JPH03146720A - Production of pitch-based carbon fiber having high elongation and high strength - Google Patents

Production of pitch-based carbon fiber having high elongation and high strength

Info

Publication number
JPH03146720A
JPH03146720A JP28238989A JP28238989A JPH03146720A JP H03146720 A JPH03146720 A JP H03146720A JP 28238989 A JP28238989 A JP 28238989A JP 28238989 A JP28238989 A JP 28238989A JP H03146720 A JPH03146720 A JP H03146720A
Authority
JP
Japan
Prior art keywords
fiber
pitch
fibers
elongation
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28238989A
Other languages
Japanese (ja)
Inventor
Kikuji Komine
小峰 喜久治
Makoto Miyazaki
誠 宮崎
Takashi Hino
日野 隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen General Sekiyu KK
Original Assignee
Tonen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tonen Corp filed Critical Tonen Corp
Priority to JP28238989A priority Critical patent/JPH03146720A/en
Priority to US07/601,486 priority patent/US5209975A/en
Priority to KR1019900017454A priority patent/KR910008192A/en
Priority to EP19900311892 priority patent/EP0426438A3/en
Publication of JPH03146720A publication Critical patent/JPH03146720A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the subject fiber having improved elongation, strength, yarn-handleability and weaving and knitting facility by melt-spinning a carbonaceous pitch and subjecting the obtained pitch-based carbon fiber to infusibilization, carbonization and then oxidation treatments under respective specific conditions. CONSTITUTION:The objective carbon fiber preferably having an elongation of >=1.0% and a tensile strength of >=150kg/mm<2> and suitable as a reinforcing fiber for light-weight structural material for space industry, etc., can be produced by melt-spinning a carbonaceous pitch, infusibilizing the fiber by heating in an oxygen-rich atmosphere at 120-350 deg.C for 3-30min. carbonizing the infusibilized fiber by heating in an inert gas atmosphere at 400-1300 deg.C for 3-15min while applying a tension of 0.001-0.2g per one filament, oxidizing the product and, as necessary, further heating to effect the carbonization or graphitization.

Description

【発明の詳細な説明】 先東上土亘且玉1 本発明は、一般には、炭素繊維の製造方法に関するもの
であり、特に、糸扱い性に優れ、編織が容易であって、
宇宙産業、自動車産業、建築産業などにおいて軽量構造
材料用強化繊維として広く使・用することのできる高伸
度、高強度のピッチ系炭素繊維の製造方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention generally relates to a method for manufacturing carbon fiber, and in particular, it has excellent yarn handling properties and is easy to knit and weave.
The present invention relates to a method for manufacturing pitch-based carbon fibers with high elongation and high strength, which can be widely used as reinforcing fibers for lightweight structural materials in the space industry, automobile industry, construction industry, etc.

虹え立且1 従来、炭素繊維としては、PAN系及びレーヨン系炭素
繊維が広く製造及び使用されているが、PAN系及びレ
ーヨン系炭素繊維は原料が高価で炭化収率も悪く、経済
面で良くない。そこで、近年、コストの廉価なピッチを
原料としており、しかも、引張強度及び引張弾性率の点
においても優れているピッチ系炭素繊維が注目を浴びて
いる。
1 Conventionally, PAN-based and rayon-based carbon fibers have been widely produced and used as carbon fibers, but PAN-based and rayon-based carbon fibers are economically disadvantageous due to their expensive raw materials and poor carbonization yields. not good. Therefore, in recent years, pitch-based carbon fibers that are made from inexpensive pitch and are excellent in tensile strength and tensile modulus have attracted attention.

現在、ピッチ系炭素繊維は、 (1)石油系ピッチ、石炭系ピッチなどから炭素繊維に
適した炭素質ピッチを調製し、該炭素質ピッチを加熱溶
融して紡糸機にて紡糸し、集束、合糸してピッチ繊維束
を製造し、 (2)前記ピッチ繊維束を不融化炉で酸化性ガス雰囲気
下にて200〜350℃までに加熱して不融化し、 (3)引き続いて、該不融化された繊維束を炭化炉で不
活性ガス雰囲気下にて500〜2000℃まで加熱して
炭化して、更には3000℃まで加熱して黒鉛化するこ
と、 により製造されている。
Currently, pitch-based carbon fibers are produced by: (1) preparing carbonaceous pitch suitable for carbon fiber from petroleum-based pitch, coal-based pitch, etc., heating and melting the carbonaceous pitch, spinning it in a spinning machine, converging it, (2) The pitch fiber bundle is heated to 200 to 350°C in an oxidizing gas atmosphere in an infusible furnace to make it infusible; (3) Subsequently, It is manufactured by heating the infusible fiber bundle in a carbonization furnace to 500 to 2000°C in an inert gas atmosphere to carbonize it, and further heating it to 3000°C to graphitize it.

が ゛しようとする しかしながら、一般に、このようにして得られたピッチ
系炭素繊維は、引張強度は2゜0GPa (200Kg
/mm” )以上、引張弾性率は600GPa (60
to−n/mm” )以上と高いものが得られるが、伸
度(伸び率)は、通常0.5%以下、大きくても1%程
度であった。
However, the pitch-based carbon fiber obtained in this way generally has a tensile strength of 2°0 GPa (200 kg
/mm”) or more, the tensile modulus is 600GPa (60
Although a high elongation (elongation rate) of 0.5% or less was obtained, the elongation (rate of elongation) was usually 0.5% or less, and at most about 1%.

このように従来のピッチ系炭素繊維は伸度が小さいため
に取扱いが難しく、編織性に劣り、特に複合材料を製造
する場合に大きな問題となっていた。
As described above, conventional pitch-based carbon fibers are difficult to handle due to their low elongation, and have poor weaving and weaving properties, which poses a major problem particularly when manufacturing composite materials.

本発明者らは、ピッチを原料として、引張強度及び引張
弾性率を損なうことなく、高伸度のピッチ系炭素繊維を
得るべく研究開発する過程にて、炭素繊維の結晶構造を
特異なちのとすることで、つまり、X iI ill造
パラメーターの配向角(φ)が25〜38@ 積層厚み
(Lc)が19〜35人、層間隔(d、。2)が3.4
5〜3゜50人である結晶tM ?qを有することによ
り、所定レベル以上の引張強度、引張弾性率を具備し、
良好な編織性を示す1.0%以上の伸度を有した高伸度
、高強度のピッチ系炭素繊維を得ることができることを
見出した。
In the process of research and development to obtain pitch-based carbon fibers with high elongation using pitch as a raw material without impairing tensile strength and tensile modulus, the present inventors developed the crystal structure of carbon fibers into a unique structure. In other words, the orientation angle (φ) of the structural parameters is 25 to 38, the lamination thickness (Lc) is 19 to 35, and the layer spacing (d, .2) is 3.4.
Crystal tM that is 5-3゜50 people? By having q, it has tensile strength and tensile modulus of a predetermined level or higher,
It has been found that it is possible to obtain high-strength, high-strength pitch-based carbon fibers having an elongation of 1.0% or more and exhibiting good weaving properties.

又、本発明者らは、このような炭素繊維を使用して複合
材料を製造する際に最も重要な要素の一つである、繊維
とマトリクス樹脂との接着性が、強化繊維の表面酸素濃
度及び繊維中の全酸素濃度に大きく影響されることを見
出した。つまり、X線光電子分光法(ESCA)によっ
て検出される繊維表面の原子数比0/Cが0.1−0゜
35であり、繊維中の全酸素濃度が0.Ol〜0.2重
量%とされる場合に繊維とマトリクス樹脂との間の接着
性は良好であり、この範囲を外れ、繊維表面の原子数比
0/Cが0.1未満であり繊維中の全酸素濃度が0.0
1重量%未満であると、接着性が著しく低下することが
分かった。
In addition, the present inventors have discovered that the adhesion between the fibers and the matrix resin, which is one of the most important factors when manufacturing composite materials using such carbon fibers, is dependent on the surface oxygen concentration of the reinforcing fibers. It was also found that the total oxygen concentration in the fibers greatly influenced the concentration of oxygen in the fibers. That is, the atomic ratio 0/C on the fiber surface detected by X-ray photoelectron spectroscopy (ESCA) is 0.1-0°35, and the total oxygen concentration in the fiber is 0.35. The adhesion between the fiber and the matrix resin is good when the content of Ol~0.2% by weight is outside this range, and the atomic ratio 0/C on the fiber surface is less than 0.1 and The total oxygen concentration of is 0.0
It has been found that when the amount is less than 1% by weight, the adhesiveness is significantly reduced.

又、繊維表面の原子比0/Cが0835を越え、繊維中
の全酸素濃度が0.2重量%越えると、炭素繊維の引張
強度、引張弾性率が著しく低下することが分かった。
It has also been found that when the atomic ratio 0/C on the fiber surface exceeds 0835 and the total oxygen concentration in the fiber exceeds 0.2% by weight, the tensile strength and tensile modulus of the carbon fiber decrease significantly.

又、本発明者らは、斯る新規な高伸度、高強度のピッチ
系炭素繊維は、不融化繊維の炭化処理工程時に所定のテ
ンションを掛け、更に、繊維が融着しない範囲で迅速に
炭化することにより製造することができ、更に、その後
に酸化処理することによりマトリクスとの接着性が向上
すると共に、繊維の物性も向上することを見出した。
In addition, the present inventors have developed such novel high-elongation, high-strength pitch-based carbon fibers by applying a predetermined tension during the carbonization process of infusible fibers, and furthermore, by applying a predetermined tension to the infusible fibers during the carbonization process, and furthermore, by applying a predetermined tension to the carbonization process of the infusible fibers, and then quickly applying the tension within the range that the fibers do not fuse. It has been found that the fibers can be produced by carbonization, and that by subsequent oxidation treatment, the adhesion to the matrix is improved and the physical properties of the fibers are also improved.

本発明は、斯る新規な知見に基づきなされたものである
The present invention has been made based on this new knowledge.

従って、本発明の目的は、高伸度、高強度を有するピッ
チ系炭素繊維を効率よく製造するための製造方法を提供
することである。
Therefore, an object of the present invention is to provide a manufacturing method for efficiently manufacturing pitch-based carbon fibers having high elongation and high strength.

本発明の他の目的は、取扱いが容易であり、編織性に優
れ、又、マトリクス、樹脂との接着性のよい、従って複
合材料を製造するのに適した高伸度、高強度のピッチ系
炭素繊維の製造方法を提供することである。
Another object of the present invention is to provide a pitch system with high elongation and high strength that is easy to handle, has excellent knitting and weaving properties, and has good adhesion to matrices and resins, and is therefore suitable for manufacturing composite materials. An object of the present invention is to provide a method for producing carbon fiber.

を ′ るための 上記諸国的は、本発明に係る高伸度、高強度ピッチ系炭
素繊維の製造方法によって達成される。要約すれば本発
明は、120〜350℃の富酸素雰囲気下で3〜30分
間にて不融化処理を行い繊維の表層を選択的に強く酸化
した後、不活性ガス雰囲気下で最低温度400℃、最高
温度1300℃にて融着しない範囲で昇温しで、フィラ
ンフ11本当りo、oot〜O12grの張力を付与し
ながら、3〜15分間にて炭化処理を行い、その後酸化
処理を行うことを特徴とする高伸度、高強度ピッチ系炭
素繊維の製造方法である。
The above-mentioned methods for producing a pitch-based carbon fiber with high elongation and high strength according to the present invention can be achieved. To summarize, the present invention performs an infusibility treatment in an oxygen-rich atmosphere at 120 to 350°C for 3 to 30 minutes to selectively and strongly oxidize the surface layer of the fibers, and then heats the fibers at a minimum temperature of 400°C in an inert gas atmosphere. , while increasing the temperature to a maximum temperature of 1300°C within a range that does not cause fusion, and applying a tension of o,oot to O12gr per 11 fillets, carbonization treatment is performed for 3 to 15 minutes, and then oxidation treatment is performed. This is a method for producing high-elongation, high-strength pitch-based carbon fiber characterized by the following.

好ましくは、上記炭化処理は、400〜550 ’Cま
では昇温温度10〜90℃/分で、550〜1300℃
までは昇温温度100〜500’C/分で行なわれる。
Preferably, the carbonization treatment is carried out at a temperature of 550-1300°C with a heating temperature of 10-90°C/min until 400-550'C.
Up to this point, heating is performed at a heating temperature of 100 to 500'C/min.

このように本発明に従って製造された炭素繊維は、X 
I!構造パラメーターの配向角(φ)が25〜38°、
積層厚み(Lc)が19〜35人、層間隔(dOo2)
が3.45〜3゜50人である結晶構造を有し、X線光
電子分光法によって検出される繊維表面の原子数比0/
Cが0.1〜0.35であり、繊維中の全酸素濃度が0
.01〜0.2重量%であり、伸度が1.0%以上であ
る高伸度、高強度ピッチ系炭素繊維とされる。又、通常
、該繊維の引張強度は150Kg/ m m 2以上で
ある。
The carbon fiber thus produced according to the present invention is
I! The structural parameter orientation angle (φ) is 25 to 38°,
Lamination thickness (Lc) is 19 to 35 people, layer spacing (dOo2)
It has a crystal structure with a crystalline structure of 3.45 to 3.50 atoms, and the atomic ratio of the fiber surface detected by X-ray photoelectron spectroscopy is 0/
C is 0.1 to 0.35, and the total oxygen concentration in the fiber is 0.
.. 01 to 0.2% by weight, and is considered to be a high elongation, high strength pitch carbon fiber having an elongation of 1.0% or more. Further, the tensile strength of the fiber is usually 150 kg/mm 2 or more.

本発明者らは、上述のように、ピッチを原料として編織
性の良好なピッチ系炭素繊維を得るべく研究開発する過
程にて、先ず、良好な編織性を有するには伸度が少なく
と1.0%以上であることが必要であることが分かった
。又、所定レベル以上の引張強度及び引張弾性率を備え
、しかもこのような高伸度のピッチ系炭素繊維を得るに
は炭素繊維の結晶構造を特異なものとすることが重要で
あることを見出した。
As mentioned above, in the process of research and development to obtain pitch-based carbon fibers with good weaving and weaving properties using pitch as a raw material, we first discovered that in order to have good weaving and weaving properties, the elongation must be at least 1. It was found that it is necessary to have a content of .0% or more. We also discovered that in order to obtain pitch-based carbon fibers that have tensile strength and tensile modulus above a predetermined level and also have such high elongation, it is important to make the crystal structure of the carbon fibers unique. Ta.

更に説明すると、本発明者らは、伸度が少な(とも1.
0%以上であり、且つ、150Kg/mm2以上の引張
強度を有した高伸度のピッチ系炭素繊維を得るには炭素
繊維の結晶構造は、X線構造パラメーターの配向角(φ
)が25〜38°、積層厚み(Lc)が19〜35人、
層間隔(do。2)が3.45〜3.50入であること
が重要であり、特に、配向角(φ)は、ピッチ系炭素繊
維の伸度を決定する重要なファクターであることを見出
した。又、結晶構造を決定するファクターの1つである
積層厚み(Lc)及び層間隔(d、、2)は、伸度、引
張強度及び弾性率を適当にバランスさせるために適当範
囲に存在することが又重要であることが分かった。
To explain further, the present inventors found that the elongation was small (both 1.
0% or more and has a tensile strength of 150 Kg/mm2 or more, the crystal structure of carbon fiber is determined by the orientation angle (φ
) is 25 to 38 degrees, lamination thickness (Lc) is 19 to 35 people,
It is important that the layer spacing (do. 2) is 3.45 to 3.50, and in particular, the orientation angle (φ) is an important factor that determines the elongation of pitch-based carbon fibers. I found it. In addition, the lamination thickness (Lc) and interlayer spacing (d, 2), which are one of the factors that determine the crystal structure, must be within an appropriate range to appropriately balance elongation, tensile strength, and elastic modulus. was also found to be important.

つまり、配向角(φ)が20”より小さい場合には十分
な伸度、即ち、良好な編織性を得るに必要な1.0%以
上の伸度が得られず、又、配向角(φ)が38°を越え
ると引張弾性率が低下し炭素繊維本来の特性である高弾
性率という利点が損なわれてしまう。更に、積層厚み(
Lc)及び層間隔(aO02)がそれぞれ19〜35人
及び3゜45〜3.50人の範囲外である場合には、必
要とされる引張強度及び引張弾性率が得られ難いという
問題が生じる。
In other words, if the orientation angle (φ) is smaller than 20", sufficient elongation, that is, the elongation of 1.0% or more necessary to obtain good weaving properties, cannot be obtained; ) exceeds 38°, the tensile modulus decreases and the advantage of high modulus, which is an inherent characteristic of carbon fiber, is lost.Furthermore, if the laminated thickness (
When Lc) and interlayer spacing (aO02) are outside the ranges of 19 to 35 people and 3°45 to 3.50 people, respectively, the problem arises that it is difficult to obtain the required tensile strength and tensile modulus. .

以上のように、高伸度、高強度のピッチ系炭素繊維を得
るには、X線構造パラメーターである配向角(φ)、積
層厚み(Lc)、層間隔(do。
As described above, in order to obtain pitch-based carbon fibers with high elongation and high strength, it is necessary to adjust the X-ray structure parameters such as orientation angle (φ), lamination thickness (Lc), and layer spacing (do).

2)を、掻く狭い範囲の適当範囲にバランスさせること
が重要である。
It is important to balance 2) within an appropriate narrow range.

上記特異な結晶構造を有したピッチ系炭素繊維によると
、伸度が少なくと1.0%以上であり、一般に、1.0
〜5.0%とされ、しがち。
According to the above-mentioned pitch-based carbon fiber having a unique crystal structure, the elongation is at least 1.0%, and generally 1.0%.
It is said to be ~5.0% and tends to occur.

150Kg/mm”以上の引張強度を有した高伸度、高
強度のピッチ系炭素繊維を得ることができる。
A pitch-based carbon fiber having a tensile strength of 150 Kg/mm" or more, high elongation, and high strength can be obtained.

又、本発明に従って製造されたピッチ系炭素繊維は、X
線光電子分光法によって検出される繊維表面の原子数比
07Cが0.1〜0.35であり、繊維中の全酸素濃度
が0.01〜0.2重量%であり、そのまま複合樹脂の
強化繊維として使用した場合にもマトリクス樹脂との接
着性が良好であり、高強度、高弾性率の炭素繊維強化複
合樹脂を得ることができることが分かった。
Furthermore, the pitch-based carbon fiber produced according to the present invention has
The atomic ratio 07C on the fiber surface detected by line photoelectron spectroscopy is 0.1 to 0.35, the total oxygen concentration in the fiber is 0.01 to 0.2% by weight, and the composite resin can be strengthened as it is. It was found that even when used as fibers, the adhesion with the matrix resin was good, and a carbon fiber reinforced composite resin with high strength and high modulus of elasticity could be obtained.

又、斯る炭素繊維は、必要に応じて、更に焼成すること
により、より高強度、高弾性率の炭素繊維及び黒鉛繊維
を得ることができることも分かった。
It has also been found that by further firing such carbon fibers, if necessary, carbon fibers and graphite fibers with higher strength and higher modulus of elasticity can be obtained.

次に、本発明に係る炭素繊維の製造方法について説明す
る。
Next, a method for manufacturing carbon fiber according to the present invention will be explained.

本発明に係る製造方法を実施するに際しては、先ず、熱
伝導性の良い挿入部材を入れた紡糸ノズルを使用して紡
糸ノズルにおける溶融ピッチの温度変動、特に温度降下
を最低限度に抑えることにより紡糸し炭素質ピッチ繊維
を得る。又、斯かる紡糸法によれば、紡糸時に生じる配
向孔れを適度に制御し得るという利点がある。
When carrying out the production method according to the present invention, first, a spinning nozzle containing an insertion member with good thermal conductivity is used to suppress temperature fluctuations in the melt pitch in the spinning nozzle, especially temperature drops, to a minimum, thereby spinning the yarn. to obtain carbonaceous pitch fibers. Further, such a spinning method has the advantage that orientation holes that occur during spinning can be appropriately controlled.

このようにして得られたピッチ繊維を富酸素ガス雰囲気
下(酸素濃度30−100%)にて最低d度120〜2
00℃から1〜b 速度で最高温度240〜350℃まで3〜30分間で加
熱して不融化を行なう。
The pitch fibers obtained in this way are heated to a minimum d degree of 120 to 2 in an oxygen-rich gas atmosphere (oxygen concentration 30 to 100%).
The mixture is heated from 00° C. to a maximum temperature of 240° to 350° C. for 3 to 30 minutes at a speed of 1 to 30° C. to infusible.

不融化した繊維は、次に不活性ガス中で、例えば窒素或
はアルゴンガス中で400〜550℃までは昇温速度1
0〜b 1300℃までは昇温速度100〜b で加熱し、短時間にて、例えば3〜15分間にて炭化処
理を行う。このように、不融化時には、高温の富酸素ガ
ス雰囲気下にて迅速に、かつ繊維の表層を選択的に強く
酸化(内部酸化は少)した後、融着しない範囲で不活性
ガス雰囲気下で迅速に炭化することにより達成される。
The infusible fibers are then heated in an inert gas, for example nitrogen or argon gas, at a heating rate of 1 to 400-550°C.
It is heated at a temperature increase rate of 100 to 1300° C., and carbonization is performed in a short time, for example, for 3 to 15 minutes. In this way, during infusibility, the surface layer of the fiber is quickly and selectively strongly oxidized (with little internal oxidation) in a high-temperature oxygen-rich gas atmosphere, and then the fiber is oxidized under an inert gas atmosphere to the extent that it does not fuse. This is achieved by rapid carbonization.

更に、このとき、本発明によれば、炭素繊維の配向角を
改良するだめに、1フイラメント当たり0.001〜0
.2grのテンションが付与され、強制配向がなされる
Furthermore, at this time, according to the present invention, in order to improve the orientation angle of carbon fibers, 0.001 to 0.
.. A tension of 2gr is applied to force orientation.

これにより、伸度が少なくとも1.0%以上であり、一
般に、1.0〜5.0%とされ、しかも、150Kg/
mm”以上の引張強度を有した高伸度のピッチ系炭素繊
維を得ることができる。
As a result, the elongation is at least 1.0% or more, generally 1.0 to 5.0%, and 150 kg/
It is possible to obtain high elongation pitch-based carbon fibers having a tensile strength of 10 mm or more.

このようにして得られた高伸度、高強度のピッチ系炭素
繊維は、引き続いて、酸化処理され、繊維の表面酸素濃
度及び繊維中の全酸素濃度が上記所定範囲内になるよう
に調整される。酸化処理は、気相法、液相法等、特に限
定することはないが例えば酸素含有雰囲気下で短時間の
気相酸化を行うことにより1つの実施例としては、繊維
を酸素濃度60%の富酸素雰囲気中にて700℃、30
秒間加熱することにより好適に行うことができる。又、
このような高温、短時間の酸化処理により、マトリクス
との接着性が向上すると共に、繊維の物性も向上するこ
とが分かった。
The pitch-based carbon fibers with high elongation and high strength thus obtained are subsequently oxidized and adjusted so that the surface oxygen concentration of the fibers and the total oxygen concentration in the fibers are within the above-mentioned predetermined ranges. Ru. The oxidation treatment may be carried out by a gas phase method, a liquid phase method, etc., but is not particularly limited. For example, by performing a short time gas phase oxidation in an oxygen-containing atmosphere, the fibers may be oxidized to an oxygen concentration of 60%. 700℃, 30℃ in oxygen-rich atmosphere
This can be suitably carried out by heating for a second. or,
It has been found that such high-temperature, short-time oxidation treatment improves the adhesion to the matrix and also improves the physical properties of the fiber.

該炭素繊維は、その後、必要に応じて、不活性ガス雰囲
気下にて2000℃まで加熱して炭化するか、更に30
00℃まで加熱して黒鉛化される。その結果、引張強度
が300 K g / m m ”以上、及び引張弾性
率が60 t o n / m m ”以上の高強度、
高弾性率のピッチ系炭素繊維が得られる。
The carbon fibers are then carbonized by heating to 2000°C in an inert gas atmosphere, or further heated to 300°C, as necessary.
Graphitized by heating to 00°C. As a result, it has high strength with a tensile strength of 300 Kg/mm" or more and a tensile modulus of 60 ton/mm" or more,
A pitch-based carbon fiber with a high modulus of elasticity is obtained.

本明細書において、炭素繊維の特性は下記の如き測定方
法を採用した。
In this specification, the following measurement method was used to measure the characteristics of carbon fiber.

・X線構造パラメータ 配向角(φ)、積層厚さ(Lc)  層間隔(d、。2
)は広角X線回折より求められる炭素繊維の微細構造を
表わすパラメータである。
・X-ray structural parameters Orientation angle (φ), Lamination thickness (Lc) Layer spacing (d, .2
) is a parameter representing the fine structure of carbon fiber determined by wide-angle X-ray diffraction.

配向角(φ)は結晶の繊維軸方向に対する選択的配向の
程度を示すもので、この角度が小さい程配向が良いこと
を意味する。積層厚さ(Lc)は炭素微結晶中の(00
2)面の見掛けの積層の厚さを表わし、一般に積層厚さ
(Lc)が大きい程結晶性が良いと見なされる。又、層
間隔(do。
The orientation angle (φ) indicates the degree of selective orientation of the crystal with respect to the fiber axis direction, and the smaller this angle, the better the orientation. The lamination thickness (Lc) is (00
2) It represents the apparent thickness of the laminated layers on the surface, and it is generally considered that the larger the laminated thickness (Lc), the better the crystallinity. Also, the layer spacing (do.

2)は微結晶の(002)面の層間隔を表わし、層間隔
(do。2)が小さい程結晶性が良いと見なされる。
2) represents the layer spacing of the (002) plane of the microcrystal, and it is considered that the smaller the layer spacing (do. 2), the better the crystallinity.

配向角(φ)の測定は繊維試料台を使用し、繊維束が計
数管の走査面に垂直になっている状態で、計数管を走査
して(002)回折帯の強度が最大となる回折角2θ(
約26°)を予め求める。次に計数管をこの位置に保持
した状態で、繊維試料台を360°回転することにより
(002)回折環の強度分布を測定し、強度最大値のl
/2の点における半価幅を配向角(φ)とする。
To measure the orientation angle (φ), use a fiber sample stage, scan the counter with the fiber bundle perpendicular to the scanning plane of the counter, and find the time at which the intensity of the diffraction band reaches its maximum (002). 2θ(
approximately 26°). Next, with the counter held in this position, the fiber sample stage was rotated 360° to measure the intensity distribution of the (002) diffraction ring, and the intensity distribution of the (002) diffraction ring was measured.
The half width at the point /2 is defined as the orientation angle (φ).

積層厚さ(Lc)、層間隔(d、、、)は繊維を乳鉢で
粉末状にし、字種法「人造黒鉛の格子定数および結晶子
の大きさ測定法」に準拠して測定・解析を行ない、以下
の式から求めた。
Lamination thickness (Lc) and interlayer spacing (d,,,) are measured and analyzed by powdering the fibers in a mortar and following the ``method for measuring the lattice constant and crystallite size of artificial graphite'' method. It was calculated using the following formula.

Lc=KL/βcosθ dooi=尤/ 2 s i nθ ここで、K=1.0.  λ= 1.5418入θ: 
 (0021回折角2θより求めるβ:補正により求め
た( 002)回折帯の半価幅 ・X線光電子分光法(ESCA)による繊維の表面酸素
濃度(O+S/ C、s)の測定測定装置としては、ク
ラトス製XSAM−800を使用した。
Lc=KL/βcosθ dooi=yield/2s i nθ where K=1.0. λ = 1.5418 in θ:
(β determined from 0021 diffraction angle 2θ: (002) determined by correction Half width of diffraction band / X-ray photoelectron spectroscopy (ESCA) to measure fiber surface oxygen concentration (O + S / C, s) As a measuring device , XSAM-800 manufactured by Kratos was used.

測定すべき繊維をカットし、金製の試料支持台上に拡げ
て並べた後、試料チャンバ内を1×10−’T o r
 r以下に保った。X !jl aとしてMgKα1,
2を用いた。そして、運動エネルギが722eVのO,
ピーク面積、及び970eVのCIl+l−ピー積の比
から、表面酸素濃度を求めた。
After cutting the fibers to be measured and arranging them spread out on a gold sample support stand, the inside of the sample chamber was heated to 1 x 10-'T or
It was kept below r. X! MgKα1 as jl a,
2 was used. And O, whose kinetic energy is 722 eV,
The surface oxygen concentration was determined from the peak area and the ratio of CIl+l-p product at 970 eV.

本発明でいう繊維表面とは、繊維表面から繊維中心に向
って約0.01μm以下の超薄層を意味する。
The fiber surface as used in the present invention means an ultra-thin layer of about 0.01 μm or less from the fiber surface toward the fiber center.

次に、本発明を実施例について説明する。Next, the present invention will be described with reference to examples.

実施例1 光学的異方性相(AP)を約50%含有する炭素質ピッ
チを前駆体ピッチとして使用し、こ゛れをローター内有
効容積200mJ2の円筒型連続遠心分離装置でロータ
ー温度350℃に制御しつつ遠心力10000GでAP
排出口よりピッチを抜き出した。得られたピッチは光学
的異方性相を98%含み、軟化点が276℃であった。
Example 1 A carbonaceous pitch containing approximately 50% optically anisotropic phase (AP) was used as a precursor pitch, and the pitch was heated to a rotor temperature of 350°C in a cylindrical continuous centrifugal separator with an effective internal volume of 200 mJ2. AP with centrifugal force of 10,000G while controlling
I pulled out the pitch from the outlet. The obtained pitch contained 98% of the optically anisotropic phase and had a softening point of 276°C.

次に、得られた光学的異方性相ピッチをノズル径0.3
mmの溶融紡糸装置で330℃で紡糸した。このとき使
用した紡糸装置及び紡糸口金の構造が第1図〜第3図に
図示される。
Next, the obtained optically anisotropic phase pitch was adjusted to a nozzle diameter of 0.3
The fibers were spun at 330° C. using a 1.0 mm melt spinning device. The structures of the spinning device and spinneret used at this time are illustrated in FIGS. 1 to 3.

紡糸装置10はピッチ配管より溶融したピッチ11が注
入された加熱シリンダー12と、該シリンダー12内の
ピッチを加圧するプランジャー13と、加熱シリンダー
12の底面側に取付けられた紡糸口金14とを具備し、
紡糸口金14は、紡糸ノズル15が1個穿設されており
、ボルト17及び口金押え18によって加熱シリンダー
12の低面側に着脱自在に固着することによって構成さ
れた。紡糸されたピッチ繊維は紡糸筒19を通過した後
巻き取りボビーン20に巻き取られた。
The spinning device 10 includes a heating cylinder 12 into which molten pitch 11 is injected from a pitch pipe, a plunger 13 that pressurizes the pitch within the cylinder 12, and a spinneret 14 attached to the bottom side of the heating cylinder 12. death,
The spinneret 14 has one spinning nozzle 15 drilled therein, and is constructed by being removably fixed to the lower side of the heating cylinder 12 with a bolt 17 and a spinneret holder 18. After passing through the spinning tube 19, the spun pitch fibers were wound up onto a winding bobean 20.

本実施例で使用された紡糸口金14に形成された紡糸ノ
ズル15は、大径のノズル導入部15aと、該ノズル導
入部15aに連通して形成された小径のノズル部15b
とを有し、大径のノズル導入部15aと小径のノズル部
15bとの間には切頭円錐形状のノズル遷移部15cが
形成された。紡糸口金14はステンレス鋼(SUS30
4)にて作製され、紡糸ノズル15部の厚さ(T)は5
mmとされ、大径のノズル導入部15a及び小径のノズ
ル部15bの長さ(T、)及び(T2)はそれぞれ4m
m及び0゜65mmとされた。又、大径のノズル導入部
15a及び小径のノズル部15bの直径(Dl)及び(
D2)はそれぞれ1mm及び0.3mmとされた。
The spinning nozzle 15 formed in the spinneret 14 used in this example includes a large diameter nozzle introduction part 15a and a small diameter nozzle part 15b formed in communication with the nozzle introduction part 15a.
A truncated conical nozzle transition section 15c was formed between the large diameter nozzle introduction section 15a and the small diameter nozzle section 15b. The spinneret 14 is made of stainless steel (SUS30
4), the thickness (T) of 15 parts of the spinning nozzle is 5
mm, and the lengths (T, ) and (T2) of the large diameter nozzle introduction part 15a and the small diameter nozzle part 15b are each 4 m.
m and 0°65 mm. Moreover, the diameter (Dl) and (
D2) were set to 1 mm and 0.3 mm, respectively.

又、紡糸ノズル15の大径ノズル導入部15aには前記
紡糸口金14より大きい熱伝導度を有した、本実施例で
は銅製の挿入部材16が配置された。該挿入部材16は
、一端16aが小径ノズル部15bの入口に近接し、他
端16bは大径ノズル導入部15aの入口より外方へと
延在する細長の棒状体とされ、全長(L)は20mmで
あり、直径(d)は、挿入部材が大径ノズル導入部15
aに円滑に挿入され、且つ確実に保持されるように、大
径ノズル導入部15aと挿入部材16との間の空隙が1
 / 100〜5 / 100 m mとなるように形
成された。
Further, in the present embodiment, an insertion member 16 made of copper, which has a higher thermal conductivity than the spinneret 14, was arranged in the large-diameter nozzle introduction part 15a of the spinning nozzle 15. The insertion member 16 has an elongated rod-like body with one end 16a close to the inlet of the small-diameter nozzle section 15b and the other end 16b extending outward from the inlet of the large-diameter nozzle introducing section 15a, and has an overall length (L). is 20 mm, and the diameter (d) is that the insertion member is the large diameter nozzle introduction part 15.
The gap between the large-diameter nozzle introduction part 15a and the insertion member 16 is set to 1 so that the large-diameter nozzle introduction part 15a and the insertion member 16 can be smoothly inserted into
/100 to 5/100 mm.

又、挿入部材16の該表面には溶融ピッチをノズル部1
5bへと流動案内するべく、該挿入部材の軸線方向に沿
って半径(r)が0.15mmの円弧状をした4個の溝
18が形成された。
Further, the surface of the insertion member 16 is coated with molten pitch at the nozzle portion 1.
5b, four arcuate grooves 18 with a radius (r) of 0.15 mm were formed along the axial direction of the insertion member.

上記構成の紡糸装置にて溶融ピッチを紡糸した場合には
、紡糸ノズルを通過する際の温度降下を3℃以下に抑え
ることができた。
When the molten pitch was spun using the spinning apparatus having the above configuration, the temperature drop during passing through the spinning nozzle could be suppressed to 3° C. or less.

このようにして得られたピッチ繊維を酸素60%の富酸
素ガス雰囲気で開始温度180’C1最終温度310℃
、昇温速度13℃/分で昇温して10分間で不融化した
The pitch fiber thus obtained was heated in an oxygen-rich gas atmosphere containing 60% oxygen at a starting temperature of 180'C and a final temperature of 310'C.
The temperature was increased at a rate of 13° C./min, and the mixture became infusible in 10 minutes.

不融化処理の終了後、窒素ガス雰囲気中で、400℃か
ら550℃まで50℃/分で昇温し、550℃から11
00℃まで250’C/分昇温して炭化を行った。この
とき、1100℃での保持時間は零であった。総炭化時
間は5.2分であった。
After the infusibility treatment was completed, the temperature was raised from 400°C to 550°C at a rate of 50°C/min in a nitrogen gas atmosphere, and the temperature was increased from 550°C to 11°C.
Carbonization was carried out by increasing the temperature to 00°C at 250'C/min. At this time, the holding time at 1100°C was zero. Total carbonization time was 5.2 minutes.

又、この炭化処理時には繊維の配向角を改良する目的で
、フィラメント1本当たり0゜017grのテンション
を掛けた。
Further, during this carbonization treatment, a tension of 0°017 gr was applied to each filament in order to improve the orientation angle of the fibers.

この炭化処理した炭素繊維を更に、700℃に維持され
た、酸素濃度60%の富酸素ガス雰囲気中(ox /N
2=60/40)を、30秒間通して、気相酸化処理し
た。
The carbonized carbon fibers were further placed in an oxygen-rich gas atmosphere (ox/N) maintained at 700°C with an oxygen concentration of 60%.
2=60/40) for 30 seconds.

この炭素繊維は、X線回折の結果、配向角(φ)が32
° 積層厚さ(Lc)が19゜4人、層間隔(do、)
が3.484人であった。
As a result of X-ray diffraction, this carbon fiber has an orientation angle (φ) of 32
° Lamination thickness (Lc) is 19° 4 people, layer spacing (do,)
There were 3,484 people.

又、該繊維の糸径は9.9μmであり、引張強度は2.
8GPa (280Kg/mm2)、引張弾性率は11
0GPa (l 1.0ton/mm” )、伸度は2
.5%であって、伸びの大きいしなやかな糸であった。
The fiber has a thread diameter of 9.9 μm and a tensile strength of 2.9 μm.
8GPa (280Kg/mm2), tensile modulus is 11
0GPa (l 1.0ton/mm”), elongation is 2
.. 5%, and was a flexible yarn with great elongation.

この繊維をX線光電子分光法により繊維の表面酸素濃度
を測定したところ、繊維表面の原子数比0/Cの値は0
.151であった。又、元素分析で求めた系中の全酸素
濃度は0.1重量%であった。
When the surface oxygen concentration of this fiber was measured using X-ray photoelectron spectroscopy, the value of the atomic ratio 0/C on the fiber surface was 0.
.. It was 151. Further, the total oxygen concentration in the system determined by elemental analysis was 0.1% by weight.

更に、このようにして得られた繊維を使用して層間剪断
強度(I LSS)を測定したところ13.2Kg/m
m”であり、高い値を示した。
Furthermore, when the interlaminar shear strength (ILSS) of the fiber thus obtained was measured, it was 13.2 Kg/m.
m” and showed a high value.

又、この炭素繊維を2500℃まで昇温しで得た黒鉛繊
維は、糸径が9,8μmであり、引張強度は4.1GP
a (410Kg/mm2)、引張弾性率は700GP
a (70ton/mm” )と、高い物性を示した。
In addition, graphite fiber obtained by heating this carbon fiber to 2500°C has a thread diameter of 9.8 μm and a tensile strength of 4.1 GP.
a (410Kg/mm2), tensile modulus is 700GP
a (70 ton/mm"), showing high physical properties.

比較例1 実施例1と同じ材料を使用し、同じ方法にて不融化繊維
及び炭素繊維を得た。実施例1と異なり、この炭素繊維
に対し気相酸化は行わなかった。
Comparative Example 1 Infusible fibers and carbon fibers were obtained using the same materials and the same method as in Example 1. Unlike Example 1, this carbon fiber was not subjected to gas phase oxidation.

この炭素繊維のX線回折の結果、配向角(φ)は32°
、積層厚さ(Lc)が19.5人、層間隔(d、、、)
が3.485人であった。
As a result of X-ray diffraction of this carbon fiber, the orientation angle (φ) is 32°
, lamination thickness (Lc) is 19.5 people, layer spacing (d, , )
There were 3,485 people.

又、該繊維の糸径はloIimであり、引張強度は2.
5GPa (250Kg/mm2)、引張弾性率は11
0GPa (11ton/mm” )、伸度は2.3%
であった。
Further, the yarn diameter of the fiber is loIim, and the tensile strength is 2.
5GPa (250Kg/mm2), tensile modulus is 11
0GPa (11ton/mm”), elongation is 2.3%
Met.

この繊維をX線光電子分光法により繊維の表面酸素濃度
を測定したところ、原子数比O/Cの値は0.03であ
り、又、元素分析で求めた系中の全酸素濃度は0.01
重量%以下であった。
When the surface oxygen concentration of this fiber was measured using X-ray photoelectron spectroscopy, the value of the atomic ratio O/C was 0.03, and the total oxygen concentration in the system determined by elemental analysis was 0.03. 01
It was less than % by weight.

更に、このようにして得られた繊維を使用して層間剪断
強度(ILSS)を測定したところ9゜5Kg/mm”
であった。
Furthermore, when the interlaminar shear strength (ILSS) of the fiber thus obtained was measured, it was 9.5 kg/mm.
Met.

又、この炭素繊維を2500℃まで昇温して得た黒鉛繊
維は、糸径が9.8μmであり、引張強度は3.5GP
a (350Kg/mm” )、引張弾性率は700G
Pa (70ton/mm” )であった。
Furthermore, the graphite fiber obtained by heating this carbon fiber to 2500°C has a thread diameter of 9.8 μm and a tensile strength of 3.5 GP.
a (350Kg/mm”), tensile modulus is 700G
Pa (70 ton/mm").

比較例2 実施例1と同じ材料を使用し、同じ方法にて不融化繊維
を得た。
Comparative Example 2 Infusible fibers were obtained using the same materials and the same method as in Example 1.

該不融化繊維を、テンションを掛けなかった以外は実施
例1と同様に炭化して炭素繊維を作製した。炭化後の炭
素繊維の気相酸化は行わなかった。
The infusible fibers were carbonized to produce carbon fibers in the same manner as in Example 1, except that no tension was applied. Gas phase oxidation of the carbon fibers after carbonization was not performed.

この炭素繊維は、X線回折の結果、配向角(φ)が41
“ 積層厚さ(Lc)が19゜5人、層間隔(d、。2
)が3.497人であった。
As a result of X-ray diffraction, this carbon fiber has an orientation angle (φ) of 41
“Lamination thickness (Lc) is 19°5, layer spacing (d, .2
) was 3.497 people.

又、該繊維の糸径はloLLmであり、引張強度は0 
、7 G P a (70K g / m rd ) 
、引張弾性率は80GPa(8,0ton/mt&)、
伸度は0.9%であった。
Moreover, the thread diameter of the fiber is loLLm, and the tensile strength is 0.
, 7 GPa (70Kg/mrd)
, tensile modulus is 80GPa (8,0ton/mt&),
The elongation was 0.9%.

この炭素繊維を2500℃まで昇温して得た黒鉛繊維は
、糸径が9.8μmであり、引張強度は2.8GPa 
(280Kg/mm” )、引張弾性率は650GPa
 (65ton/mm” )であった。
The graphite fiber obtained by heating this carbon fiber to 2500°C has a thread diameter of 9.8 μm and a tensile strength of 2.8 GPa.
(280Kg/mm”), tensile modulus is 650GPa
(65 ton/mm”).

比較例3 実施例1と同じ材料を使用し、同じ方法にて不融化繊維
を得た。
Comparative Example 3 Infusible fibers were obtained using the same materials and the same method as in Example 1.

該不融化繊維に、フィラメント1本当たり0゜33gr
のテンションを掛けて炭化した以外は実施例1と同様に
処理した。但し、炭化後の炭素繊維の気相酸化は、行わ
なかった。
The infusible fiber contains 0°33gr per filament.
The treatment was carried out in the same manner as in Example 1, except that the tension was applied to carbonize. However, gas phase oxidation of the carbonized carbon fibers was not performed.

この炭素繊維は、X線回折の結果、配向角(φ)が24
° 積層厚み(Lc)が19゜5人、層間隔(doo2
)が3.482人であった。
As a result of X-ray diffraction, this carbon fiber has an orientation angle (φ) of 24
° Lamination thickness (Lc) is 19° 5 people, layer spacing (doo2
) was 3.482 people.

又、該繊維の糸径はl101Lであり、引張強度は1.
3GPa (140Kg/mm” )、引張弾性率は1
40GPa (14ton/mm” )、伸度は0.9
%であった。
The fiber has a thread diameter of 1101L and a tensile strength of 1.
3GPa (140Kg/mm”), tensile modulus is 1
40GPa (14ton/mm”), elongation is 0.9
%Met.

この炭素繊維を2500℃まで昇温して得た黒鉛繊維は
、糸径が9.8μmであり、引張強度は2.8GPa 
(280Kg/mm” )、引張弾性率は750GPa
 (75ton/mm’ )であった。
The graphite fiber obtained by heating this carbon fiber to 2500°C has a thread diameter of 9.8 μm and a tensile strength of 2.8 GPa.
(280Kg/mm”), tensile modulus is 750GPa
(75 ton/mm').

比較例4 実施例1と同じ材料を使用し、同じ方法にて不融化繊維
を得た。
Comparative Example 4 Infusible fibers were obtained using the same materials and the same method as in Example 1.

該不融化繊維を、400℃から1100℃まで5℃/分
で昇温し、140分間かけて炭化した以外は実施例1と
同様に処理して炭素繊維を作製した。但し、炭化後の炭
素繊維の気相酸化は行わなかった。
Carbon fibers were produced in the same manner as in Example 1, except that the infusible fibers were heated from 400°C to 1100°C at a rate of 5°C/min and carbonized for 140 minutes. However, the carbon fibers were not subjected to gas phase oxidation after carbonization.

この炭素繊維は、X !1回折の結果、配向角(φ)が
41° 積層厚み(Lc)が19゜6人、層間隔(do
。2)が3.495人であった。
This carbon fiber is X! As a result of one diffraction, the orientation angle (φ) is 41°, the laminated thickness (Lc) is 19°, 6 people, and the layer spacing (do
. 2) was 3.495 people.

又、該繊維の糸径は10umであり、引張強度は0.8
GPa (80Kg/mm” )、引張弾性率は90G
Pa (9,0ton/mm” ) 、伸度は0.9%
であった。
Moreover, the thread diameter of the fiber is 10 um, and the tensile strength is 0.8
GPa (80Kg/mm”), tensile modulus is 90G
Pa (9.0ton/mm”), elongation is 0.9%
Met.

この炭素繊維を2500℃まで昇温して得た黒鉛繊維は
、糸径が9.8umであり、引張強度は2.8GPa 
(280Kg/mm” )、引張弾性率は650GPa
 (65ton/mm” )であった。
The graphite fiber obtained by heating this carbon fiber to 2500°C has a thread diameter of 9.8 um and a tensile strength of 2.8 GPa.
(280Kg/mm”), tensile modulus is 650GPa
(65 ton/mm”).

比較例5 実施例1と同じ材料を使用し、同じ方法にて不融化繊維
を得た。
Comparative Example 5 Infusible fibers were obtained using the same materials and the same method as in Example 1.

該不融化繊維を、400℃から1100℃まで250℃
/分で昇温し、約3分間で炭化した以外は実施例1と同
様に処理して炭素繊維を作製した。
The infusible fiber was heated at 250°C from 400°C to 1100°C.
Carbon fibers were produced in the same manner as in Example 1, except that the temperature was raised at a rate of 1/min and carbonized for about 3 minutes.

この場合には、炭化時1部融着を起こし、正常な糸が得
られなかった。
In this case, some fusion occurred during carbonization, and a normal thread could not be obtained.

比較例6 実施例1と同一のピッチを用いて、挿入部材なしの紡糸
口金を用いて紡糸温度330℃で紡糸し、得られたピッ
チ繊維を空気雰囲気において180℃から0.3℃/分
の速度で255℃まで昇温て不融化した。
Comparative Example 6 Using the same pitch as in Example 1, spinning was carried out at a spinning temperature of 330°C using a spinneret without an insert member, and the obtained pitch fiber was spun at 0.3°C/min from 180°C in an air atmosphere. The temperature was raised to 255°C at a rapid rate to make it infusible.

該不融化繊維を、テンションなしで窒素ガス雰囲気中に
て400℃から1100℃まで5℃/分で昇温し、14
0分間かけて炭化した。
The temperature of the infusible fiber was raised from 400°C to 1100°C at a rate of 5°C/min in a nitrogen gas atmosphere without tension.
Carbonization took 0 minutes.

1100℃までの保持時間はゼロであった。炭化後の炭
素繊維の気相酸化は実施しなかった。
The holding time up to 1100°C was zero. Gas phase oxidation of the carbon fibers after carbonization was not performed.

この炭素繊維は、X線回折の結果、配向角(φ)が43
° 積層厚み(Lc)が19゜5人、層間隔(do02
)が3.497人であった。
As a result of X-ray diffraction, this carbon fiber has an orientation angle (φ) of 43
° Lamination thickness (Lc) is 19° 5 people, layer spacing (do02
) was 3.497 people.

又、該繊維の糸径は10μmであり、引張強度は0.6
GPa (60Kg/mm” )、引張弾性率は75G
Pa (7,5ton/mm” ) 、伸度は0.8%
であった。
The fiber has a thread diameter of 10 μm and a tensile strength of 0.6.
GPa (60Kg/mm”), tensile modulus is 75G
Pa (7.5 ton/mm”), elongation is 0.8%
Met.

この炭素繊維を2500℃まで昇温しで得た黒鉛繊維は
、糸径が9.9μmであり、引張強度は2.6GPa 
(260Kg/mm” )、引張弾性率は650GPa
 (65ton/mm” )であった。
The graphite fiber obtained by heating this carbon fiber to 2500°C has a thread diameter of 9.9 μm and a tensile strength of 2.6 GPa.
(260Kg/mm”), tensile modulus is 650GPa
(65 ton/mm”).

比較例7 実施例1と同じ材料を使用し同じ方法にて、不融化繊維
及び炭素繊維を得た。この炭化処理した炭素繊維を更に
、700℃に保持された酸素濃度60%冨酸素ガス雰囲
気中で(02/N2=60/40)を、3分間通して気
相酸化処理した。
Comparative Example 7 Infusible fibers and carbon fibers were obtained using the same materials and the same method as in Example 1. The carbonized carbon fibers were further subjected to gas phase oxidation treatment in a rich oxygen gas atmosphere (02/N2=60/40) maintained at 700° C. with an oxygen concentration of 60% for 3 minutes.

該繊維の糸径は9.9μmであり、引張強度は0.8G
Pa、引張弾性率は89.0GPa、伸度は0.9%で
あり、引張強度は著しく低下した。
The fiber has a thread diameter of 9.9 μm and a tensile strength of 0.8 G.
Pa, tensile modulus was 89.0 GPa, elongation was 0.9%, and tensile strength was significantly decreased.

この繊維をX線光電子分光法により繊維の表面酸素濃度
を測定したところ繊維表面の原子数比は0.42であり
、元素分析で求めた系中の全酸素濃度は0.4重量%で
あった。
When the surface oxygen concentration of this fiber was measured using X-ray photoelectron spectroscopy, the atomic ratio on the fiber surface was 0.42, and the total oxygen concentration in the system determined by elemental analysis was 0.4% by weight. Ta.

このようにして得られた繊維を使用して層間剪断強度(
ILSS)は、12.5Kg/mrr?であった。
Using the fibers obtained in this way, the interlaminar shear strength (
ILSS) is 12.5Kg/mrr? Met.

実施例1及び比較例1〜7を検討すると、本発明に従っ
た高伸度の、しかも所定レベル以上の6張強度、引張弾
性率を有した炭素繊維を得るには、不融化繊維の炭化処
理工程時に所定のテンションを掛け、更に、繊維が融着
しない範囲で迅速に炭化することが重要であると共に、
富酸素ガス中にて高温、短時間で気相酸化処理すること
により繊維の表面の酸素濃度及び繊維中の全酸素濃度を
所定範囲内に規定することが重要であることが分かる。
Examining Example 1 and Comparative Examples 1 to 7, it is found that carbonization of infusible fibers is necessary to obtain carbon fibers with high elongation and tensile strength and tensile modulus of at least a predetermined level according to the present invention. It is important to apply a predetermined tension during the treatment process and to carbonize quickly without fusion of the fibers.
It can be seen that it is important to regulate the oxygen concentration on the surface of the fiber and the total oxygen concentration in the fiber within a predetermined range by carrying out a gas phase oxidation treatment in an oxygen-rich gas at high temperature for a short time.

特に、富酸素ガス中にて高温、短時間で気相酸化処理す
ることにより繊維自体の物性及びマトリクス樹脂との接
着性が向上し、層間剪断強度が増大することが分かる。
In particular, it can be seen that the physical properties of the fiber itself and the adhesion to the matrix resin are improved by gas-phase oxidation treatment in an oxygen-rich gas at high temperature for a short time, and the interlaminar shear strength is increased.

発」七□」L里 本発明に係る製造方法にて作製した特異な結晶構造を有
したピッチ系炭素繊維は、伸度が1゜0%以上といった
高伸度でありながら、所定レベル以上の引張強度及び引
張弾性率を有しており、編織性に優れており、製造時の
糸扱いが非常に容易となり製造効率が大幅に改善され、
宇宙開発、自動車、建築物などの軽量構造材料用強化繊
維として極めて有効に使用し得る。又、更に2000℃
まで加熱して炭化し、更には3000℃まで加熱して黒
鉛化することにより、著しく高強度、高弾性率の炭素繊
維を得ることができる。更に本発明にて製造された繊維
は、複合材料用強化繊維に使用した場合にマトリクス樹
脂との接着性が極めて良好であり、高性能の炭素繊維強
化複合樹脂を得ることができるという利益がある。
The pitch-based carbon fiber with a unique crystal structure produced by the manufacturing method according to the present invention has a high elongation of 1°0% or more, but has a high elongation of more than a predetermined level. It has high tensile strength and tensile modulus, and has excellent knitting and weaving properties, making it extremely easy to handle the yarn during manufacturing, greatly improving manufacturing efficiency.
It can be used extremely effectively as a reinforcing fiber for lightweight structural materials for space development, automobiles, buildings, etc. Also, further 2000℃
By heating to 3,000° C. to carbonize and further heating to 3,000° C. to graphitize, carbon fibers with extremely high strength and high elastic modulus can be obtained. Furthermore, the fibers produced according to the present invention have extremely good adhesion with matrix resins when used as reinforcing fibers for composite materials, and have the advantage that high-performance carbon fiber-reinforced composite resins can be obtained. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係る製造方法にて使用され紡糸装置
用紡糸口金の一実施例の断面図である。 第2図は、第1図の紡糸口金に使用される挿入部材の一
実施例の平面図である。 第3図は、第2図の紡糸口金に使用される挿入部材の一
実施例の平面図である。 14:紡糸口金 15:紡糸ノズル 16:挿入部材
FIG. 1 is a sectional view of one embodiment of a spinneret for a spinning device used in the manufacturing method according to the present invention. FIG. 2 is a plan view of one embodiment of an insert for use with the spinneret of FIG. 1; FIG. 3 is a plan view of one embodiment of an insert member used in the spinneret of FIG. 2; 14: Spinneret 15: Spinning nozzle 16: Insertion member

Claims (1)

【特許請求の範囲】 1)120〜350℃の富酸素雰囲気下で3〜30分間
にて不融化処理を行い繊維の表層を選択的に強く酸化し
た後、不活性ガス雰囲気下で最低温度400℃、最高温
度1300℃にて融着しない範囲で昇温して、フィラメ
ント1本当り0.001〜0.2grの張力を付与しな
がら、3〜15分間にて炭化処理を行い、その後酸化処
理を行うことを特徴とする高伸度、高強度ピッチ系炭素
繊維の製造方法。 2)請求項1記載の炭化処理は、400〜 550℃までは昇温温度10〜90℃/分で、550〜
1300℃までは昇温温度100〜500℃/分で行う
ことを特徴とする高伸度、高強度ピッチ系炭素繊維の製
造方法。 3)請求項1又は2記載の炭化処理を行った後、200
0℃まで昇温して炭化処理を行い、所望に応じて300
0℃まで昇温して黒鉛化処理を行うことを特徴とする高
伸度、高強度ピッチ系炭素繊維の製造方法。
[Claims] 1) After selectively and strongly oxidizing the surface layer of the fibers by performing infusibility treatment for 3 to 30 minutes in an oxygen-rich atmosphere at 120 to 350°C, the fibers are heated to a minimum temperature of 400°C in an inert gas atmosphere. ℃, at a maximum temperature of 1300℃, the temperature is raised within a range that does not cause fusion, and while applying a tension of 0.001 to 0.2 gr per filament, carbonization treatment is performed for 3 to 15 minutes, followed by oxidation treatment. A method for producing high-elongation, high-strength pitch-based carbon fiber. 2) The carbonization treatment according to claim 1 is performed at a heating temperature of 10 to 90°C/min from 400 to 550°C, and from 550 to 550°C.
A method for manufacturing pitch-based carbon fibers with high elongation and high strength, characterized in that heating up to 1300°C is carried out at a heating temperature of 100 to 500°C/min. 3) After performing the carbonization treatment according to claim 1 or 2, 200
Carbonization treatment is performed by increasing the temperature to 0°C, and if desired, the temperature is increased to 300°C.
A method for producing high-elongation, high-strength pitch-based carbon fiber, which comprises graphitizing the fiber by raising the temperature to 0°C.
JP28238989A 1989-10-30 1989-10-30 Production of pitch-based carbon fiber having high elongation and high strength Pending JPH03146720A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP28238989A JPH03146720A (en) 1989-10-30 1989-10-30 Production of pitch-based carbon fiber having high elongation and high strength
US07/601,486 US5209975A (en) 1989-10-30 1990-10-22 High elongation, high strength pitch-type carbon fiber
KR1019900017454A KR910008192A (en) 1989-10-30 1990-10-30 High-strength high-strength pitch carbon fiber and its manufacturing method
EP19900311892 EP0426438A3 (en) 1989-10-30 1990-10-30 High strength carbon fibers and method of manufacturing them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28238989A JPH03146720A (en) 1989-10-30 1989-10-30 Production of pitch-based carbon fiber having high elongation and high strength

Publications (1)

Publication Number Publication Date
JPH03146720A true JPH03146720A (en) 1991-06-21

Family

ID=17651768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28238989A Pending JPH03146720A (en) 1989-10-30 1989-10-30 Production of pitch-based carbon fiber having high elongation and high strength

Country Status (1)

Country Link
JP (1) JPH03146720A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014185400A (en) * 2013-03-22 2014-10-02 Kuraray Co Ltd Pitch-based carbon fiber and production method of the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6253422A (en) * 1985-09-03 1987-03-09 Kawasaki Steel Corp Production of carbon fiber
JPS63175122A (en) * 1986-12-29 1988-07-19 Mitsubishi Kasei Corp Production of carbon fiber tow
JPH01156513A (en) * 1987-12-11 1989-06-20 Toa Nenryo Kogyo Kk Production of pitch based carbon fiber

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6253422A (en) * 1985-09-03 1987-03-09 Kawasaki Steel Corp Production of carbon fiber
JPS63175122A (en) * 1986-12-29 1988-07-19 Mitsubishi Kasei Corp Production of carbon fiber tow
JPH01156513A (en) * 1987-12-11 1989-06-20 Toa Nenryo Kogyo Kk Production of pitch based carbon fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014185400A (en) * 2013-03-22 2014-10-02 Kuraray Co Ltd Pitch-based carbon fiber and production method of the same

Similar Documents

Publication Publication Date Title
KR950008909B1 (en) High strength, ultra high modulus carbon fiber
EP2233616B1 (en) Processes for producing flameproof fiber and carbon fiber
CN106350904B (en) Graphene enhanced preparation method of micro-nano film-shaped carbon fibers
JPH0790725A (en) Milled meso-phase pitch carbon fiber and production thereof
US5209975A (en) High elongation, high strength pitch-type carbon fiber
US5269984A (en) Process of making graphite fiber
JPS62117820A (en) Production of carbon fiber chopped strand
US5399330A (en) Carbon thread and process for producing it
US5114697A (en) High strength, high modulus pitch-based carbon fiber
EP0279687B1 (en) Graphite fiber
JPH0314624A (en) Production of carbon yarn
JPH10298829A (en) Production of pitch-based carbon fiber
JPH03146720A (en) Production of pitch-based carbon fiber having high elongation and high strength
JPS6128019A (en) Production of pitch based carbon fiber
US5348719A (en) Process for producing carbon fibers having high strand strength
JPH03146718A (en) Pitch-based carbon fiber having high elongation and high strength
JPH03146717A (en) Pitch-based carbon fiber having high elongation and high strength
JPH03146719A (en) Production of pitch-based carbon fiber having high elongation and high strength
JPH07187833A (en) Carbon fiber reinforced carbon composite material
JP3406696B2 (en) Method for producing high thermal conductivity carbon fiber
JP2004277192A (en) Carbon fiber for carbon fiber-reinforced carbon composite material, and production method therefor
JPS63120112A (en) Pitch type carbon yarn having high modulus of elasticity and production thereof
JPH0314625A (en) Pitch for carbon yarn and production of carbon yarn using the same pitch
JPS6134224A (en) Production of pitch based high-strength carbon filament yarn
JPS62177220A (en) Production of pitch based carbon fiber