion length PL and the temperature of the tip of the insulator.
  • the results of the sample in which the firing position distance is 3 mm are indicated by circles, and the results of the sample in which the firing position distance is 5 mm are indicated by triangles.
  • the screw diameter of the screw was M14.
  • the projection length PL it is preferable to set the projection length PL to 1.8 mm or less from the viewpoint of further improving the pre-ignition resistance.
  • FIG. 16 is a graph showing the relationship between the diameter difference DS and the stress generated in the insulator.
  • the result of the sample in which B / A is 0.472 is indicated by circles, and the result of the sample in which B / A is 0.570 is indicated by squares.
  • the screw diameter of the screw portion was M14, and the outer peripheral shape of the insulator was the same.
  • the spark discharge gap 33 is formed between the noble metal tip 31 and the tip of the ground electrode 27.
  • the noble metal tip 31 is not provided.
  • the spark discharge gap 33 may be formed between the tip of the center electrode 5 and the ground electrode 27.
  • the noble metal tip 31 is provided on the center electrode 5, and the noble metal tip 32 is provided on the ground electrode 27, and the spark discharge gap 33 is formed between both the noble metal tips 31 and 32. It is also good.
  • the noble metal tip 32 may be provided at the tip of the ground electrode 27. In this case, the growth inhibition of the flame by the ground electrode 27 is suppressed, and the flame spreadability can be improved.
  • the noble metal tip 32 may be joined to the ground electrode 27 through a pedestal 35 having a linear expansion coefficient between the noble metal tip 32 and the ground electrode 27. .
  • the pedestal 35 can absorb the difference in thermal expansion between the ground electrode 27 and the noble metal tip 32, so that the bonding strength of the noble metal tip 32 can be improved.
  • the tip of the ground electrode 27 may be configured to narrow in width toward the tip of the ground electrode 27. In this case, the flame spreadability can be improved.
  • the center electrode 5 (the noble metal tip 31) and the insulator 2 are disposed to protrude further to the end side in the direction of the axis CL1 and from both the end face and side of the ground electrode 27. Even if the noble metal tip 42 is provided so as to protrude and spark discharge is performed between the noble metal tip 42 and the center electrode 5 (precious metal tip 31) substantially along the direction orthogonal to the axis line CL1. Good. Further, as shown in FIG. 19 (b), the center electrode 5 (the noble metal tip 31) and the insulator 2 are disposed to protrude further to the end side in the direction of the axis CL1 and from both the end surface and side of the ground electrode 27.
  • a spark discharge may be performed substantially along the axis CL1 between the noble metal tip 42 provided to protrude and the center electrode 5 (the noble metal tip 31).
  • the center electrode 5 and the insulator 2 can be further protruded toward the tip end side in the direction of the axis line CL1 as described above, and the center electrode 5 can be protruded. Can improve the ignitability.
  • a chamfered portion 63 may be provided between the side surfaces of the ground electrode 27. In the case where the chamfered portion 63 is provided, the air-fuel mixture easily flows into the spark discharge gap 33 in the form of being wound around the ground electrode 27, and the ignition performance can be further improved.
  • the center electrode 5 When the center electrode 5 is protruded to the end side in the direction of the axis CL1, it may be necessary to further project the ground electrode 27 to the end side in the direction of the axis CL1.
  • the ground electrode 27 when the ground electrode 27 is disposed in a protruding manner, the ground electrode 27 is further heated, and the wear resistance of the noble metal tip 42 bonded to the ground electrode 27 may be reduced. Therefore, when the ground electrode 27 is disposed so as to protrude toward the front end side in the direction of the axis CL1, an inner layer made of a metal material having excellent thermal conductivity may be provided inside the ground electrode 27. In this case, the heat of the noble metal tip 42 can be efficiently conducted to the metal shell 3 through the inner layer, and the decrease in the wear resistance of the noble metal tip 42 can be effectively suppressed.
  • a tapered portion 61 may be provided between the front end surface of the metal shell 3 and the inner peripheral surface.
  • a curved surface 62 convex toward the axis CL1 may be provided between the front end surface of the metal shell 3 and the inner peripheral surface.
  • the outer diameter A of the metal shell 3 is relatively small, 8.7 mm or less, and an abnormal discharge (so-called lateral discharge) along the surface of the insulator 2 between the tip of the metal shell 3 and the center electrode 5 Even in the configuration in which the generation of sparks is more concerned, the generation of abnormal discharge can be prevented more reliably.
  • the inner diameter A of the metal shell 3 is a virtual surface V1 obtained by extending the inner peripheral surface of the metal shell 3 to the tip end side in the axis line CL1 direction
  • the inside diameter of the circle formed by the virtual surface V2 obtained by extending the end surface of the metal fitting 3 to the axis CL1 side is said.
  • ground electrode 27 is joined to the end portion 26 of the metal shell 3, a part of the metal shell (or a tip metal welded in advance to the metal shell)
  • the present invention is also applicable to the case where the ground electrode is formed by scraping a part of (a) (for example, JP-A-2006-236906).
  • the tool engaging portion 19 has a hexagonal cross section, but the shape of the tool engaging portion 19 is not limited to such a shape.
  • it may be a Bi-HEX (modified 12-corner) shape [ISO 22977: 2005 (E)] or the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Spark Plugs (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)

Abstract

The disclosed sparkplug (1) is provided with a central electrode (5) extending in the direction of an axis line (CL1), an insulator (2) and a main metal fitting (3). The main metal fitting (3) has an annular protrusion (21); the insulator (2) is provided with a step portion (14) which engages with an annular protrusion (13), and a long leg portion (13) extending from the end of the step portion (14). Defining that in the tip position of the main metal fitting (3), the inner diameter of the main metal fitting (3) is A (mm) and the outer diameter of the insulator (2) is B (mm), that 4mm from the tip of the main metal fitting (3) along the axis line (CL1) towards the rear, the inner diameter of the main metal fitting (3) is C (mm) and the outer diameter of the insulator is D (mm), and that more than 4mm along the axis line (CL1) from the end of the main metal fitting (3) on the rear side, the outer diameter of the long leg portion (13) is Y, the following expressions are satisfied: 0.472 ? B / A ? 0.570, 0.472 ? D / C ? 0.660, B < Y, and A ? 8.7. By this means, the sparkplug achieves excellent resistance to pre-ignition.

Description

スパークプラグSpark plug
 本発明は、内燃機関等に使用されるスパークプラグに関する。 The present invention relates to a spark plug used for an internal combustion engine or the like.
 スパークプラグは、内燃機関(エンジン)等の燃焼装置に取付けられ、燃焼室内の混合気への着火のために用いられるものである。一般的にスパークプラグは、軸孔を有する絶縁体と、当該軸孔に挿通される中心電極と、絶縁体の外周に設けられる主体金具と、主体金具の先端部に設けられ、中心電極との間で火花放電間隙を形成する接地電極とを備える。また、一般に主体金具と絶縁体とは、主体金具の内周面において軸線側に向けて突出する環状突部と、絶縁体の外周面に設けられる段部とが、直接又は間接的に係止された状態で固定される(例えば、特許文献1等参照)。 A spark plug is attached to a combustion device such as an internal combustion engine (engine) and used to ignite a mixture in a combustion chamber. In general, a spark plug is provided at an insulator having an axial hole, a center electrode inserted into the axial hole, a metal shell provided on the outer periphery of the insulator, and a tip end of the metal shell. And a ground electrode that forms a spark discharge gap therebetween. Also, in general, the metal shell and the insulator are directly or indirectly engaged with the annular projection projecting toward the axial line on the inner peripheral surface of the metal shell and the stepped portion provided on the outer peripheral surface of the insulator. It fixes in the state which was carried out (for example, refer patent document 1 grade | etc.,).
 ところで、絶縁体の先端温度が所定温度(例えば、1100℃)以上に過熱されてしまうと、過熱された絶縁体の先端が着火源となってしまうおそれがある。すなわち、スパークプラグの点火前であるにも関わらず、混合気へと着火してしまう現象(いわゆる、プレイグニッション)が生じてしまうおそれがある。 By the way, if the tip temperature of the insulator is overheated to a predetermined temperature (for example, 1100 ° C.) or more, the tip of the overheated insulator may become an ignition source. That is, there is a possibility that a phenomenon (so-called pre-ignition) of igniting to air-fuel mixture may occur even though the spark plug is before ignition.
 そこで、耐プレイグニッション性の向上を図るべく、中心電極の外径と絶縁体の内径との径差をより小さくすることで、絶縁体先端部の熱を中心電極に対してスムーズに伝導可能とし、ひいては絶縁体先端部の過熱、及び、これに起因するプレイグニッションの発生を防止する手法が提案されている。 Therefore, in order to improve the pre-ignition resistance, the heat at the tip of the insulator can be conducted smoothly to the center electrode by reducing the difference in diameter between the outer diameter of the center electrode and the inner diameter of the insulator. Thus, a method has been proposed to prevent the overheating of the insulator tip and the occurrence of preignition resulting from this.
特開2008-123989号公報JP 2008-123989 A
 ところが、上記手法を採用した場合には、中心電極の熱膨張に伴って、絶縁体が押し割られてしまうおそれがある。絶縁体が割れてしまうと、中心電極及び主体金具間において電流のリークが生じてしまい、正常な火花放電ができなくなってしまうおそれがある。 However, when the above method is adopted, there is a possibility that the insulator is pushed and split with the thermal expansion of the center electrode. If the insulator is broken, current leakage may occur between the center electrode and the metal shell, which may make it impossible to perform normal spark discharge.
 本発明は、上記事情を鑑みてなされたものであり、その目的は、中心電極と絶縁体との径差を変更することなく、優れた耐プレイグニッション性を実現することができるスパークプラグを提供することにある。 The present invention has been made in view of the above circumstances, and an object thereof is to provide a spark plug which can realize excellent pre-ignition resistance without changing the difference in diameter between the center electrode and the insulator. It is to do.
 以下、上記目的を解決するのに適した各構成につき、項分けして説明する。なお、必要に応じて対応する構成に特有の作用効果を付記する。 Hereinafter, each configuration suitable for solving the above object will be described in terms of terms. In addition, the operation effect peculiar to a corresponding structure is added as needed.
 構成1.本構成のスパークプラグは、軸線方向に延びる棒状の中心電極と、
 前記中心電極の外周に設けられた絶縁体と、
 前記絶縁体の外周に設けられた筒状の主体金具と、
 前記主体金具の先端部から延びる接地電極とを備えたスパークプラグであって、
 前記主体金具は、自身の内周部分に前記軸線側に向けて突出する環状突部を有し、
 前記絶縁体は、
 前記環状突部に対して直接又は間接的に係止される段部と、
 前記段部の先端から先端側に向けて延びる脚長部とを備え、
 前記主体金具の先端位置における、前記主体金具の内径をA(mm)とし、前記絶縁体の外径をB(mm)とし、
 前記軸線に沿って前記主体金具の先端から4mm後端側の位置における、前記主体金具の内径をC(mm)とし、前記絶縁体の外径をD(mm)とし、
 前記軸線に沿って前記主体金具の先端から4mmを超えて後端側の位置における、前記脚長部の外径をY(mm)としたとき、次の式(1)~(4)を満たすことを特徴とする。
Configuration 1. The spark plug of this configuration comprises: a rod-like center electrode extending in an axial direction;
An insulator provided on an outer periphery of the center electrode;
A cylindrical metal shell provided on the outer periphery of the insulator;
A spark plug including a ground electrode extending from a front end portion of the metal shell;
The metal shell has an annular projection projecting toward the axis on the inner peripheral portion of the metal shell,
The insulator is
A step which is directly or indirectly locked to the annular projection;
And a long leg extending from the tip of the step toward the tip,
The inner diameter of the metal shell at the end position of the metal shell is A (mm), and the outer diameter of the insulator is B (mm),
The inner diameter of the metal shell is C (mm) and the outer diameter of the insulator is D (mm) at a position 4 mm from the front end of the metal shell along the axis.
Assuming that the outer diameter of the long leg portion is Y (mm) at a position on the rear end side exceeding 4 mm from the front end of the metal shell along the axis, the following formulas (1) to (4) are satisfied. It is characterized by
 0.472≦B/A≦0.570…(1)
 0.472≦D/C≦0.660…(2)
 B<Y…(3)
 A≦8.7…(4)
 尚、主体金具の先端面と内周面との間がテーパ状や湾曲面状に形成されている場合、「主体金具の内径A」とあるのは、主体金具の内周面を軸線方向先端側に延長した仮想面と、主体金具の先端面を軸線側に延長した仮想面とが交わってなる円の内径をいう。
0.472 ≦ B / A ≦ 0.570 (1)
0.472 ≦ D / C ≦ 0.660 (2)
B <Y (3)
A ≦ 8.7 (4)
When the front end surface of the metal shell and the inner peripheral surface are formed in a tapered shape or a curved surface, the “inner diameter A of the metal shell” means the inner peripheral surface of the metal shell as the axial direction front end It means the inside diameter of the circle formed by the virtual surface extended to the side and the virtual surface extended to the axial line side of the end surface of the metal shell.
 上記構成1によれば、主体金具の先端位置における主体金具の内径A、及び、絶縁体の外径B(mm)について、B/A≦0.570を満たすとともに、軸線CL1に沿って主体金具の先端から4mm後端側の位置における、主体金具の内径C、及び、絶縁体の外径D(mm)について、D/C≦0.660を満たすように構成されている。すなわち、絶縁体先端部の熱は、自身の段部等から環状突部等を介して主体金具側へと引かれるところ、上記構成1によれば、特に加熱されやすい絶縁体先端部(絶縁体のうち、その先端と当該先端より4mm後端側の位置との間の部位)の受熱量を、主体金具の内径の大きさ(つまり、主体金具による絶縁体の熱を引く性能)に応じた分に抑制することができる。 According to the above configuration 1, the inner diameter A of the metal shell at the tip position of the metal shell and the outer diameter B (mm) of the insulator satisfy B / A ≦ 0.570, and the metal shell along the axis line CL1 With respect to the inner diameter C of the metal shell and the outer diameter D (mm) of the insulator at a position 4 mm from the front end of the rear end, D / C ≦ 0.660 is satisfied. That is, the heat at the tip of the insulator is drawn to the metal shell side from the step portion of the insulator and the like via the annular projection and the like. According to the above configuration 1, the insulator tip particularly easily heated (insulator Among the above, the amount of heat received from the front end to a position 4 mm from the front end according to the size of the inner diameter of the metal shell (that is, the ability to draw the heat of the insulator by the metal shell) It can be suppressed to a minute.
 また、絶縁体先端部の熱が脚長部を介して主体金具側へと伝導されることを鑑みて、上記構成1によれば、軸線に沿って主体金具の先端から4mmを超えて後端側の位置における脚長部の外径Yについて、B<Yを満たすように構成されている。すなわち、脚長部のうち絶縁体先端部の熱を引く経路に相当する部分が十分に大きな断面積を有するように構成されている。従って、絶縁体先端部の熱を主体金具側へと効果的に伝導することができる。 Further, in view of the fact that the heat at the front end of the insulator is conducted to the metal shell side through the leg length portion, according to the above configuration 1, the rear end side exceeds 4 mm from the front end of the metal shell along the axis. The outer diameter Y of the leg length portion at the position of (1) is configured to satisfy B <Y. That is, a portion of the leg length portion that corresponds to the heat drawing path of the insulator tip portion is configured to have a sufficiently large cross-sectional area. Therefore, the heat of the insulator tip can be effectively conducted to the metal shell side.
 さらに、主体金具の先端における内径Aについては、A≦8.7を満たすように比較的小径とされている一方で、B/A≦0.570を満たすことで主体金具と絶縁体との間に形成される空間の開口がある程度の大きさを有するように構成されている。このため、燃焼サイクルにおいては、前記空間(いわゆる、ガスボリューム)に対して高温の燃焼ガスと低温の新気とが交互に侵入するところ、燃焼ガス及び新気によって絶縁体がバランスよく加熱・冷却されることとなる。その結果、絶縁体の過熱をより確実に防止することができる。 Furthermore, while the inner diameter A at the end of the metal shell is relatively small so as to satisfy A ≦ 8.7, by satisfying B / A ≦ 0.570, between the metal shell and the insulator. The opening of the space formed in is configured to have a certain size. For this reason, in the combustion cycle, where the high temperature combustion gas and the low temperature fresh air intrude alternately into the space (so-called gas volume), the insulator is heated and cooled in a well-balanced manner by the combustion gas and the new air. It will be done. As a result, overheating of the insulator can be prevented more reliably.
 以上のように、上記構成1によれば、A≦8.7等を満たすことで絶縁体先端部の過熱を防止しつつ、B/A≦0.570及びD/C≦0.660を満たすことで絶縁体先端部の受熱量を主体金具の熱引き性能に応じた分に抑制することができ、さらに、B<Yを満たすことで絶縁体先端部の熱を主体金具側へと効果的に引くことができる。その結果、耐プレイグニッション性を飛躍的に向上させることができる。 As described above, according to the above-described configuration 1, by satisfying A ≦ 8.7 or the like, B / A ≦ 0.570 and D / C ≦ 0.660 are prevented while preventing overheating of the tip of the insulator. As a result, the amount of heat received by the insulator tip can be reduced to the amount corresponding to the heat transfer performance of the metal shell, and by satisfying B <Y, the heat at the insulator tip can be effectively transferred to the metal shell side. Can be As a result, the pre-ignition resistance can be dramatically improved.
 また、上記構成1によれば、中心電極と絶縁体との間の径差を変更することなく、主体金具と絶縁体との径差等を変更することで、耐プレイグニッション性を向上させることができる。従って、中心電極の熱膨張による絶縁体の押し割れといった事態をより確実に防止できる。 Further, according to the above configuration 1, the preignition resistance is improved by changing the diameter difference between the metal shell and the insulator without changing the diameter difference between the center electrode and the insulator. Can. Therefore, it is possible to more reliably prevent a situation such as cracking of the insulator due to thermal expansion of the center electrode.
 尚、絶縁体において十分な耐電圧性能を実現するためには、絶縁体の肉厚をある程度確保する必要がある。従って、0.472≦B/A、及び、0.472≦D/Cを満たすように絶縁体を構成することが望ましい。 In order to realize sufficient withstand voltage performance in the insulator, it is necessary to secure the thickness of the insulator to a certain extent. Therefore, it is desirable to configure the insulator to satisfy 0.472 ≦ B / A and 0.472 ≦ D / C.
 構成2.本構成のスパークプラグは、上記構成1において、B/A≦0.540
を満たすことを特徴とする。
Configuration 2. In the spark plug of this configuration, in the above configuration 1, B / A ≦ 0.540
It is characterized by satisfying.
 上記構成2によれば、絶縁体先端部における受熱量をより一層抑制することができ、耐プレイグニッション性の更なる向上を図ることができる。 According to the above-mentioned configuration 2, the amount of heat received at the insulator tip can be further suppressed, and the pre-ignition resistance can be further improved.
 構成3.本構成のスパークプラグは、上記構成1又は2において、前記軸線に沿った前記主体金具の先端から前記中心電極の先端までの距離をE(mm)としたとき、
 2.0≦E≦5.0
を満たすことを特徴とする。
Configuration 3. In the spark plug of this configuration, in the above configuration 1 or 2, when a distance from the tip of the metal shell along the axis to the tip of the center electrode is E (mm),
2.0 ≦ E ≦ 5.0
It is characterized by satisfying.
 着火性の向上を図るという面では、発火位置がより燃焼室の中心に近づくように中心電極の先端部を軸線方向先端側へと突き出して配置することが効果的である。ところが、中心電極の先端部を突き出して配置すれば、主体金具と同様に絶縁体の熱を引く機能を有する中心電極がより加熱されてしまい、ひいては絶縁体先端部の熱が引かれにくくなってしまう。さらに、中心電極の突き出しに伴い絶縁体も軸線方向先端側へと突き出して配置され得るため、絶縁体先端部が一層加熱されることとなってしまう。すなわち、中心電極の先端部を軸線方向先端側へと突き出して配置した場合には、耐プレイグニッション性の低下を招いてしまうおそれがある。 From the viewpoint of improving the ignition performance, it is effective to dispose the tip of the center electrode so as to project toward the tip in the axial direction so that the ignition position is closer to the center of the combustion chamber. However, if the tip of the center electrode is disposed in a protruding manner, the center electrode having the function of drawing the heat of the insulator as in the case of the metal shell will be heated more, and thus the heat of the tip of the insulator will not be drawn easily. I will. Furthermore, since the insulator can also be disposed so as to protrude toward the end in the axial direction along with the protrusion of the center electrode, the insulator tip end is further heated. That is, when the tip of the center electrode is disposed so as to protrude toward the tip end side in the axial direction, there is a possibility that the pre-ignition resistance is lowered.
 この点、上記構成3によれば、軸線に沿った主体金具の先端から中心電極の先端までの距離E(mm)について、2.0≦Eとされている。従って、着火性の向上を期待できる一方で、耐プレイグニッション性の低下が懸念されるが、上記構成1等を採用することで、耐プレイグニッション性をより効果的に向上させることができる。換言すれば、上記構成1等による作用効果は、中心電極が突き出して配置され、耐プレイグニッション性の低下がより懸念される場合において、特に効果的に奏されるのである。 In this respect, according to Configuration 3, the distance E (mm) from the tip of the metal shell along the axis to the tip of the center electrode is 2.0 ≦ E. Therefore, while the improvement of the ignition performance can be expected, there is a concern about the reduction of the pre-ignition resistance, but the adoption of the configuration 1 and the like makes it possible to more effectively improve the pre-ignition resistance. In other words, the operation and effect of the configuration 1 and the like are particularly effective when the center electrode is disposed to be protruded and there is a concern that the pre-ignition resistance is lowered.
 尚、中心電極を過度に突き出して配置してしまうと、中心電極の耐久性が低下してしまう。また、中心電極が極端に加熱されてしまうため、中心電極を介した絶縁体の熱引きが悪化してしまい、上記構成1等を採用することで耐プレイグニッション性の向上を図ることができるものの、その効果がやや小さくなってしまうおそれがある。従って、中心電極における耐久性低下を防止しつつ、上記構成1等による作用効果をより顕著に発揮させるためには、E≦5.0を満たすように中心電極等を構成することが好ましい。 If the center electrode is disposed so as to protrude excessively, the durability of the center electrode is reduced. In addition, since the center electrode is extremely heated, the heat buildup of the insulator via the center electrode is deteriorated, and by adopting the configuration 1 or the like, the preignition resistance can be improved. There is a risk that the effect will be slightly reduced. Therefore, it is preferable to configure the center electrode or the like so as to satisfy E ≦ 5.0 in order to exhibit the effects of the configuration 1 and the like more remarkably while preventing the deterioration in the durability of the center electrode.
 構成4.本構成のスパークプラグは、上記構成1乃至3のいずれかにおいて、前記軸線を含む断面において、
 前記脚長部のうち前記環状突部に対向する部位の外形線は、前記軸線に沿って延び、
 前記軸線と直交する方向に沿った前記脚長部と前記環状突部との間の最短距離をF(mm)としたとき、
 F≦0.5
を満たすことを特徴とする。
Configuration 4. In any one of the above configurations 1 to 3, the spark plug according to the present configuration has a cross section including the axis,
An outline of a portion of the leg length facing the annular projection extends along the axis,
When the shortest distance between the leg long portion and the annular projection along the direction orthogonal to the axis is F (mm),
F ≦ 0.5
It is characterized by satisfying.
 上記構成4によれば、脚長部の基端部と環状突部とが十分に接近するとともに、脚長部の基端部のうち、環状突部に対して接近する部位の表面積を増大させることができる。このため、脚長部から主体金具へとよりスムーズに熱が伝導されることとなり、その結果、耐プレイグニッション性の一層の向上を図ることができる。 According to the above configuration 4, the proximal end portion of the leg length portion and the annular projection sufficiently approach, and the surface area of the proximal end portion of the leg length portion approaching the annular projection is increased. it can. For this reason, heat is conducted more smoothly from the leg length portion to the metal shell, and as a result, the pre-ignition resistance can be further improved.
 ところで、例えば、脚長部のうち環状突部に対向する部位を軸線方向先端側に向けて先細るテーパ状とした場合において、脚長部の基端部のうち環状突部に接近する部位の表面積を増大させようとすると、絶縁体のうち段部と脚長部との境界部分又はその近傍部分が主体金具に対して接触してしまうことがある。当該境界部分等が主体金具に接触してしまうと、境界部分を起点とした割れが絶縁体に生じてしまうおそれがある。 By the way, for example, in the case where a portion of the leg length facing the annular protrusion is tapered toward the tip end side in the axial direction, the surface area of the portion approaching the annular protrusion of the base end of the leg length If it is going to increase, the boundary part of the step part and leg length part of the insulator or its vicinity part may contact with a metallic shell. When the boundary portion or the like comes in contact with the metal shell, there is a risk that a crack starting from the boundary portion may occur in the insulator.
 この点、上記構成4によれば、脚長部のうち環状突部に対向する部位が軸線に沿って延びる形状とされているため、脚長部の基端部のうち環状突部に接近する部位の表面積を増大させつつ、主体金具に対する前記境界部分等の接触をより確実に防止することができる。すなわち、上記構成4を採用することで、絶縁体の損傷を防止しつつ、耐プレイグニッション性の更なる向上を図ることができる。 In this respect, according to the above configuration 4, the portion of the leg length facing the annular projection is formed to extend along the axis, so that the portion of the proximal end of the leg that approaches the annular projection is It is possible to prevent the contact of the boundary portion and the like with the metal shell more reliably while increasing the surface area. That is, by adopting the above-mentioned configuration 4, it is possible to further improve the pre-ignition resistance while preventing damage to the insulator.
 構成5.本構成のスパークプラグは、上記構成1乃至4のいずれかにおいて、前記主体金具は、
 燃焼装置の取付孔に螺合するためのねじ部と、
 前記ねじ部の後端側に設けられ、前記ねじ部のねじ径よりも大径に形成された座部とを備え、
 前記軸線に沿った前記主体金具の先端から前記座部までの距離が17.5mm以上とされることを特徴とする。
Configuration 5. In the spark plug of this configuration, in any one of the above configurations 1 to 4, the metal shell is
A screw for screwing into a mounting hole of the combustion device;
And a seat portion provided on the rear end side of the screw portion and formed larger in diameter than the screw diameter of the screw portion,
The distance between the front end of the metal shell and the seat along the axis is 17.5 mm or more.
 上記構成5によれば、軸線に沿った主体金具の先端から座部までの距離(いわゆる、ねじリーチ)が17.5mm以上とされており、燃焼装置に対する主体金具の接触面積を十分に確保することができる。従って、主体金具の熱を燃焼装置側へとよりスムーズに伝えることができ、ひいては絶縁体の熱をより効果的に引くことができる。その結果、耐プレイグニッション性を一層向上させることができる。 According to the above configuration 5, the distance from the end of the metal shell along the axis to the seat portion (so-called screw reach) is 17.5 mm or more, and a sufficient contact area of the metal shell to the combustion device is secured. be able to. Therefore, the heat of the metal shell can be more smoothly transferred to the combustion device side, and thus the heat of the insulator can be more effectively drawn. As a result, the pre-ignition resistance can be further improved.
 構成6.本構成のスパークプラグは、上記構成1乃至5のいずれかにおいて、前記軸線に沿った前記絶縁体の先端に対する前記中心電極の先端の突出長が1.8mm以下とされることを特徴とする。 Configuration 6. In any one of the above configurations 1 to 5, the spark plug according to this configuration is characterized in that a protrusion length of the tip of the center electrode with respect to the tip of the insulator along the axis is 1.8 mm or less.
 上記構成6によれば、突出長が1.8mm以下とされているため、中心電極の受熱量を低減させることができ、絶縁体における熱引き性能の低下を効果的に抑制することができる。その結果、耐プレイグニッション性をより一層向上させることができる。 According to the above configuration 6, since the protrusion length is 1.8 mm or less, it is possible to reduce the amount of heat received by the center electrode, and it is possible to effectively suppress the reduction in the heat transfer performance of the insulator. As a result, the pre-ignition resistance can be further improved.
 構成7.本構成のスパークプラグは、上記構成1乃至6のいずれかにおいて、前記中心電極は、自身の後端側に径方向外側に膨出し、前記絶縁体の内周面に係止される鍔部を有し、
 前記鍔部の先端よりも前記軸線方向先端側において、前記中心電極の外径と前記絶縁体の内径との径差が0.06mm以上とされることを特徴とする。
Configuration 7. In any one of the above configurations 1 to 6, in the spark plug having this configuration, the center electrode bulges radially outward to the rear end side of itself, and the flange portion engaged with the inner circumferential surface of the insulator Have
A difference in diameter between the outer diameter of the center electrode and the inner diameter of the insulator may be 0.06 mm or more on the tip end side in the axial direction with respect to the tip end of the flange portion.
 上記構成7によれば、中心電極の外径と絶縁体の内径との径差が0.06mm以上と十分に大きく確保されている。従って、中心電極が熱膨張した場合であっても、中心電極と絶縁体との隙間を十分に維持することができる。その結果、中心電極の熱膨張に伴う絶縁体の破損をより確実に防止することができる。 According to the seventh aspect, the difference in diameter between the outer diameter of the center electrode and the inner diameter of the insulator is sufficiently large, 0.06 mm or more. Therefore, even when the center electrode thermally expands, the gap between the center electrode and the insulator can be sufficiently maintained. As a result, damage to the insulator due to the thermal expansion of the center electrode can be prevented more reliably.
スパークプラグの構成を示す一部破断正面図である。It is a partially broken front view which shows the structure of a spark plug. スパークプラグの先端部の構成を示す部分拡大断面図である。FIG. 4 is a partial enlarged cross-sectional view showing the configuration of the tip end portion of the spark plug. 絶縁碍子の別例を説明するための部分拡大断面図である。It is a partial expanded sectional view for demonstrating another example of an insulator. 中心電極等の別例を説明するための部分拡大断面図である。It is a partial expanded sectional view for demonstrating another example, such as a center electrode. 中心電極の外径と絶縁碍子の内径との径差等を示す部分拡大断面図である。It is a partial expanded sectional view which shows the diameter difference etc. of the outer diameter of a center electrode, and the internal diameter of an insulator. B/Aを種々変更したサンプルにおける、プレイグニッション試験の結果を示すグラフである。It is a graph which shows the result of the preignition test in the sample which changed B / A variously. B/Aを種々変更したサンプルにおける、プレイグニッション試験の結果を示すグラフである。It is a graph which shows the result of the preignition test in the sample which changed B / A variously. D/Cを種々変更したサンプルにおける、プレイグニッション試験の結果を示すグラフである。It is a graph which shows the result of the preignition test in the sample which changed D / C variously. D/Cを種々変更したサンプルにおける、プレイグニッション試験の結果を示すグラフである。It is a graph which shows the result of the preignition test in the sample which changed D / C variously. 主体金具の先端の内径Aを種々変更したサンプルにおける、プレイグニッション試験の結果を示すグラフである。It is a graph which shows the result of the preignition test in the sample which changed the internal diameter A of the front-end | tip of a main metal fitting variously. ストレート部を備えるサンプルの構成を示す部分拡大断面図である。It is a partial expanded sectional view which shows the structure of a sample provided with a straight part. 耐電圧試験で用いた試験装置を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the test apparatus used by the withstand voltage test. 距離Eを種々変更したサンプルにおける、従来品サンプルに対する進角向上値を示すグラフである。It is a graph which shows the advance angle improvement value with respect to the conventional product sample in the sample which changed the distance E variously. 最短距離Fを種々変更したサンプルにおける、進角変動値を示すグラフである。It is a graph which shows an advance angle change value in a sample which changed variously the shortest distance F. 突出長PLを種々変更したサンプルにおける、絶縁碍子先端部の温度を示すグラフである。It is a graph which shows the temperature of the insulator tip part in the sample which changed protrusion length PL variously. 径差DSを種々変更したサンプルにおける、絶縁碍子に発生した応力を示すグラフである。It is a graph which shows the stress which generate | occur | produced in the insulator in the sample which changed diameter difference DS variously. (a),(b)は、別の実施形態におけるスパークプラグの構成を示す一部破断拡大正面図である。(A), (b) is a partially broken enlarged front view which shows the structure of the spark plug in another embodiment. (a),(b)は、別の実施形態におけるスパークプラグの構成を示す一部破断拡大正面図である。(A), (b) is a partially broken enlarged front view which shows the structure of the spark plug in another embodiment. (a),(b)は、別の実施形態におけるスパークプラグの構成を示す一部破断拡大正面図である。(A), (b) is a partially broken enlarged front view which shows the structure of the spark plug in another embodiment. (a),(b)は、別の実施形態における主体金具等の構成を示す一部破断拡大正面図である。(A), (b) is a partially broken enlarged front view which shows the structure of the metal shell etc. in another embodiment.
 以下に、一実施形態について図面を参照しつつ説明する。図1は、スパークプラグ1を示す一部破断正面図である。尚、図1では、スパークプラグ1の軸線CL1方向を図面における上下方向とし、下側をスパークプラグ1の先端側、上側を後端側として説明する。 Hereinafter, an embodiment will be described with reference to the drawings. FIG. 1 is a partially cutaway front view showing a spark plug 1. In FIG. 1, the direction of the axis CL1 of the spark plug 1 is referred to as the vertical direction in the drawing, and the lower side is referred to as the front end side of the spark plug 1 and the upper side is referred to as the rear end.
 スパークプラグ1は、筒状をなす絶縁体としての絶縁碍子2、これを保持する筒状の主体金具3などから構成されるものである。 The spark plug 1 is composed of an insulator 2 as a tubular insulator and a tubular metal shell 3 for holding the insulator 2.
 絶縁碍子2は、周知のようにアルミナ等を焼成して形成されており、その外形部において、後端側に形成された後端側胴部10と、当該後端側胴部10よりも先端側において径方向外向きに突出形成された大径部11と、当該大径部11よりも先端側においてこれよりも細径に形成された中胴部12と、当該中胴部12よりも先端側においてこれよりも細径に形成された脚長部13とを備えている。加えて、絶縁碍子2のうち、大径部11、中胴部12、及び、大部分の脚長部13は、主体金具3の内部に収容されている。また、中胴部12と脚長部13との連接部には段部14が形成されており、当該段部14にて絶縁碍子2が主体金具3に係止されている。 As is well known, the insulator 2 is formed by firing alumina or the like, and in the outer shape portion thereof, the rear end side body portion 10 formed on the rear end side and the front end than the rear end side body portion 10 A large diameter portion 11 formed to project radially outward on the side, a middle body portion 12 formed smaller in diameter on the tip side than the large diameter portion 11, and a tip end than the middle body portion 12 And a leg length portion 13 formed smaller in diameter on the side. In addition, of the insulator 2, the large diameter portion 11, the middle body portion 12, and most of the leg length portions 13 are accommodated in the metal shell 3. Further, a step portion 14 is formed at a connecting portion between the middle body portion 12 and the leg length portion 13, and the insulator 2 is engaged with the metal shell 3 at the step portion 14.
 さらに、絶縁碍子2には、軸線CL1に沿って軸孔4が貫通形成されており、当該軸孔4の先端側には中心電極5が挿入、固定されている。当該中心電極5は、銅又は銅合金からなる内層5Aと、ニッケル(Ni)を主成分とするNi合金からなる外層5Bとにより構成されている。また、中心電極5は、全体として棒状(円柱状)をなし、その先端面が平坦に形成されるとともに、絶縁碍子2の先端から突出している。 Furthermore, an axial hole 4 is formed through the insulator 2 along the axis line CL 1, and the center electrode 5 is inserted and fixed to the tip end side of the axial hole 4. The center electrode 5 is composed of an inner layer 5A made of copper or a copper alloy and an outer layer 5B made of a Ni alloy containing nickel (Ni) as a main component. Further, the center electrode 5 has a bar-like (cylindrical) shape as a whole, and its tip end face is formed flat, and protrudes from the tip of the insulator 2.
 加えて、中心電極5は、自身の先端部に、貴金属合金(例えば、白金合金やイリジウム合金等)からなる貴金属チップ31を備えている。さらに、中心電極5の先端部は、自身の後端側部位と比較して若干小径に形成されており、軸孔4の先端側と中心電極5との間には、環状の空間であるサーモポケット部30が形成されている。当該サーモポケット部30により、中心電極5から主体金具3までの絶縁碍子2の表面に沿った距離や、中心電極5と絶縁碍子2の先端との間の距離を比較的大きくすることができる。このため、いわゆる横飛火等、絶縁碍子2の表面を這った異常な火花放電をより確実に防止できるようになっている。尚、前記サーモポケット部30を設けない中心電極5の構成としてもよい。また、貴金属チップ31を設けることなく、中心電極5を構成することとしてもよい。 In addition, the center electrode 5 is provided with a noble metal tip 31 made of a noble metal alloy (for example, a platinum alloy, an iridium alloy, etc.) at its tip. Furthermore, the front end portion of the center electrode 5 is formed to have a diameter slightly smaller than that of its own rear end side portion, and an annular space between the front end side of the axial hole 4 and the center electrode 5 Pocket portion 30 is formed. The thermo pocket portion 30 can make the distance from the center electrode 5 to the metal shell 3 along the surface of the insulator 2 and the distance between the center electrode 5 and the tip of the insulator 2 relatively large. For this reason, it is possible to more reliably prevent an abnormal spark discharge, such as a so-called side spark, etc., which crawls the surface of the insulator 2. The center electrode 5 may be configured without the thermo pocket portion 30. Further, the center electrode 5 may be configured without providing the noble metal tip 31.
 加えて、図2に示すように、中心電極5は、自身の後端側において径方向外側に膨出形成された鍔部5Fと、当該鍔部5Fの先端から軸線CL1に沿って延びる略同一外径の本体部5Mとを備えている。本実施形態において、本体部5Mの最後端部の外径DCは比較的小径(例えば、2.6mm以下)とされている。 In addition, as shown in FIG. 2, the center electrode 5 has a collar 5F formed radially outward at the rear end side of itself and substantially the same as extending from the tip of the collar 5F along the axis line CL1 And an outer diameter main body 5M. In the present embodiment, the outer diameter DC of the rearmost end of the main body 5M is relatively small (e.g., 2.6 mm or less).
 図1に戻り、軸孔4の後端側には、絶縁碍子2の後端から突出した状態で、端子電極6が挿入、固定されている。 Returning to FIG. 1, the terminal electrode 6 is inserted and fixed to the rear end side of the shaft hole 4 in a state of projecting from the rear end of the insulator 2.
 さらに、軸孔4の中心電極5と端子電極6との間には、円柱状の抵抗体7が配設されている。当該抵抗体7の両端部は、導電性のガラスシール層8,9を介して、中心電極5と端子電極6とにそれぞれ電気的に接続されている。 Furthermore, a cylindrical resistor 7 is disposed between the center electrode 5 of the axial hole 4 and the terminal electrode 6. Both ends of the resistor 7 are electrically connected to the center electrode 5 and the terminal electrode 6 via the conductive glass seal layers 8 and 9 respectively.
 加えて、前記主体金具3は、低炭素鋼等の金属により筒状に形成されており、その外周面にはスパークプラグ1を内燃機関や燃料電池改質器等の燃焼装置に取付けるためのねじ部(雄ねじ部)15が形成されている。また、ねじ部15の後端側の外周面には、前記ねじ部15より大径の座部16が形成され、ねじ部15後端のねじ首17にはリング状のガスケット18が嵌め込まれている。スパークプラグ1を前記燃焼装置に取付けた際には、ガスケット18を介して前記座部16が燃焼装置に対して圧接されるようになっている。加えて、主体金具3の後端側には、スパークプラグ1を燃焼装置に取付ける際にレンチ等の工具を係合させるための断面六角形状の工具係合部19が設けられるとともに、後端部において絶縁碍子2を保持するための加締め部20が設けられている。 In addition, the metal shell 3 is formed of a metal such as low carbon steel in a cylindrical shape, and a screw for attaching the spark plug 1 to a combustion device such as an internal combustion engine or a fuel cell reformer on the outer peripheral surface thereof. A portion (male screw portion) 15 is formed. Further, a seat portion 16 having a diameter larger than that of the screw portion 15 is formed on the outer peripheral surface on the rear end side of the screw portion 15, and a ring-shaped gasket 18 is fitted in the screw neck 17 of the screw portion 15 rear end. There is. When the spark plug 1 is attached to the combustion device, the seat portion 16 is pressed against the combustion device via the gasket 18. In addition, the rear end side of the metal shell 3 is provided with a tool engagement portion 19 having a hexagonal cross section for engaging a tool such as a wrench when attaching the spark plug 1 to the combustion device, and the rear end portion A caulking portion 20 for holding the insulator 2 is provided in FIG.
 尚、本実施形態では、スパークプラグ1を燃焼装置に取付けた際に、当該燃焼装置とスパークプラグ1との接触面積を十分に確保すべく、軸線CL1方向に沿った、主体金具3の先端から座部16までの距離MLが17.5mm以上とされている。 In the present embodiment, when the spark plug 1 is attached to the combustion device, in order to secure a sufficient contact area between the combustion device and the spark plug 1, from the end of the metal shell 3 along the direction of the axis CL1. The distance ML to the seat portion 16 is 17.5 mm or more.
 また、主体金具3の内周面には、軸線CL1側に向けて突出し、軸線CL1を中心として環状をなす環状突部21が形成されている。そして、絶縁碍子2は、主体金具3の後端側から先端側に向かって挿入され、自身の段部14が主体金具3の環状突部21に係止された状態で、主体金具3の後端側の開口部を径方向内側に加締めること、つまり上記加締め部20を形成することによって固定されている。尚、絶縁碍子2の段部14と主体金具3の環状突部21との間には、円環状の板パッキン22が介在されている。これにより、燃焼室内の気密性を保持し、燃焼室内に晒される絶縁碍子2の脚長部13と主体金具3の内周面との隙間に入り込む燃料ガスが外部に漏れないようになっている。 Further, on the inner peripheral surface of the metal shell 3, an annular protrusion 21 which protrudes toward the axis line CL1 and which forms an annular shape centering on the axis line CL1 is formed. Then, the insulator 2 is inserted from the rear end side to the front end side of the metal shell 3, and the step portion 14 of the insulator 2 is engaged with the annular projection 21 of the metal shell 3. The end openings are fixed by radially inward crimping, that is, by forming the crimped portions 20. An annular plate packing 22 is interposed between the step portion 14 of the insulator 2 and the annular projection 21 of the metal shell 3. Thereby, the airtightness in the combustion chamber is maintained, and the fuel gas entering the gap between the leg length 13 of the insulator 2 exposed to the combustion chamber and the inner peripheral surface of the metal shell 3 does not leak to the outside.
 さらに、加締めによる密閉をより完全なものとするため、主体金具3の後端側においては、主体金具3と絶縁碍子2との間に環状のリング部材23,24が介在され、リング部材23,24間にはタルク(滑石)25の粉末が充填されている。すなわち、主体金具3は、板パッキン22、リング部材23,24及びタルク25を介して絶縁碍子2を保持している。 Furthermore, in order to make the sealing by caulking more complete, on the rear end side of the metal shell 3, ring members 23 and 24 are interposed between the metal shell 3 and the insulator 2, and the ring member 23 , 24 are filled with a powder of talc (talc) 25. That is, the metal shell 3 holds the insulator 2 via the plate packing 22, the ring members 23 and 24, and the talc 25.
 また、主体金具3の先端部26には、自身の略中間が曲げ返されて、その側面が中心電極5の先端部と対向する接地電極27が接合されている。中心電極5に接合された貴金属チップ31、及び、接地電極27の先端部の間には火花放電間隙33が形成されており、当該火花放電間隙33において軸線CL1にほぼ沿った方向で気中にて火花放電が行われるようになっている。 Further, at the front end portion 26 of the metal shell 3, a ground electrode 27 whose end face is bent to the front end portion of the center electrode 5 is joined. A spark discharge gap 33 is formed between the noble metal tip 31 bonded to the center electrode 5 and the tip of the ground electrode 27. In the spark discharge gap 33, the spark discharge gap 33 is exposed to air substantially along the axis CL1. Spark discharge is to be performed.
 加えて、図2に示すように、軸線CL1方向に沿った主体金具3の先端位置における、主体金具3の内径をA(mm)としたとき、8.0≦A≦8.7とされている。 In addition, as shown in FIG. 2, when the inside diameter of the metal shell 3 at the end position of the metal shell 3 along the direction of the axis line CL1 is A (mm), 8.0 ≦ A ≦ 8.7 There is.
 さらに、軸線CL1方向に沿った主体金具3の先端位置における絶縁碍子2(脚長部13)の外径は、主体金具3の内径に対応して設定されており、本実施形態では、主体金具3の先端位置における絶縁碍子2の外径をB(mm)としたとき、0.472≦B/A≦0.570(より好ましくは、0.472≦B/A≦0.540)を満たすように構成されている。 Furthermore, the outer diameter of the insulator 2 (leg length 13) at the tip end position of the metal shell 3 along the direction of the axis CL1 is set to correspond to the inner diameter of the metal shell 3, and in the present embodiment, the metal shell 3 So that 0.472 ≦ B / A ≦ 0.570 (more preferably 0.472 ≦ B / A ≦ 0.540), where B (mm) is the outer diameter of the insulator 2 at the tip position of Is configured.
 さらに、主体金具3のうち前記環状突部21よりも先端側に位置する先端側孔部28は、略同一の内径とされている一方で、前記脚長部13は、軸線CL1方向後端側に向けて徐々に拡径するテーパ状をなしている。但し、本実施形態では、主体金具3の先端から軸線CL1に沿って所定位置後端側において、主体金具3の内径に対する脚長部13の外径の割合が過度に大きくならないように脚長部13が形成されている。すなわち、軸線CL1に沿って主体金具3の先端から4mm後端側の位置における、主体金具3の内径をC(mm)とし、絶縁碍子2(脚長部13)の外径をD(mm)としたとき、0.472≦D/C≦0.660を満たすように脚長部13が形成されている。また、軸線CL1に沿って主体金具3の先端から4mmを超えて後端側の位置においては、当該位置における脚長部13の外径をY(mm)としたとき、B<Yとされている。尚、主体金具3の内径Cは、8.0mm以上8.7mm以下とされている。 Furthermore, while the front end side hole part 28 located in the front end side rather than the said cyclic | annular protrusion 21 among the metal shell 3 is made into the substantially identical internal diameter, the said leg long part 13 is the rear end side in the axis line CL1 direction It has a tapered shape that gradually expands in diameter. However, in the present embodiment, on the rear end side of the metal shell 3 from the front end of the metal shell 3 along the axis line CL1, the ratio of the outer diameter of the leg length 13 to the inner diameter of the metal shell 3 does not become excessively large. It is formed. That is, the inner diameter of the metal shell 3 is C (mm) and the outer diameter of the insulator 2 (leg length 13) is D (mm) at a position 4 mm from the front end of the metal shell 3 along the axis CL1. When doing, the leg length 13 is formed to satisfy 0.472 ≦ D / C ≦ 0.660. Further, when the outer diameter of the leg long portion 13 at this position is Y (mm) at a position of 4 mm from the front end of the metal shell 3 along the axis line CL1 and at the rear end side, B <Y . The inner diameter C of the metal shell 3 is set to 8.0 mm or more and 8.7 mm or less.
 さらに、本実施形態においては、耐汚損性の向上を図るべく、軸線CL1方向に沿った脚長部13の長さKLが比較的大きく(例えば、15mm以上と)されている。 Furthermore, in the present embodiment, the length KL of the leg length 13 along the direction of the axis CL1 is relatively large (for example, 15 mm or more) in order to improve the contamination resistance.
 加えて、中心電極5の先端部は、主体金具3の先端から軸線CL1方向先端側へと突き出して配置されており、軸線CL1に沿った主体金具3の先端から中心電極5(貴金属チップ31)の先端までの距離をE(mm)としたとき、2.0≦E≦5.0を満たすものとされている。 In addition, the end of the center electrode 5 is disposed so as to protrude from the end of the metal shell 3 toward the end in the direction of the axis CL1 and from the end of the metal shell 3 along the axis CL1 to the center electrode 5 (noble metal tip 31) It is assumed that 2.0 ≦ E ≦ 5.0 is satisfied, where E (mm) is the distance to the tip of the lens.
 また、前記脚長部13の後端部には、略同一の外径を有する円柱状の等径部13Aが形成されており、当該等径部13Aの外周面が、環状突部21の内周面のうち軸線CL1に沿って延びる面に対して対向している。すなわち、軸線CL1を含む断面において、脚長部13(等径部13A)のうち環状突部21に対向する部位の外形線が、軸線CL1に沿って延びるものとされている。 Further, a cylindrical equal diameter portion 13A having substantially the same outer diameter is formed at the rear end portion of the leg length portion 13, and the outer peripheral surface of the equal diameter portion 13A corresponds to the inner periphery of the annular protrusion 21. It faces to the surface extending along the axis line CL1 among the surfaces. That is, in the cross section including the axis line CL1, an outline of a portion of the leg length portion 13 (equal diameter portion 13A) facing the annular protrusion 21 extends along the axis line CL1.
 さらに、前記等径部13Aは、環状突部21に対して比較的接近するようにして構成されており、軸線CL1と直交する方向に沿った等径部13Aと環状突部21との間の最短距離をF(mm)としたとき、F≦0.5とされている。 Furthermore, the equal diameter portion 13A is configured to be relatively close to the annular protrusion 21, and is located between the equal diameter portion 13A and the annular protrusion 21 along a direction orthogonal to the axis line CL1. When the shortest distance is F (mm), F ≦ 0.5.
 併せて、前記軸線CL1に沿った、絶縁碍子2の先端に対する中心電極5(貴金属チップ31)の先端の突出長PLが1.8mm以下とされている。 At the same time, the projection length PL of the tip of the center electrode 5 (the noble metal tip 31) with respect to the tip of the insulator 2 along the axis line CL1 is set to 1.8 mm or less.
 尚、図3に示すように、等径部13Aを設けることなく、脚長部53を構成し、脚長部53の基端部をテーパ状に形成することとしてもよい。 As shown in FIG. 3, the leg length portion 53 may be configured and the base end portion of the leg length portion 53 may be tapered without providing the equal diameter portion 13A.
 また、図4に示すように、中心電極5の本体部5Mの外周面と絶縁碍子2の内周面との間に、環状の隙間を設けることとしてもよい。この場合には、図5に示すように、中心電極5(本体部5M)の外径と絶縁碍子2の内径との径差DSを0.06mm以上(DS/2を0.03mm以上)とすることが好ましい。 Further, as shown in FIG. 4, an annular gap may be provided between the outer peripheral surface of the main portion 5 M of the center electrode 5 and the inner peripheral surface of the insulator 2. In this case, as shown in FIG. 5, the diameter difference DS between the outer diameter of the center electrode 5 (main portion 5M) and the inner diameter of the insulator 2 is 0.06 mm or more (DS / 2 is 0.03 mm or more). It is preferable to do.
 以上詳述したように、本実施形態によれば、主体金具3の先端位置における主体金具3の内径A、及び、絶縁碍子2の外径B(mm)について、B/A≦0.570を満たすとともに、軸線CL1に沿って主体金具3の先端から4mm後端側の位置における、主体金具3の内径C、及び、絶縁碍子2の外径D(mm)について、D/C≦0.660を満たすように構成されている。このため、特に加熱されやすい絶縁碍子2の先端部の受熱量を、主体金具3の内径の大きさ(つまり、主体金具3による絶縁碍子2の熱を引く性能)に応じた分に抑制することができる。 As described above in detail, according to the present embodiment, B / A ≦ 0.570 for the inner diameter A of the metal shell 3 and the outer diameter B (mm) of the insulator 2 at the tip end position of the metal shell 3 D / C ≦ 0.660 for the inner diameter C of the metal shell 3 and the outer diameter D (mm) of the insulator 2 at a position 4 mm from the front end of the metal shell 3 along the axis line CL1 It is configured to meet the For this reason, the amount of heat received at the tip of the insulator 2 which is particularly easily heated is suppressed according to the size of the inner diameter of the metal shell 3 (that is, the ability to draw the heat of the insulator 2 by the metal shell 3). Can.
 また、軸線CL1に沿って主体金具3の先端から4mmを超えて後端側の位置における脚長部13の外径Yについて、B<Yを満たすように構成されている。すなわち、脚長部13のうち絶縁碍子2の先端部の熱を引く経路に相当する部分が十分に大きな断面積を有するように構成されている。従って、絶縁碍子2の先端部の熱を主体金具3側へと効果的に伝導することができる。 Further, the outer diameter Y of the leg long portion 13 at a position on the rear end side exceeding 4 mm from the front end of the metal shell 3 along the axis line CL1 is configured to satisfy B <Y. That is, the portion of the leg length portion 13 corresponding to the path for drawing heat at the tip of the insulator 2 is configured to have a sufficiently large cross-sectional area. Therefore, the heat of the tip portion of the insulator 2 can be effectively conducted to the metal shell 3 side.
 さらに、主体金具3の先端における内径Aについては、A≦8.7を満たすように比較的小径とされている一方で、B/A≦0.570を満たすことで主体金具3と絶縁碍子2(脚長部13)との間に形成される空間の開口がある程度の大きさを有するように構成されている。このため、燃焼サイクルにおいては、前記空間(いわゆる、ガスボリューム)に対して高温の燃焼ガスと低温の新気とが交互に侵入するところ、燃焼ガス及び新気によって絶縁碍子2がバランスよく加熱・冷却されることとなる。その結果、絶縁碍子2の過熱をより確実に防止することができる。 Furthermore, the inner diameter A at the end of the metal shell 3 has a relatively small diameter so as to satisfy A ≦ 8.7, while the metal shell 3 and the insulator 2 are satisfied by satisfying B / A ≦ 0.570. The opening of the space formed between (the leg length 13) is configured to have a certain size. Therefore, in the combustion cycle, the combustion gas and the fresh air allow the insulator 2 to be heated in a well-balanced manner since the combustion gas and the fresh air alternately enter the space (so-called gas volume) into which the high temperature combustion gas and the low temperature fresh air intrude. It will be cooled. As a result, overheating of the insulator 2 can be prevented more reliably.
 以上のように、本実施形態によれば、A≦8.7等を満たすことで絶縁碍子2の先端部の過熱を防止しつつ、B/A≦0.570及びD/C≦0.660を満たすことで絶縁碍子2の先端部の受熱量を主体金具3の熱引き性能に応じた分に抑制することができ、さらに、B<Yを満たすことで絶縁碍子2の先端部の熱を主体金具3側へと効果的に引くことができる。その結果、耐プレイグニッション性を飛躍的に向上させることができる。 As described above, according to the present embodiment, B / A ≦ 0.570 and D / C ≦ 0.660 while preventing overheating of the tip portion of the insulator 2 by satisfying A ≦ 8.7 or the like. By satisfying the above, the amount of heat received at the tip of the insulator 2 can be suppressed to the amount corresponding to the heat transfer performance of the metal shell 3. Further, by satisfying B <Y, the heat at the tip of the insulator 2 can be reduced. It can be effectively pulled to the metal shell 3 side. As a result, the pre-ignition resistance can be dramatically improved.
 また、本実施形態によれば、中心電極5と絶縁碍子2との間の径差を変更することなく、主体金具3と絶縁碍子2との径差等を変更することで、耐プレイグニッション性を向上させることができる。従って、中心電極5の熱膨張による絶縁碍子2の押し割れといった事態をより確実に防止できる。 Further, according to the present embodiment, the preignition resistance is improved by changing the diameter difference between the metal shell 3 and the insulator 2 without changing the diameter difference between the center electrode 5 and the insulator 2. Can be improved. Therefore, it is possible to more reliably prevent a situation such as a crack in the insulator 2 due to the thermal expansion of the center electrode 5.
 さらに、0.472≦B/A、及び、0.472≦D/Cを満たすように絶縁碍子2が構成されているため、絶縁碍子2において十分な耐電圧性能を確保することができる。 Furthermore, since the insulator 2 is configured to satisfy 0.472 ≦ B / A and 0.472 ≦ D / C, sufficient withstand voltage performance can be secured in the insulator 2.
 加えて、軸線CL1に沿った主体金具3の先端から中心電極5の先端までの距離E(mm)について、2.0≦E≦5.0とされている。そのため、着火性の向上が図られるとともに、上述した耐プレイグニッション性の向上効果が顕著に発揮されることとなる。 In addition, the distance E (mm) from the end of the metal shell 3 along the axis line CL1 to the end of the center electrode 5 is 2.0 ≦ E ≦ 5.0. Therefore, the ignition performance is improved, and the above-described effect of improving the pre-ignition resistance is significantly exhibited.
 併せて、脚長部13と環状突部21との間の最短距離Fが0.5mm以下とされているため、絶縁碍子2(脚長部13)から主体金具3へとより効率よく熱を伝導することができる。その結果、耐プレイグニッション性をより一層向上させることができる。 In addition, since the shortest distance F between the leg length 13 and the annular projection 21 is 0.5 mm or less, heat is more efficiently conducted from the insulator 2 (leg length 13) to the metal shell 3 be able to. As a result, the pre-ignition resistance can be further improved.
 また、脚長部13の基端部には等径部13Aが設けられており、脚長部13のうち環状突部21に対して接近する部位の表面積を増大させることができる。このため、脚長部13から主体金具3へとよりスムーズに熱を伝導することができる。さらに、等径部13Aを設けることで、絶縁碍子2のうち段部14と脚長部13との境界部分又はその近傍部分が主体金具3に対して接触してしまうことを防止しつつ、前記最短距離Fをより小さなものとすることが可能となり、耐プレイグニッション性の更なる向上を図ることができる。 In addition, an equal diameter portion 13A is provided at the base end portion of the leg length portion 13, and it is possible to increase the surface area of the portion of the leg length portion 13 which approaches the annular protrusion 21. Therefore, heat can be conducted more smoothly from the leg portion 13 to the metal shell 3. Furthermore, by providing the equal diameter portion 13A, the shortest portion of the insulator 2 while preventing the boundary portion between the step portion 14 and the leg length portion 13 or the vicinity thereof from coming into contact with the metal shell 3, It is possible to make the distance F smaller, and it is possible to further improve the pre-ignition resistance.
 加えて、突出長PLが1.8mm以下とされているため、中心電極5の受熱量を低減させることができ、絶縁碍子2における熱引き性能の低下を効果的に抑制することができる。その結果、耐プレイグニッション性をより一層向上させることができる。 In addition, since the protrusion length PL is set to 1.8 mm or less, the amount of heat received by the center electrode 5 can be reduced, and a decrease in the heat transfer performance of the insulator 2 can be effectively suppressed. As a result, the pre-ignition resistance can be further improved.
 また、中心電極5(本体部5M)の外径と絶縁碍子2の内径との径差DSを0.06mm以上と十分に大きく確保する場合には、中心電極5が熱膨張した場合であっても、中心電極5と絶縁碍子2との隙間を十分に維持することができる。そのため、中心電極5の熱膨張に伴う絶縁碍子2の破損をより確実に防止することができる。 In the case where the diameter difference DS between the outer diameter of the center electrode 5 (main portion 5M) and the inner diameter of the insulator 2 is sufficiently large to be 0.06 mm or more, the center electrode 5 is thermally expanded. Also, the gap between the center electrode 5 and the insulator 2 can be sufficiently maintained. Therefore, breakage of the insulator 2 due to the thermal expansion of the center electrode 5 can be prevented more reliably.
 尚、前記サーモポケット部30を設けることで、異常放電の抑制を図ることができるものの、絶縁碍子2の先端部と中心電極5とが離間してしまうため、中心電極5を介した絶縁碍子2の熱引きが悪化してしまうことが懸念される。この点、本実施形態によれば、絶縁碍子2の先端部の受熱量が、主体金具3による絶縁碍子2の熱を引く性能に応じた分に抑制されており、中心電極5を介した熱引きが悪化してしまったとしても、絶縁碍子2の先端部における過熱をより確実に防止することができる。すなわち、絶縁碍子2及び主体金具3について、B/A≦0.570やD/C≦0.660等を満たすことは、サーモポケット部30を備えるプラグにおいて特に有効である。 Incidentally, although the abnormal discharge can be suppressed by providing the thermo pocket portion 30, since the tip of the insulator 2 and the center electrode 5 are separated, the insulator 2 with the center electrode 5 interposed therebetween There is concern that the heat buildup of the In this respect, according to the present embodiment, the amount of heat received by the end portion of the insulator 2 is suppressed to a level corresponding to the ability of the metal shell 3 to draw the heat of the insulator 2. Even if the pulling is aggravated, overheating at the tip of the insulator 2 can be prevented more reliably. That is, it is particularly effective in the plug including the thermo pocket portion 30 to satisfy B / A ≦ 0.570, D / C ≦ 0.660, and the like for the insulator 2 and the metal shell 3.
 次に、上記実施形態によって奏される作用効果を確認すべく、軸線に沿った脚長部の長さKLを11mm又は15mmとするとともに、中心電極先端部の外径DCを2.1mm又は2.6mmとした上で、主体金具の先端位置における、主体金具の内径A(mm)に対する絶縁碍子の外径B(mm)の割合(B/A)を種々変更したスパークプラグのサンプルを作製し、各サンプルについて、JIS D1606に基づくプレイグニッション試験を行った。プレイグニッション試験の概要は次の通りである。すなわち、各サンプルを排気量1.6L、4気筒DOHCエンジンに取付けた上で、点火時期を正規の点火時期から所定角度ずつ進角させた状態で、各点火時期ごとに2分間運転を継続させた。そして、サンプルに印加される電流の波形に基づいて、プレイグニッションが発生した点火時期(プレイグニッション発生進角)を特定した。尚、プレイグニッション発生進角が大きいほど、プレイグニッションが発生しにくい、すなわち耐プレイグニッション性に優れることを意味する。 Next, in order to confirm the operation and effect exhibited by the above embodiment, the length KL of the leg length along the axis is 11 mm or 15 mm, and the outer diameter DC of the tip of the center electrode is 2.1 mm or 2.. After setting the diameter to 6 mm, prepare a spark plug sample in which the ratio (B / A) of the outer diameter B (mm) of the insulator to the inner diameter A (mm) of the metal shell at the tip position of the metal shell The preignition test based on JISD1606 was done about each sample. The outline of the preignition test is as follows. That is, after each sample is attached to a 1.6 L displacement, 4-cylinder DOHC engine, the ignition timing is advanced by a predetermined angle from the regular ignition timing, and the operation is continued for 2 minutes for each ignition timing. The Then, based on the waveform of the current applied to the sample, the ignition timing (preignition generation advance angle) at which the preignition occurred was specified. It should be noted that, as the preignition occurrence advance angle is larger, preignition is less likely to occur, that is, excellent in preignition resistance.
 図6に、脚長部の長さKLを11mm、中心電極先端部の外径DCを2.6mmとしたサンプルにおけるプレイグニッション試験の試験結果を示す。また、図7に、脚長部の長さKLを15mmとし、前記外径DCを2.6mmとしたサンプルの試験結果を三角で示し、脚長部の長さKLを15mmとし、前記外径DCを2.1mmとしたサンプルの試験結果を四角で示す。尚、脚長部が長かったり、中心電極先端部の外径が小さかったりするほど、絶縁碍子先端部の熱を引きにくくなるため、耐プレイグニッション性の面で不利になりやすい。また、各サンプルともに主体金具の内径Aを8.4mmとし、絶縁碍子の外径Bを変更することで、B/Aの値を変更した。さらに、軸線に沿って主体金具の先端から4mm後端側の位置における、主体金具の内径C(mm)に対する絶縁碍子の外径D(mm)の割合(D/C)を66%以下とした。加えて、以下の試験においては、各サンプルともに、中心電極と軸孔の先端部との間にサーモポケット部を設けた。また、外径DCを2.6mmとしたサンプルにおいては、中心電極のうちサーモポケット部に対応する部位の外径を2.5mmとし、外径DCを2.1mmとしたサンプルにおいては、中心電極のうちサーモポケット部に対応する部位の外径を2.0mmとした。 FIG. 6 shows test results of a preignition test on a sample in which the length KL of the leg length portion is 11 mm and the outer diameter DC of the center electrode tip portion is 2.6 mm. Further, FIG. 7 shows the test results of the sample in which the length KL of the leg length is 15 mm and the outer diameter DC is 2.6 mm in triangles, the length KL of the leg length is 15 mm, and the outer diameter DC is The test results of the sample of 2.1 mm are shown by squares. The longer the leg length is or the smaller the outer diameter of the tip of the center electrode, the more difficult it is to draw heat from the tip of the insulator, which tends to be disadvantageous in terms of pre-ignition resistance. In each sample, the inner diameter A of the metal shell was 8.4 mm, and the outer diameter B of the insulator was changed to change the value of B / A. Furthermore, the ratio (D / C) of the outer diameter D (mm) of the insulator to the inner diameter C (mm) of the metallic shell at a position 4 mm from the front end of the metallic shell along the axis was 66% or less . In addition, in the following tests, a thermo pocket was provided between the center electrode and the tip of the axial hole in each sample. Further, in the sample in which the outer diameter DC is 2.6 mm, in the sample in which the outer diameter of a portion corresponding to the thermo pocket portion in the center electrode is 2.5 mm and the outer diameter DC is 2.1 mm, the center electrode The outer diameter of the portion corresponding to the thermo pocket portion was 2.0 mm.
 さらに、前記D/Cを種々変更したサンプルを作製し、各サンプルについて上述のプレイグニッション試験を行った。図8に、脚長部の長さKLを11mm、中心電極先端部の外径DCを2.6mmとしたサンプルにおける試験結果を示す。また、図9に、脚長部の長さKLを15mmとし、中心電極先端部の外径DCを2.6mmとしたサンプルの試験結果を三角で示し、脚長部の長さKLを15mmとし、中心電極先端部の外径DCを2.1mmとしたサンプルの試験結果を四角で示す。尚、当該試験においては、各サンプルともに、主体金具の内径Aを8.4mmとし、B/Aを53.3%とした。 Furthermore, the sample which changed said D / C variously was produced, and the above-mentioned preignition test was done about each sample. FIG. 8 shows test results for a sample in which the length KL of the leg length portion is 11 mm and the outer diameter DC of the center electrode tip portion is 2.6 mm. Also, in FIG. 9, the test results of the sample in which the length KL of the leg length is 15 mm and the outer diameter DC of the center electrode tip is 2.6 mm are shown by triangles, the length KL of the leg length is 15 mm, and the center is The test results of the sample in which the outer diameter DC of the electrode tip portion is 2.1 mm are shown by squares. In each test, the inner diameter A of the metal shell was 8.4 mm, and B / A was 53.3%.
 併せて、B/Aを57.0%、D/Cを66.0%、又は、B/Aを53.3%、D/Cを63.8%としつつ、主体金具の先端部の内径Aを種々変更したスパークプラグのサンプルを作製し、各サンプルについて上述のプレイグニッション試験を行った。図10に、B/Aを57.0%、D/Cを66.0%としたサンプルの試験結果を丸印で示し、B/Aを53.3%、D/Cを63.8%としたサンプルの試験結果を三角で示す。尚、各サンプルともに脚長部の長さKLを15mmとし、中心電極先端部の外形DCを2.6mmとした。 In addition, while the B / A is 57.0%, the D / C is 66.0%, or the B / A is 53.3%, and the D / C is 63.8%, the inner diameter of the end of the metal shell The samples of the spark plug which changed A variously were produced, and the above-mentioned preignition test was done about each sample. In FIG. 10, the test result of the sample which made B / A 57.0% and D / C 66.0% is shown by a circle, B / A 53.3%, D / C 63.8% Test results of the samples taken are shown by triangles. In each sample, the length KL of the leg length was 15 mm, and the outer diameter DC of the tip of the center electrode was 2.6 mm.
 図6~10に示すように、B/Aを57.0%以下、D/Cを66.0%以下としつつ、主体金具の先端部の内径Aを8.7mm以下としたサンプルは、プレイグニッション発生進角が比較的大きなものとなり、優れた耐プレイグニッション性を有することが分かった。これは、内径Aを8.7mm以下等としたことで、主体金具と脚長部との間の空間に侵入する燃焼ガスと新気とにより絶縁碍子がバランスよく加熱・冷却され、絶縁碍子先端部の過熱が抑制されたこと、及び、B/Aを57.0%以下、D/Cを66.0%以下としたことで、絶縁碍子先端部における受熱量が主体金具による熱引き性能に応じた分に抑制されたことに起因すると考えられる。 As shown in FIGS. 6 to 10, samples in which the inner diameter A of the tip of the metal shell is 8.7 mm or less while B / A is 57.0% or less and D / C is 66.0% or less It has been found that the ignition advance angle is relatively large, and the pre-ignition resistance is excellent. This is because the inner diameter A is set to 8.7 mm or less, the insulator is heated and cooled in a well-balanced manner by the combustion gas and fresh air entering the space between the metal shell and the leg length, and the insulator tip portion By suppressing the overheat of B, and setting B / A to 57.0% or less, and D / C to 66.0% or less, the amount of heat received at the tip of the insulator depends on the heat transfer performance by the metal shell. It is thought that it is attributable to the fact that the
 また、図6及び図7に示すように、B/Aを54.0%以下とすることで、より一層優れた耐プレイグニッション性を実現できることが確認された。 Moreover, as shown in FIG.6 and FIG.7, it was confirmed that the further outstanding pre-ignition resistance can be implement | achieved by B / A being 54.0% or less.
 次いで、図11に示すように、絶縁碍子の先端部に、先端から後端側に向けて延びる一定外径のストレート部を設けるとともに、当該ストレート部の軸線方向に沿った長さ(ストレート長)SLを種々変更したスパークプラグのサンプルを作製し、各サンプルについて上述のプレイグニッション試験を行った。ここで、絶縁碍子の先端部にストレート部を設けなかった(テーパ状に形成した)サンプルにおけるプレイグニッション試験の試験結果を基準として、当該基準と同等以上の試験結果が得られたサンプルは「○」の評価を下すこととした。一方で、前記基準よりも耐プレイグニッション性に劣っていたサンプルは「×」の評価を下すこととした。表1に、当該試験の試験結果を示す。尚、各サンプルともに、軸線に沿った主体金具の先端に対する絶縁碍子の先端の突き出し量を1.5mmとし、主体金具の先端部の内径Aを8.4mmとした。さらに、絶縁碍子のうちストレート部より後端側の部位を後端側に向けて徐々に拡径するテーパ状とした。また、基準となるサンプルにおいては、B/Aを53.3%、D/Cを63.8%とし、他のサンプルについては、B/A≦57.0%、及び、D/C≦66.0%を満たすように構成した。 Next, as shown in FIG. 11, a straight portion with a constant outer diameter extending from the front end toward the rear end is provided at the front end of the insulator, and the length along the axial direction of the straight portion (straight length) Spark plug samples with various changes in SL were prepared, and the above-described preignition test was performed on each sample. Here, on the basis of the test results of the preignition test on the sample in which the straight portion was not provided at the tip of the insulator (taper-shaped), the samples for which test results equal to or higher than the standard were obtained To give an evaluation. On the other hand, samples which were inferior in preignition resistance to the above criteria were evaluated as “×”. Table 1 shows the test results of the test. In each sample, the amount of protrusion of the end of the insulator with respect to the end of the metal shell along the axis was 1.5 mm, and the inner diameter A of the end of the metal shell was 8.4 mm. Furthermore, it is made into the taper shape which diameter-expands the site | part of the rear end side from a straight part gradually toward a rear end side among insulators. In the reference sample, B / A is 53.3% and D / C is 63.8%, and for the other samples, B / A ≦ 57.0% and D / C ≦ 66. It was configured to satisfy .0%.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、ストレート長SLを5.5mm超としたサンプル、換言すれば、ストレート部の長さを主体金具の先端から後端側に向けて4mm超としたサンプルは、B/AやD/Cを上記所定の数値範囲としたことによる効果が十分に得られないことが明らかとなった。これは、脚長部の基端側部位のボリュームが減少したため、脚長部を介して絶縁碍子の先端部の熱を主体金具側へと伝導することが難しくなってしまったためであると考えられる。 As shown in Table 1, a sample having a straight length SL of more than 5.5 mm, in other words, a sample having a straight portion length of more than 4 mm from the front end of the metal shell toward the rear end, is B / A. It became clear that the effect by making D / C into the said predetermined numerical range is not fully acquired. It is considered that this is because it has become difficult to conduct the heat of the distal end portion of the insulator to the metal shell side through the leg length portion because the volume of the proximal end portion of the leg length portion decreases.
 これに対して、ストレート長SLを5.5mm以下としたサンプル、換言すれば、絶縁碍子のうち主体金具の先端から後端側に向けて4mmを超えた部位が、主体金具の先端位置における絶縁碍子の外径B(mm)よりも拡径されたサンプルは、B/AやD/C等を上記所定の数値範囲としたことによる効果が十分に発揮されることが分かった。 On the other hand, a sample with a straight length SL of 5.5 mm or less, in other words, a portion of the insulator exceeding 4 mm from the front end to the rear end of the metal shell is the insulation at the front end position of the metal shell It has been found that the sample having a diameter larger than the outer diameter B (mm) of the insulator sufficiently exerts the effect by making B / A, D / C, etc. into the above-mentioned predetermined numerical range.
 以上の試験結果を総合的に勘案して、主体金具の先端位置における、主体金具の内径をA(mm)とし、絶縁碍子の外径をB(mm)とし、軸線に沿って主体金具の先端から4mm後端側の位置における、主体金具の内径をC(mm)とし、絶縁碍子の外径をD(mm)とし、軸線に沿って主体金具の先端から4mmを超えて後端側の位置における、絶縁碍子(脚長部)の外径をY(mm)としたとき、B/A≦0.570(57.0%)、D/C≦0.660(66.0%)、B<Y、及び、A≦8.7を満たすことで、非常に優れた耐プレイグニッション性を実現できるといえる。 Taking the above test results into consideration comprehensively, let A (mm) be the inner diameter of the metal shell at the tip position of the metal shell, B (mm) be the outer diameter of the insulator, and lead the metal shell along the axis The inner diameter of the metal shell is C (mm) and the outer diameter of the insulator is D (mm) at a position 4 mm from the rear end, and the position at the rear end beyond 4 mm from the front end of the metal shell along the axis When the outer diameter of the insulator (leg length) in Y is Y (mm), B / A ≦ 0.570 (57.0%), D / C ≦ 0.660 (66.0%), B < By satisfying Y and A ≦ 8.7, it can be said that very excellent pre-ignition resistance can be realized.
 また、耐プレイグニッション性のより一層の向上を図るという観点からは、B/A≦0.540を満たすように構成することがより好ましいといえる。 Further, from the viewpoint of further improving the pre-ignition resistance, it can be said that it is more preferable to be configured to satisfy B / A ≦ 0.540.
 次に、脚長部の長さKLを11mm又は15mmとした上で、B/Aの値を種々変更した絶縁碍子のサンプルを作製し、各サンプルについて耐電圧試験を行った。耐電圧試験の概要は次の通りである。すなわち、図12に示すように、所定のケースCAに絶縁油IOを満たすとともに、アースに接続されたリングRGを前記絶縁油IO中に配置した。そして、高電圧印加用の電極棒ESをサンプルの軸孔に挿通した上で、サンプルのうち主体金具の先端に対応する部位の外周とリングRGの内周とが対向するようにしてサンプルを配置した。その上で、前記電極棒ESに対して20kVの高電圧を印加し、サンプルに放電による貫通が発生するか否かを確認した。ここで、貫通が発生しなかったサンプルは、耐電圧性能に優れるとして「○」の評価を下し、一方で、貫通が発生したサンプルは、耐電圧性能に劣るとして「×」の評価を下すこととした。表2に、脚長部の長さKLを11mmとしたサンプルの試験結果を示し、表3に、脚長部の長さKLを15mmとしたサンプルの試験結果を示す。尚、各サンプルともに、先端部の外径DCを2.6mmとした中心電極をほぼ隙間なく挿設可能な軸孔を有するとともに、内径Aを8.4mmとした主体金具に対して挿通可能な外形形状とした。 Next, after making the length KL of the leg length part 11 mm or 15 mm, the sample of the insulator which changed the value of B / A variously was produced, and the withstand voltage test was done about each sample. The outline of the withstand voltage test is as follows. That is, as shown in FIG. 12, the insulating oil IO is filled in a predetermined case CA, and the ring RG connected to the ground is disposed in the insulating oil IO. Then, after the electrode bar ES for high voltage application is inserted into the axial hole of the sample, the sample is disposed so that the outer periphery of the portion corresponding to the tip of the metal shell in the sample faces the inner periphery of the ring RG. did. Then, a high voltage of 20 kV was applied to the electrode bar ES, and it was confirmed whether penetration by discharge occurred in the sample. Here, a sample in which penetration did not occur was evaluated as "o" because of excellent withstand voltage performance, while a sample in which penetration occurred was evaluated as "x" as poor in withstand voltage performance. I decided. Table 2 shows the test results of the sample in which the length KL of the leg length portion is 11 mm, and Table 3 shows the test results of the sample in which the length KL of the leg length portion is 15 mm. Each sample has an axial hole into which the center electrode with an outer diameter DC at the tip of 2.6 mm can be inserted almost without a gap, and can be inserted into the metal shell with an inner diameter A of 8.4 mm. It has an outer shape.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表2及び表3に示すように、脚長部の長さに関わらず、B/Aを47.2%以上としたサンプルは、貫通が発生することなく、優れた耐電圧性能を有することが明らかとなった。これは、B/Aを47.2%以上としたことで、絶縁体の肉厚を十分に確保できたことによると考えられる。 As shown in Tables 2 and 3, regardless of the length of the leg length, it is clear that the sample having B / A of 47.2% or more has excellent withstand voltage performance without occurrence of penetration. It became. This is considered to be due to the fact that the thickness of the insulator can be sufficiently secured by setting B / A to 47.2% or more.
 以上の試験結果より、耐電圧性能の向上を図るべく、0.472≦B/Aを満たすように構成することが好ましいといえる。また、上記試験結果より、主体金具の内径C、及び、絶縁碍子の外径Dについても、0.472≦D/Cを満たすことが好ましいといえる。 From the above test results, in order to improve the withstand voltage performance, it can be said that it is preferable to configure so as to satisfy 0.472 ≦ B / A. From the above test results, it is preferable that 0.472 ≦ D / C be satisfied for the inner diameter C of the metal shell and the outer diameter D of the insulator.
 次に、B/Aを57.0%、53.3%、又は、51.3%とした上で、軸線に沿った主体金具の先端から中心電極の先端までの距離Eを種々変更したスパークプラグのサンプル(発明品サンプル)と、B/Aを60.7%とした上で、前記距離Eを種々変更したスパークプラグのサンプル(従来品サンプル)とについて、上述のプレイグニッション試験を行った。そして、発明品サンプルにおけるプレイグニッション発生進角から従来品サンプルにおけるプレイグニッション発生進角を減算した値(進角向上値)を、各距離Eごとに算出した。図13に、当該試験の試験結果を示す。尚、図13においては、B/Aを57.0%としたサンプルにおける進角向上値を丸印で示し、B/Aを53.3%としたサンプルにおける進角向上値を三角で示し、B/Aを51.3%としたサンプルにおける進角向上値を四角で示す。また、各サンプルともに、主体金具の先端の内径Aを8.4mmとし、絶縁碍子の先端に対する中心電極の先端の突き出し量を1.5mmとした。加えて、少なくとも発明品サンプルについては、D/C≦0.660を満たすものとした。 Next, the spark is obtained by variously changing the distance E from the end of the metal shell along the axis to the end of the center electrode, with B / A being 57.0%, 53.3%, or 51.3%. The above-described pre-ignition test was performed on a plug sample (inventive product sample) and a spark plug sample (conventional product sample) in which B / A was 60.7% and the distance E was variously changed. . Then, a value (advance angle advance value) obtained by subtracting the preignition occurrence advance angle in the conventional sample from the preignition occurrence advance angle in the invention sample was calculated for each distance E. The test result of the said test is shown in FIG. In FIG. 13, the lead angle improvement value in a sample in which B / A is 57.0% is indicated by a circle, and the lead angle improvement value in a sample in which B / A is 53.3% is indicated by a triangle. The advance improvement value in the sample in which B / A is 51.3% is indicated by a square. In each sample, the inner diameter A of the end of the metal shell was 8.4 mm, and the amount of protrusion of the end of the center electrode with respect to the end of the insulator was 1.5 mm. In addition, D / C ≦ 0.660 is satisfied at least for the inventive product samples.
 図13に示すように、各発明品サンプルともに、従来品サンプルに比べて優れた耐プレイグニッション性を有していたものの、距離Eを2.0mm未満としたり、5.0mm超としたサンプルは、B/Aを57.0%以下としたこと等による耐プレイグニッション性の向上効果が比較的小さいことが分かった。これは、距離Eを2.0mm未満とした場合には、絶縁碍子の先端部がさほど加熱されないことから、従来品サンプルであってもある程度の耐プレイグニッション性を有していたこと、また、距離Eが5.0mmよりも大きい場合には、中心電極が極端に加熱されたため、中心電極による絶縁碍子の熱引きが悪化してしまったことによると考えられる。 As shown in FIG. 13, although each invention sample had excellent pre-ignition resistance compared to the conventional sample, the sample with a distance E of less than 2.0 mm or more than 5.0 mm It was found that the improvement effect of the pre-ignition resistance due to the B / A being 57.0% or less is relatively small. This is because when the distance E is less than 2.0 mm, the tip of the insulator is not heated so much, so that even the conventional sample had some degree of pre-ignition resistance, and If the distance E is larger than 5.0 mm, it is considered that the heat dissipation of the insulator by the center electrode is deteriorated because the center electrode is extremely heated.
 これに対して、距離Eを2.0mm以上5.0mm以下としたサンプルは、B/A≦0.570やD/C≦0.660等を満たすことによる耐プレイグニッション性の向上効果がより顕著に発揮されることが明らかとなった。 On the other hand, in the sample in which the distance E is 2.0 mm or more and 5.0 mm or less, the improvement effect of the preignition resistance by satisfying B / A ≦ 0.570, D / C ≦ 0.660, etc. It became clear that it was exhibited remarkably.
 以上の試験結果より、2.0mm≦E≦5.0mmを満たすスパークプラグにおいて、B/A≦0.570やD/C≦0.660等を満たすことが、耐プレイグニッション性の向上を図るという面で特に効果的であるといえる。 From the above test results, in the spark plug satisfying 2.0 mm E E 5.0 5.0 mm, satisfying B / A 0.5 0.570, D / C 0.6 0.660, etc. improves the pre-ignition resistance. It can be said that this is particularly effective.
 次いで、脚長部の基端部に等径部を設け、脚長部のうち前記環状突部に対向する部位の外形線を軸線に沿って延びるように構成したスパークプラグのサンプル(ストレート状サンプル)と、脚長部の基端部に等径部を設けることなく、後端側に向けて拡径するテーパ状に構成したスパークプラグのサンプル(テーパ状サンプル)とについて、軸線と直交する方向に沿った脚長部と環状突部との間の最短距離F(mm)を種々変更したものを作製し、各サンプルについて上述のプレイグニッション試験を行った。そして、各サンプルにおけるプレイグニッション発生進角から、最短距離Fを0.45mmとしたテーパ状サンプルにおけるプレイグニッション発生進角を減算した値(進角変動値)を、各サンプルごとに算出した。図14に、当該試験の試験結果を示す。尚、図14においては、ストレート状サンプルの試験結果を丸印で示し、テーパ状サンプルの試験結果を三角で示す。また、各サンプルともに、主体金具の先端の内径Aを8.4mmとし、中心電極の先端部の外径DCを2.6mmとした。さらに、B/Aを53.3%とし、D/Cを63.8%とした。 Then, a sample (straight sample) of a spark plug provided with an equal diameter portion at the base end portion of the leg length portion and extending along the axis the outline of the portion of the leg length portion facing the annular projection And a sample of the spark plug (taper-shaped sample) configured to have a tapered shape expanding toward the rear end side without providing an equal diameter portion at the base end of the leg length portion, along the direction orthogonal to the axis. What changed variously the shortest distance F (mm) between a leg long part and an annular projection was produced, and the above-mentioned preignition test was done about each sample. And the value (advancing angle fluctuation value) which subtracted the preignition generation advance angle in the taper-shaped sample which made the shortest distance F 0.45 mm from the preignition generation advance angle in each sample was computed for every sample. The test result of the said test is shown in FIG. In FIG. 14, the test results of the straight sample are shown by circles, and the test results of the tapered sample are shown by triangles. In each sample, the inside diameter A of the end of the metal shell was 8.4 mm, and the outside diameter DC of the end of the center electrode was 2.6 mm. Furthermore, B / A was 53.3%, and D / C was 63.8%.
 図14に示すように、最短距離Fを小さくするにつれて、耐プレイグニッション性のより一層の向上が図られ、特に最短距離Fを0.5mm以下とすることで、耐プレイグニッション性の向上効果が顕著に発揮されることが明らかとなった。 As shown in FIG. 14, as the shortest distance F is reduced, the preignition resistance is further improved, and in particular, by setting the shortest distance F to 0.5 mm or less, the effect of improving the preignition resistance is obtained. It became clear that it was exhibited remarkably.
 また、テーパ状サンプルに比べて、ストレート状サンプルは、一層優れた耐プレイグニッション性を実現可能であることが確認された。これは、脚長部の基端部表面において、環状突部に接近する部分が増加したため、絶縁碍子の熱が主体金具側へとよりスムーズに伝導されたためであると考えられる。 Moreover, it was confirmed that the straight sample can realize more excellent pre-ignition resistance as compared to the tapered sample. This is considered to be due to the fact that the heat of the insulator is conducted more smoothly to the metal shell side because the portion approaching the annular protrusion is increased on the surface of the base end portion of the leg length portion.
 以上の試験結果より、耐プレイグニッション性のより一層の向上を図るべく、脚長部の基端部に等径部を設けるとともに、前記最短距離Fを0.5mm以下とすることが好ましいといえる。 From the above test results, it is preferable to provide an equal diameter portion at the base end portion of the leg length portion and to set the shortest distance F to 0.5 mm or less in order to further improve the preignition resistance.
 次に、軸線に沿った主体金具の先端から火花放電間隙の中心までの距離(発火位置距離)を3mm、又は、5mmとした上で、軸線に沿った絶縁碍子の先端に対する中心電極の先端の突出長PLを種々変更したスパークプラグのサンプルを作製した。そして、突出長PLを1.0mmとしたときに中心電極の先端が900℃となる条件でサンプルの先端部を加熱した際における、絶縁碍子の先端部の温度をFEM(有限要素法)により解析した。図15に、突出長PLと絶縁碍子の先端部の温度との関係を表すグラフを示す。尚、図15においては、発火位置距離を3mmとしたサンプルの結果を丸印で示し、発火位置距離を5mmとしたサンプルの結果を三角で示す。また、各サンプルともに、ねじ部のねじ径をM14とした。 Next, the distance from the end of the metal shell along the axis to the center of the spark discharge gap (ignition position distance) is 3 mm or 5 mm, and the end of the center electrode with respect to the end of the insulator along the axis The sample of the spark plug which changed protrusion length PL variously was produced. Then, when the tip of the sample is heated under the condition that the tip of the center electrode becomes 900 ° C. when the protrusion length PL is 1.0 mm, the temperature of the tip of the insulator is analyzed by FEM (finite element method) did. FIG. 15 is a graph showing the relationship between the protrusion length PL and the temperature of the tip of the insulator. In FIG. 15, the results of the sample in which the firing position distance is 3 mm are indicated by circles, and the results of the sample in which the firing position distance is 5 mm are indicated by triangles. In each sample, the screw diameter of the screw was M14.
 図15に示すように、突出長PLを1.8mmよりも大きくしたサンプルは、絶縁碍子の先端部の温度が急激に増大してしまい、耐プレイグニッション性に比較的劣ることが確認された。 As shown in FIG. 15, it was confirmed that the temperature at the tip of the insulator rapidly increases in the sample in which the projection length PL is larger than 1.8 mm, and the preignition resistance is relatively poor.
 これに対して、突出長PLを1.8mm以下としたサンプルは、絶縁碍子の温度上昇が抑制され、耐プレイグニッション性に優れることが明らかとなった。これは、突出長PLを1.8mm以下としたことで、中心電極の受熱量が低減され、ひいては絶縁碍子における熱引き性能の低下が抑制されたことに起因すると考えられる。 On the other hand, it was revealed that in the sample in which the projection length PL was 1.8 mm or less, the temperature rise of the insulator was suppressed and the preignition resistance was excellent. This is considered to be attributable to the fact that the amount of heat received by the central electrode is reduced by setting the projection length PL to 1.8 mm or less, and thus the decrease in heat transfer performance of the insulator is suppressed.
 上記試験の結果より、耐プレイグニッション性の更なる向上を図るという観点から、突出長PLを1.8mm以下とすることが好ましいといえる。 From the above test results, it is preferable to set the projection length PL to 1.8 mm or less from the viewpoint of further improving the pre-ignition resistance.
 次いで、B/Aを0.472、又は、0.570とした上で、中心電極(本体部)の外径と絶縁碍子の内径との径差DSを種々変更したスパークプラグのサンプルを作製した。そして、中心電極の先端が1000℃となる条件で(すなわち、中心電極が著しく過熱される条件で)各サンプルの先端部を加熱した際における、絶縁碍子に発生する応力をFEMにより解析した。図16に、径差DSと絶縁碍子に発生する応力との関係を表すグラフを示す。尚、図16においては、B/Aを0.472としたサンプルの結果を丸印で示し、B/Aを0.570としたサンプルの結果を四角で示す。また、各サンプルともに、ねじ部のねじ径をM14とし、絶縁碍子の外周形状を同一とした。 Next, after setting B / A to 0.472 or 0.570, samples of spark plugs were prepared with various changes in the diameter difference DS between the outer diameter of the center electrode (main body) and the inner diameter of the insulator. . Then, the stress generated in the insulator when the tip of each sample was heated under the condition that the tip of the center electrode becomes 1000 ° C. (that is, under the condition that the center electrode is overheated significantly) was analyzed by FEM. FIG. 16 is a graph showing the relationship between the diameter difference DS and the stress generated in the insulator. In FIG. 16, the result of the sample in which B / A is 0.472 is indicated by circles, and the result of the sample in which B / A is 0.570 is indicated by squares. In each sample, the screw diameter of the screw portion was M14, and the outer peripheral shape of the insulator was the same.
 図16に示すように、径差DSを0.06mm以上としたサンプルは、中心電極を極めて高温に加熱した場合であっても、絶縁碍子に応力が発生しない、つまり、中心電極と絶縁碍子とが接触しないことが明らかとなった。 As shown in FIG. 16, in the sample having the diameter difference DS of 0.06 mm or more, no stress is generated in the insulator even when the center electrode is heated to a very high temperature, that is, the center electrode and the insulator It has become clear that there is no contact.
 上記試験の結果より、中心電極の熱膨張に伴う絶縁碍子の破損をより確実に防止するためには、径差DSを0.06mm以上とすることが好ましいといえる。 From the above test results, it can be said that it is preferable to set the diameter difference DS to 0.06 mm or more in order to more reliably prevent breakage of the insulator due to thermal expansion of the center electrode.
 尚、上記実施形態の記載内容に限定されず、例えば次のように実施してもよい。勿論、以下において例示しない他の応用例、変更例も当然可能である。 In addition, it is not limited to the description content of the said embodiment, For example, you may implement as follows. Of course, other applications and modifications not illustrated below are naturally possible.
 (a)上記実施形態では、貴金属チップ31と接地電極27の先端部との間に火花放電間隙33が形成されているが、図17(a)に示すように、貴金属チップ31を設けることなく、中心電極5の先端部と接地電極27との間に火花放電間隙33を形成することとしてもよい。また、図17(b)に示すように、中心電極5に貴金属チップ31を設けるとともに、接地電極27に貴金属チップ32を設け、両貴金属チップ31,32間に火花放電間隙33を形成することとしてもよい。 (A) In the above embodiment, the spark discharge gap 33 is formed between the noble metal tip 31 and the tip of the ground electrode 27. However, as shown in FIG. 17A, the noble metal tip 31 is not provided. The spark discharge gap 33 may be formed between the tip of the center electrode 5 and the ground electrode 27. Further, as shown in FIG. 17B, the noble metal tip 31 is provided on the center electrode 5, and the noble metal tip 32 is provided on the ground electrode 27, and the spark discharge gap 33 is formed between both the noble metal tips 31 and 32. It is also good.
 さらに、図18(a)に示すように、接地電極27の最先端部に貴金属チップ32を設けることとしてもよい。この場合には、接地電極27による火炎の成長阻害が抑制され、火炎伝播性の向上を図ることができる。また、図18(b)に示すように、貴金属チップ32と接地電極27との間の線膨張係数を有する台座35を介して、貴金属チップ32を接地電極27に対して接合することとしてもよい。台座35を設けた場合には、当該台座35により接地電極27と貴金属チップ32との間の熱膨張の差を吸収することができるため、貴金属チップ32の接合強度を向上させることができる。加えて、接地電極27の先端部を、自身の先端側に向けて幅の狭くなる形状としてもよい。この場合には、火炎伝播性の向上を図ることができる。 Furthermore, as shown in FIG. 18A, the noble metal tip 32 may be provided at the tip of the ground electrode 27. In this case, the growth inhibition of the flame by the ground electrode 27 is suppressed, and the flame spreadability can be improved. Alternatively, as shown in FIG. 18B, the noble metal tip 32 may be joined to the ground electrode 27 through a pedestal 35 having a linear expansion coefficient between the noble metal tip 32 and the ground electrode 27. . When the pedestal 35 is provided, the pedestal 35 can absorb the difference in thermal expansion between the ground electrode 27 and the noble metal tip 32, so that the bonding strength of the noble metal tip 32 can be improved. In addition, the tip of the ground electrode 27 may be configured to narrow in width toward the tip of the ground electrode 27. In this case, the flame spreadability can be improved.
 また、図19(a)に示すように、中心電極5(貴金属チップ31)及び絶縁碍子2を軸線CL1方向先端側へとより突き出して配置するとともに、接地電極27の先端面及び側面の双方から突出するようにして貴金属チップ42を設け、当該貴金属チップ42と中心電極5(貴金属チップ31)との間で軸線CL1と直交する方向にほぼ沿って火花放電が行われるように構成することしてもよい。また、図19(b)に示すように、中心電極5(貴金属チップ31)や絶縁碍子2を軸線CL1方向先端側へとより突き出して配置するとともに、接地電極27の先端面及び側面の双方から突出するようにして設けられた貴金属チップ42と中心電極5(貴金属チップ31)との間で軸線CL1にほぼ沿って火花放電が行われるように構成することとしてもよい。本発明によれば耐プレイグニッション性の向上を図ることができるため、このように中心電極5や絶縁碍子2を軸線CL1方向先端側へとより突き出すことができ、また、中心電極5を突き出すことで着火性の向上を図ることができる。さらに、図19(b)に示すように、接地電極27の側面同士の間に面取り部63を設けることとしてもよい。面取り部63を設けた場合には、接地電極27を回りこんだ形で火花放電間隙33に対して混合気が流入しやすくなり、着火性の更なる向上を図ることができる。 Further, as shown in FIG. 19 (a), the center electrode 5 (the noble metal tip 31) and the insulator 2 are disposed to protrude further to the end side in the direction of the axis CL1 and from both the end face and side of the ground electrode 27. Even if the noble metal tip 42 is provided so as to protrude and spark discharge is performed between the noble metal tip 42 and the center electrode 5 (precious metal tip 31) substantially along the direction orthogonal to the axis line CL1. Good. Further, as shown in FIG. 19 (b), the center electrode 5 (the noble metal tip 31) and the insulator 2 are disposed to protrude further to the end side in the direction of the axis CL1 and from both the end surface and side of the ground electrode 27. A spark discharge may be performed substantially along the axis CL1 between the noble metal tip 42 provided to protrude and the center electrode 5 (the noble metal tip 31). According to the present invention, since the pre-ignition resistance can be improved, the center electrode 5 and the insulator 2 can be further protruded toward the tip end side in the direction of the axis line CL1 as described above, and the center electrode 5 can be protruded. Can improve the ignitability. Further, as shown in FIG. 19B, a chamfered portion 63 may be provided between the side surfaces of the ground electrode 27. In the case where the chamfered portion 63 is provided, the air-fuel mixture easily flows into the spark discharge gap 33 in the form of being wound around the ground electrode 27, and the ignition performance can be further improved.
 尚、中心電極5を軸線CL1方向先端側へと突き出した際には、接地電極27を軸線CL1方向先端側へとより突き出す必要が生じ得る。ところが、接地電極27を突き出して配置した際には、接地電極27がより加熱されることとなり、ひいては接地電極27に接合された貴金属チップ42における耐消耗性が低下してしまうおそれがある。そこで、接地電極27を軸線CL1方向先端側へと突き出して配置した際には、接地電極27の内部に熱伝導性に優れる金属材料からなる内層を設けることとしてもよい。この場合には、内層を介して貴金属チップ42の熱を主体金具3側へと効率よく伝導させることができ、貴金属チップ42における耐消耗性の低下を効果的に抑制することができる。 When the center electrode 5 is protruded to the end side in the direction of the axis CL1, it may be necessary to further project the ground electrode 27 to the end side in the direction of the axis CL1. However, when the ground electrode 27 is disposed in a protruding manner, the ground electrode 27 is further heated, and the wear resistance of the noble metal tip 42 bonded to the ground electrode 27 may be reduced. Therefore, when the ground electrode 27 is disposed so as to protrude toward the front end side in the direction of the axis CL1, an inner layer made of a metal material having excellent thermal conductivity may be provided inside the ground electrode 27. In this case, the heat of the noble metal tip 42 can be efficiently conducted to the metal shell 3 through the inner layer, and the decrease in the wear resistance of the noble metal tip 42 can be effectively suppressed.
 (b)上記実施形態では特に言及していないが、図20(a)に示すように、主体金具3の先端面と内周面との間にテーパ部61を設けることとしてもよい。また、図20(b)に示すように、テーパ部61に代えて、主体金具3の先端面と内周面との間に軸線CL1側に向けて凸な湾曲面部62を設けることとしてもよい。この場合には、主体金具3の外径Aが8.7mm以下と比較的小径とされ、主体金具3の先端と中心電極5との間における絶縁碍子2の表面を沿った異常放電(いわゆる横飛火)の発生がより懸念される構成であっても、異常放電の発生をより確実に防止することができる。尚、テーパ部61や湾曲面部62を設けた場合において、「主体金具3の内径A」とあるのは、主体金具3の内周面を軸線CL1方向先端側に延長した仮想面V1と、主体金具3の先端面を軸線CL1側に延長した仮想面V2とが交わってなる円の内径をいう。 (B) Although not particularly mentioned in the above embodiment, as shown in FIG. 20A, a tapered portion 61 may be provided between the front end surface of the metal shell 3 and the inner peripheral surface. Further, as shown in FIG. 20 (b), instead of the tapered portion 61, a curved surface 62 convex toward the axis CL1 may be provided between the front end surface of the metal shell 3 and the inner peripheral surface. . In this case, the outer diameter A of the metal shell 3 is relatively small, 8.7 mm or less, and an abnormal discharge (so-called lateral discharge) along the surface of the insulator 2 between the tip of the metal shell 3 and the center electrode 5 Even in the configuration in which the generation of sparks is more concerned, the generation of abnormal discharge can be prevented more reliably. When the tapered portion 61 and the curved surface portion 62 are provided, "the inner diameter A of the metal shell 3" is a virtual surface V1 obtained by extending the inner peripheral surface of the metal shell 3 to the tip end side in the axis line CL1 direction The inside diameter of the circle formed by the virtual surface V2 obtained by extending the end surface of the metal fitting 3 to the axis CL1 side is said.
 (c)上記実施形態では、主体金具3の先端部26に、接地電極27が接合される場合について具体化しているが、主体金具の一部(又は、主体金具に予め溶接してある先端金具の一部)を削り出すようにして接地電極を形成する場合についても適用可能である(例えば、特開2006-236906号公報等)。 (C) In the above embodiment, although the ground electrode 27 is joined to the end portion 26 of the metal shell 3, a part of the metal shell (or a tip metal welded in advance to the metal shell) The present invention is also applicable to the case where the ground electrode is formed by scraping a part of (a) (for example, JP-A-2006-236906).
 (d)上記実施形態では、工具係合部19は断面六角形状とされているが、工具係合部19の形状に関しては、このような形状に限定されるものではない。例えば、Bi-HEX(変形12角)形状〔ISO22977:2005(E)〕等とされていてもよい。 (D) In the above embodiment, the tool engaging portion 19 has a hexagonal cross section, but the shape of the tool engaging portion 19 is not limited to such a shape. For example, it may be a Bi-HEX (modified 12-corner) shape [ISO 22977: 2005 (E)] or the like.
 1…スパークプラグ
 2…絶縁碍子(絶縁体)
 3…主体金具
 5…中心電極
 5F…鍔部
 13…脚長部
 14…段部
 15…ねじ部
 16…座部
 21…環状突部
 27…接地電極
 CL1…軸線
1 ... spark plug 2 ... insulation insulator (insulator)
DESCRIPTION OF SYMBOLS 3 ... Main metal fitting 5 ... Center electrode 5F ... Collar part 13 ... Leg length part 14 ... Step part 15 ... Screw part 16 ... Seat part 21 ... Annular protrusion 27 ... Grounding electrode CL1 ... Axis line

Claims (7)

  1.  軸線方向に延びる棒状の中心電極と、
     前記中心電極の外周に設けられた絶縁体と、
     前記絶縁体の外周に設けられた筒状の主体金具と、
     前記主体金具の先端部から延びる接地電極とを備えたスパークプラグであって、
     前記主体金具は、自身の内周部分に前記軸線側に向けて突出する環状突部を有し、
     前記絶縁体は、
     前記環状突部に対して直接又は間接的に係止される段部と、
     前記段部の先端から先端側に向けて延びる脚長部とを備え、
     前記主体金具の先端位置における、前記主体金具の内径をA(mm)とし、前記絶縁体の外径をB(mm)とし、
     前記軸線に沿って前記主体金具の先端から4mm後端側の位置における、前記主体金具の内径をC(mm)とし、前記絶縁体の外径をD(mm)とし、
     前記軸線に沿って前記主体金具の先端から4mmを超えて後端側の位置における、前記脚長部の外径をY(mm)としたとき、次の式(1)~(4)を満たすことを特徴とするスパークプラグ。
     0.472≦B/A≦0.570…(1)
     0.472≦D/C≦0.660…(2)
     B<Y…(3)
     A≦8.7…(4)
    An axially extending rod-shaped center electrode,
    An insulator provided on an outer periphery of the center electrode;
    A cylindrical metal shell provided on the outer periphery of the insulator;
    A spark plug including a ground electrode extending from a front end portion of the metal shell;
    The metal shell has an annular projection projecting toward the axis on the inner peripheral portion of the metal shell,
    The insulator is
    A step which is directly or indirectly locked to the annular projection;
    And a long leg extending from the tip of the step toward the tip,
    The inner diameter of the metal shell at the end position of the metal shell is A (mm), and the outer diameter of the insulator is B (mm),
    The inner diameter of the metal shell is C (mm) and the outer diameter of the insulator is D (mm) at a position 4 mm from the front end of the metal shell along the axis.
    Assuming that the outer diameter of the long leg portion is Y (mm) at a position on the rear end side exceeding 4 mm from the front end of the metal shell along the axis, the following formulas (1) to (4) are satisfied. Spark plug characterized by.
    0.472 ≦ B / A ≦ 0.570 (1)
    0.472 ≦ D / C ≦ 0.660 (2)
    B <Y (3)
    A ≦ 8.7 (4)
  2.  B/A≦0.540
    を満たすことを特徴とする請求項1に記載のスパークプラグ。
    B / A ≦ 0.540
    The spark plug according to claim 1, characterized in that:
  3.  前記軸線に沿った前記主体金具の先端から前記中心電極の先端までの距離をE(mm)としたとき、
     2.0≦E≦5.0
    を満たすことを特徴とする請求項1又は2に記載のスパークプラグ。
    When the distance from the end of the metal shell along the axis to the end of the center electrode is E (mm),
    2.0 ≦ E ≦ 5.0
    The spark plug according to claim 1 or 2, characterized in that
  4.  前記軸線を含む断面において、
     前記脚長部のうち前記環状突部に対向する部位の外形線は、前記軸線に沿って延び、
     前記軸線と直交する方向に沿った前記脚長部と前記環状突部との間の最短距離をF(mm)としたとき、
     F≦0.5
    を満たすことを特徴とする請求項1乃至3のいずれか1項に記載のスパークプラグ。
    In the section including the axis,
    An outline of a portion of the leg length facing the annular projection extends along the axis,
    When the shortest distance between the leg long portion and the annular projection along the direction orthogonal to the axis is F (mm),
    F ≦ 0.5
    The spark plug according to any one of claims 1 to 3, wherein
  5.  前記主体金具は、
     燃焼装置の取付孔に螺合するためのねじ部と、
     前記ねじ部の後端側に設けられ、前記ねじ部のねじ径よりも大径に形成された座部とを備え、
     前記軸線に沿った前記主体金具の先端から前記座部までの距離が17.5mm以上とされることを特徴とする請求項1乃至4のいずれか1項に記載のスパークプラグ。
    The metal shell is
    A screw for screwing into a mounting hole of the combustion device;
    And a seat portion provided on the rear end side of the screw portion and formed larger in diameter than the screw diameter of the screw portion,
    The spark plug according to any one of claims 1 to 4, wherein a distance from a tip end of the metal shell along the axis to the seat portion is 17.5 mm or more.
  6.  前記軸線に沿った前記絶縁体の先端に対する前記中心電極の先端の突出長が1.8mm以下とされることを特徴とする請求項1乃至5のいずれか1項に記載のスパークプラグ。 The spark plug according to any one of claims 1 to 5, wherein a protrusion length of the tip of the center electrode with respect to the tip of the insulator along the axis is 1.8 mm or less.
  7.  前記中心電極は、自身の後端側に径方向外側に膨出し、前記絶縁体の内周面に係止される鍔部を有し、
     前記鍔部の先端よりも前記軸線方向先端側において、前記中心電極の外径と前記絶縁体の内径との径差が0.06mm以上とされることを特徴とする請求項1乃至6のいずれか1項に記載のスパークプラグ。
    The center electrode bulges radially outward on the rear end side of the center electrode, and has a collar portion engaged with the inner circumferential surface of the insulator.
    The diameter difference between the outer diameter of the center electrode and the inner diameter of the insulator is set to 0.06 mm or more on the tip end side in the axial direction with respect to the tip end of the flange portion. The spark plug as described in 1 or 2.
PCT/JP2010/071433 2010-03-25 2010-12-01 Spark plug WO2011118087A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011535740A JP5271420B2 (en) 2010-03-25 2010-12-01 Spark plug

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010069495 2010-03-25
JP2010-069495 2010-03-25

Publications (1)

Publication Number Publication Date
WO2011118087A1 true WO2011118087A1 (en) 2011-09-29

Family

ID=44672671

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/071433 WO2011118087A1 (en) 2010-03-25 2010-12-01 Spark plug

Country Status (2)

Country Link
JP (1) JP5271420B2 (en)
WO (1) WO2011118087A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013144971A1 (en) 2012-03-27 2013-10-03 Cadila Healthcare Limited New solid forms of dabigatran etexilate bisulfate and mesylate and processes to prepare them
JP2013254613A (en) * 2012-06-06 2013-12-19 Ngk Spark Plug Co Ltd Spark plug
JP2014175094A (en) * 2013-03-06 2014-09-22 Nippon Soken Inc Ignition plug
WO2015053399A1 (en) * 2013-10-11 2015-04-16 日本特殊陶業株式会社 Spark plug
JP2016004748A (en) * 2014-06-19 2016-01-12 株式会社デンソー Spark plug
US9608411B2 (en) 2015-03-26 2017-03-28 Ngk Spark Plug Co., Ltd. Spark plug
WO2023032874A1 (en) * 2021-09-02 2023-03-09 日本特殊陶業株式会社 Spark plug

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000243535A (en) * 1999-02-22 2000-09-08 Ngk Spark Plug Co Ltd Spark plug
JP2001155839A (en) * 1999-11-30 2001-06-08 Ngk Spark Plug Co Ltd Spark plug
JP2002260817A (en) * 2000-12-27 2002-09-13 Ngk Spark Plug Co Ltd Spark plug

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3140254B2 (en) * 1993-05-20 2001-03-05 日本特殊陶業株式会社 Spark plug for internal combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000243535A (en) * 1999-02-22 2000-09-08 Ngk Spark Plug Co Ltd Spark plug
JP2001155839A (en) * 1999-11-30 2001-06-08 Ngk Spark Plug Co Ltd Spark plug
JP2002260817A (en) * 2000-12-27 2002-09-13 Ngk Spark Plug Co Ltd Spark plug

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013144971A1 (en) 2012-03-27 2013-10-03 Cadila Healthcare Limited New solid forms of dabigatran etexilate bisulfate and mesylate and processes to prepare them
JP2013254613A (en) * 2012-06-06 2013-12-19 Ngk Spark Plug Co Ltd Spark plug
JP2014175094A (en) * 2013-03-06 2014-09-22 Nippon Soken Inc Ignition plug
WO2015053399A1 (en) * 2013-10-11 2015-04-16 日本特殊陶業株式会社 Spark plug
CN105637722A (en) * 2013-10-11 2016-06-01 日本特殊陶业株式会社 Spark plug
US9620935B2 (en) 2013-10-11 2017-04-11 Ngk Spark Plug Co., Ltd. Spark plug
KR101775854B1 (en) 2013-10-11 2017-09-06 니혼도꾸슈도교 가부시키가이샤 Spark plug
JP2016004748A (en) * 2014-06-19 2016-01-12 株式会社デンソー Spark plug
US9608411B2 (en) 2015-03-26 2017-03-28 Ngk Spark Plug Co., Ltd. Spark plug
WO2023032874A1 (en) * 2021-09-02 2023-03-09 日本特殊陶業株式会社 Spark plug
JP7236513B1 (en) 2021-09-02 2023-03-09 日本特殊陶業株式会社 Spark plug
JP2023038394A (en) * 2021-09-02 2023-03-17 日本特殊陶業株式会社 Spark plug

Also Published As

Publication number Publication date
JP5271420B2 (en) 2013-08-21
JPWO2011118087A1 (en) 2013-07-04

Similar Documents

Publication Publication Date Title
WO2011118087A1 (en) Spark plug
EP2884604B1 (en) Spark plug
EP2259393B1 (en) Spark plug
JP2005183177A (en) Sparking plug
WO2011027500A1 (en) Spark plug
KR101665900B1 (en) Spark plug
JP5525575B2 (en) Spark plug
WO2021111719A1 (en) Spark plug
JP2013114762A (en) Spark plug
KR101822723B1 (en) Ignition plug
KR101118401B1 (en) Spark plug
JP5032556B2 (en) Spark plug
WO2009116553A1 (en) Spark plug
JP5913032B2 (en) Spark plug
JP5642129B2 (en) Spark plug
JP5816126B2 (en) Spark plug
US9742157B2 (en) Spark plug
JP4750215B2 (en) Spark plug
US20190020180A1 (en) Spark plug
JP2014056653A (en) Spark plug
GB2518708A (en) Spark plug for internal combustion engine
JP7070196B2 (en) Spark plug for internal combustion engine
JP2013254670A (en) Spark plug
JP5837858B2 (en) Spark plug
JP2009140674A (en) Spark plug for gas engine

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2011535740

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10848479

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10848479

Country of ref document: EP

Kind code of ref document: A1