JPH03146719A - Production of pitch-based carbon fiber having high elongation and high strength - Google Patents

Production of pitch-based carbon fiber having high elongation and high strength

Info

Publication number
JPH03146719A
JPH03146719A JP28238889A JP28238889A JPH03146719A JP H03146719 A JPH03146719 A JP H03146719A JP 28238889 A JP28238889 A JP 28238889A JP 28238889 A JP28238889 A JP 28238889A JP H03146719 A JPH03146719 A JP H03146719A
Authority
JP
Japan
Prior art keywords
pitch
fiber
elongation
temperature
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28238889A
Other languages
Japanese (ja)
Inventor
Kikuji Komine
小峰 喜久治
Makoto Miyazaki
誠 宮崎
Takashi Hino
日野 隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen General Sekiyu KK
Original Assignee
Tonen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tonen Corp filed Critical Tonen Corp
Priority to JP28238889A priority Critical patent/JPH03146719A/en
Publication of JPH03146719A publication Critical patent/JPH03146719A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the subject fiber having improved elongation, strength, yarn-handleability and weaving and knitting facility by melt-spinning a carbona ceous pitch and subjecting the obtained pitch based carbon fiber to infusibilization and then carbonization under respective specific conditions. CONSTITUTION:The objective carbon fiber preferably having an elongation of >=1.0% and a tensile strength of >=150kg/mm<2> and suitable as a reinforcing fiber for light-weight structural material for space industry, etc., can be produced by melt-spinning a carbonaceous pitch, infusibilizing the fiber by heating in an oxygen-rich atmosphere at 120-350 deg.C for 3-30min, carbonizing the infusibilized fiber by heating in an inert gas atmosphere at 400-1300 deg.C for 3-15min while applying a tension of 0.001-0.2g per one filament and, as necessary, further heating to effect the carbonization or graphitization.

Description

【発明の詳細な説明】 の1 本発明は、一般には、炭素繊維の製造方法に関するもの
であり、特に、糸扱い性に優れ、編織が容易であって、
宇宙産業、自動車産業、建築産業などにおいて軽量構造
材料用強化繊維として広く使用することのできる高伸度
、高強度のピッチ系炭素繊維の製造方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION 1. The present invention generally relates to a method for producing carbon fibers, and in particular, carbon fibers that have excellent yarn handling properties, are easy to knit and weave,
The present invention relates to a method for producing pitch-based carbon fibers with high elongation and high strength, which can be widely used as reinforcing fibers for lightweight structural materials in the space industry, automobile industry, construction industry, etc.

藍米二且I 従来、炭素繊維としては、PAN系及びレーヨン系炭素
繊維が広く製造及び使用されているが、PAN系及びレ
ーヨン系炭素繊維は原料が高価で炭化収率も悪く、経済
面で良くない。そこで、近年、コストの廉価なピッチを
原料としており、しかも、引張強度及び引張弾性率の点
においても優れているピッチ系炭素繊維が注目を浴びて
いる。
Traditionally, PAN-based and rayon-based carbon fibers have been widely produced and used as carbon fibers, but PAN-based and rayon-based carbon fibers have expensive raw materials and poor carbonization yields, making them economically difficult. not good. Therefore, in recent years, pitch-based carbon fibers that are made from inexpensive pitch and are excellent in tensile strength and tensile modulus have attracted attention.

現在、ピッチ系炭素繊維は、 (1)石油系ピッチ、石炭系ピッチなどから炭素繊維に
適した炭素質ピッチを調製し、該炭素質ピッチを加熱溶
融して紡糸機にて紡糸し、集束、合糸してピッチ繊維束
を製造し、 (2)前記ピッチ繊維束を不融化炉で酸化性ガス雰囲気
下にて200〜350℃までに加熱して不融化し、 (3)引き続いて、該不融化された繊維束を炭化炉で不
活性ガス雰囲気下にて500〜2000℃まで加熱して
炭化して、更には3000℃まで加熱して黒鉛化するこ
と。
Currently, pitch-based carbon fibers are produced by: (1) preparing carbonaceous pitch suitable for carbon fiber from petroleum-based pitch, coal-based pitch, etc., heating and melting the carbonaceous pitch, spinning it in a spinning machine, converging it, (2) The pitch fiber bundle is heated to 200 to 350°C in an oxidizing gas atmosphere in an infusible furnace to make it infusible; (3) Subsequently, The infusible fiber bundle is carbonized by heating to 500 to 2000°C in an inert gas atmosphere in a carbonization furnace, and further heated to 3000°C to graphitize.

により製造されている。Manufactured by.

が       よ   と   る しかしながら、一般に、このようにして得られたピッチ
系炭素繊維は、引張強度は2゜0GPa (200Kg
/mm” )以上、引張弾性率は600GPa (60
ton/mm” )以上と高いものが得られるが、伸度
(伸び率)は、通常0.5%以下、大きくても1%程度
であった。
However, pitch-based carbon fibers obtained in this way generally have a tensile strength of 2°0 GPa (200 kg
/mm”) or more, the tensile modulus is 600GPa (60
Although a high elongation (elongation rate) of more than 1.5 ton/mm" can be obtained, the elongation (elongation rate) was usually 0.5% or less, and at most about 1%.

この−ように従来のピッチ系炭素繊維は伸度が小さいた
めに取扱いが難しく、編織性に劣り、特に複合材料を製
造する場合に大きな問題となっていた。
As described above, conventional pitch-based carbon fibers are difficult to handle due to their low elongation, and have poor weaving and weaving properties, which poses a major problem particularly when manufacturing composite materials.

本発明者らは、ピッチを原料として、引張強度及び弾性
率を損なうことなく、高伸度のピッチ系炭素繊維を得る
べく研究開発する過程にて、炭素繊維の結晶構造を特異
なものとすることで、つまり、X線構造パラメーターの
配向角(φ)が25〜38@、積層厚み(Lc)が19
〜35人、層間隔(d、。2)が3.45〜3゜50人
である結晶構造を有することにより、所定レベル以上の
引張強度、引張弾性率を具備し、良好な編織性を示す1
.0%以上の伸度を有した高伸度、高強度のピッチ系炭
素繊維を得ることができることを見出した。又、このよ
うな炭素繊維は、濡れ性も向上し、複合材料を製造する
際に、マトリクス樹脂との接着性が著しく向上すること
も分かった。
In the process of research and development to obtain pitch-based carbon fibers with high elongation without impairing tensile strength and elastic modulus using pitch as a raw material, the present inventors made the crystal structure of carbon fibers unique. In other words, the orientation angle (φ) of the X-ray structure parameter is 25 to 38@, and the lamination thickness (Lc) is 19
By having a crystal structure with a layer spacing (d,. 1
.. It has been found that it is possible to obtain high-strength, high-strength pitch-based carbon fibers having an elongation of 0% or more. It has also been found that such carbon fibers have improved wettability and significantly improved adhesion with matrix resins when producing composite materials.

又、本発明者らは、斯る新規な高伸度、高強度のピッチ
系炭素繊維は、ピッチ繊維を富酸素ガス雰囲気下にて不
融化を行い、次に不活性ガス中にてテンションを与えな
がら、極く短時間にて炭化処理を行うことにより極めて
高率良く製造し得ることを見出した。
In addition, the present inventors have discovered that such new high-elongation, high-strength pitch-based carbon fibers can be obtained by making pitch fibers infusible in an oxygen-rich gas atmosphere, and then applying tension in an inert gas atmosphere. It has been found that production can be achieved at an extremely high rate by carrying out the carbonization treatment in a very short period of time.

本発明は斯る新規な知見に基づきなされたものである。The present invention has been made based on this new knowledge.

従って、本発明の目的は、高伸度、高強度を有するピッ
チ系炭素繊維を効率よく製造するための製造方法を提供
することである。
Therefore, an object of the present invention is to provide a manufacturing method for efficiently manufacturing pitch-based carbon fibers having high elongation and high strength.

本発明の他の目的は、取扱いが容易であり、編織性に優
れ、又、濡れ性も良好な、特に複合材料を製造するのに
適した高伸度、高強度ピッチ系炭素繊維の製造方法を提
供することである。
Another object of the present invention is a method for producing pitch-based carbon fibers with high elongation and high strength, which are easy to handle, have excellent weaving and weaving properties, and have good wettability, and are particularly suitable for producing composite materials. The goal is to provide the following.

を   るための 上記諸国的は、本発明に係る高伸度、高強度ピッチ系炭
素繊維の製造方法によって達成される。要約すれば本発
明は、120〜350℃の富酸素雰囲気下で3〜30分
間にて不融化処理を行い繊維の表層を選択的に強く酸化
した後、不活性ガス雰囲気下で最低温度400℃、最高
温度1300℃にて融着しない範囲で昇温して、フィラ
メント1本当り0.001〜0.2grの張力を付与し
ながら、3〜15分間にて炭化処理を行うことを特徴と
する高伸度、高強度ピッチ系炭素繊維の製造方法である
The above-mentioned methods for producing a pitch-based carbon fiber with high elongation and high strength according to the present invention can be achieved. To summarize, the present invention performs an infusibility treatment in an oxygen-rich atmosphere at 120 to 350°C for 3 to 30 minutes to selectively and strongly oxidize the surface layer of the fibers, and then heats the fibers at a minimum temperature of 400°C in an inert gas atmosphere. , the carbonization treatment is carried out for 3 to 15 minutes while increasing the temperature to a maximum temperature of 1300°C within a range that does not cause fusion and applying a tension of 0.001 to 0.2 gr per filament. This is a method for producing pitch-based carbon fibers with high elongation and high strength.

好ましくは、上記炭化処理は、400〜550℃までは
昇温湿度10〜90℃/分で、550〜1300℃まで
は昇温温度100〜b 本発明にて製造された炭素繊維は、X線構造パラメータ
ーの配向角゛(φ)が25〜38°、積層厚み(Lc)
が19〜35人、層間隔(doo2)が3.45〜3.
50人である結晶構造を有し、エチレングリコールを使
用したときの;需れ性(接触角)が30°以下であり、
伸度が1.0%以上である高伸度、高強度ピッチ系炭素
繊維とされる。又、通常、引張強度は150Kg/mm
”以上とされる。
Preferably, the carbonization treatment is carried out at a heating and humidity rate of 10 to 90°C/min from 400 to 550°C, and at a heating temperature of 100 to 100°C/min from 550 to 1300°C. Structural parameters: orientation angle (φ) of 25 to 38°, lamination thickness (Lc)
There are 19 to 35 people, and the layer spacing (doo2) is 3.45 to 3.
It has a crystal structure of 50% and has a compatibility (contact angle) of 30° or less when ethylene glycol is used.
It is considered to be a high elongation, high strength pitch-based carbon fiber having an elongation of 1.0% or more. Also, the tensile strength is usually 150Kg/mm.
``This is considered to be the above.

更に説明すると、本発明者らは、上述のように、ピッチ
を原料として編織性の良好なピッチ系炭素繊維を得るべ
く研究開発する過程にて、先ず、良好な編織性を有する
には伸度が少なくと1′、0%以上であることが必要で
あることが分かった。又、所定レベル以上の引張強度及
び引張弾性率を備え、しかもこのような高伸度のピッチ
系炭素繊維を得るには炭素繊維の結晶構造を特異なもの
とすることが重要であることを見出した。
To explain further, as mentioned above, in the process of research and development to obtain pitch-based carbon fibers with good weaving and weaving properties using pitch as a raw material, we first determined that elongation was the key to having good weaving properties. It has been found that it is necessary that the ratio be at least 1', 0% or more. We also discovered that in order to obtain pitch-based carbon fibers that have tensile strength and tensile modulus above a predetermined level and also have such high elongation, it is important to make the crystal structure of the carbon fibers unique. Ta.

つまり、本発明者らは、伸度が少なくともl。That is, we found that the elongation is at least l.

0%以上であり、且つ、150Kg/mm”以上の引張
強度を有した高伸度、高強度のピッチ系炭素繊維を得る
には炭素繊維の結晶構造は、X線構造パラメーターの配
向角(φ)が25〜38゜積層厚み(Lc)が19〜3
5人、層間隔(d、。
0% or more and a tensile strength of 150 Kg/mm" or more, the crystal structure of carbon fiber is determined by the orientation angle (φ ) is 25~38゜Lamination thickness (Lc) is 19~3
5 people, layer spacing (d,.

2)が3.45〜3.50人であることが重要であり、
特に、配向角(φ)は、ピッチ系炭素繊維の伸度を決定
する重要なファクターであることを見出した。又、結晶
構造を決定するファクターの1つである積層厚み(Lc
)及び層間隔(do。
It is important that 2) is 3.45 to 3.50 people,
In particular, it has been found that the orientation angle (φ) is an important factor that determines the elongation of pitch-based carbon fibers. In addition, the lamination thickness (Lc), which is one of the factors determining the crystal structure,
) and layer spacing (do.

2)は、伸度、引張強度及び弾性率を適当にバランスさ
せるために適当範囲に存在することが又重要であること
が分かった。
It has also been found that it is important for 2) to exist in an appropriate range in order to properly balance elongation, tensile strength, and elastic modulus.

つまり、配向角(φ)が25°より小さい場合には十分
な伸度、即ち、良好な編織性を得るに必要な1.0%以
上の伸度が得られず、又、配向角(φ)が38°を越え
ると引張弾性率が低下し炭素繊維本来の特性である高弾
性率という利点が損なわれてしまう。更に、積層厚み(
Lc)及び層間隔(do。2)がそれぞれ19〜35人
及び3゜45〜3.50人の範囲外である場合には、必
要とされる引張強度及び弾性率が得られ難いという問題
が生じる。
In other words, if the orientation angle (φ) is smaller than 25°, sufficient elongation, that is, the elongation of 1.0% or more required to obtain good weaving properties, cannot be obtained; ) exceeds 38°, the tensile modulus decreases and the advantage of high modulus, which is an inherent characteristic of carbon fiber, is lost. Furthermore, the lamination thickness (
When Lc) and layer spacing (do. 2) are outside the ranges of 19 to 35 people and 3°45 to 3.50 people, respectively, there is a problem that it is difficult to obtain the required tensile strength and elastic modulus. arise.

以上のように、高伸度、高強度のピッチ系炭素繊維を得
るには、X線構造パラメーターである配向角(φ)、積
層厚み(Lc)  層間隔(do。
As described above, in order to obtain pitch-based carbon fibers with high elongation and high strength, it is necessary to adjust the X-ray structure parameters such as orientation angle (φ), lamination thickness (Lc), and layer spacing (do).

2)を、極く狭い範囲の適当範囲にバランスさせること
が重要である。
It is important to balance 2) within an appropriate range within a very narrow range.

上記特異な結晶構造を有したピッチ系炭素繊維によると
、伸度が少なくと1.0%以上であり、しかも、150
Kg/mm”以上の引張強度を有した高伸度、高強度の
ピッチ系炭素繊維を得ることができる。
According to the pitch-based carbon fiber having the above-mentioned unique crystal structure, the elongation is at least 1.0% or more, and moreover, the elongation is at least 1.0%.
A pitch-based carbon fiber with high elongation and high strength and a tensile strength of Kg/mm" or more can be obtained.

又、このようなピッチ系炭素繊維は、エチレングリコー
ルを使用したときの濡れ性(接触角)が30”以下であ
り、そのまま複合樹脂の強化繊維として使用した場合に
もマトリクス樹脂との接着性が良好であり、高強度、高
弾性率の炭素繊維強化複合樹脂を得ることができること
が分かった。
In addition, such pitch-based carbon fibers have a wettability (contact angle) of 30" or less when using ethylene glycol, and even when used as reinforcing fibers in composite resins, they have poor adhesion with matrix resins. It was found that a carbon fiber-reinforced composite resin having good properties and high strength and high modulus of elasticity could be obtained.

又、本発明にて製造された炭素繊維は、必要に応じて、
更に2000℃、或は3000℃まで焼成することによ
り、より高強度、高弾性率の炭素繊維及び黒鉛繊維を得
ることができることも分かった。
Further, the carbon fiber manufactured according to the present invention may be used as necessary.
It was also found that carbon fibers and graphite fibers with higher strength and higher modulus of elasticity can be obtained by firing at a temperature of 2000°C or 3000°C.

次に、本発明に係る炭素繊維の製造方法について説明す
る。
Next, a method for manufacturing carbon fiber according to the present invention will be explained.

本発明に係る炭素繊維の製造方法によると、先ず、熱伝
導性の良い挿入部材を入れた紡糸ノズルを使用して紡糸
ノズルにおける溶融ピッチの温度変動、特に温度降下を
最低限度に抑えることにより紡糸し炭素質ピッチ繊維を
得る。又、斯かる紡糸法によれば、紡糸時に生じる配向
孔れを適度に制御し得るという利点がある。
According to the method for producing carbon fibers according to the present invention, first, a spinning nozzle containing an insertion member with good thermal conductivity is used to suppress temperature fluctuations in the melt pitch in the spinning nozzle, especially temperature drops, to a minimum, thereby spinning fibers. to obtain carbonaceous pitch fibers. Further, such a spinning method has the advantage that orientation holes that occur during spinning can be appropriately controlled.

このようにして得られたピッチ繊維を富酸素ガス雰囲気
下(酸素濃度30〜100%)にて最低温度120〜2
00℃から1〜b 速度で最高温度240〜350℃まで3〜30分間で加
熱して不融化を行なう。
The pitch fibers obtained in this way are heated under an oxygen-rich gas atmosphere (oxygen concentration 30 to 100%) at a minimum temperature of 120 to 2
The mixture is heated from 00° C. to a maximum temperature of 240° to 350° C. for 3 to 30 minutes at a speed of 1 to 30° C. to infusible.

不融化した繊維は、次に不活性ガス中で、例えば窒素或
はアルゴンガス中で400〜550℃までは昇温速度i
o〜90℃/分で、550〜1300℃までは昇温速度
100〜b で加熱し、極く短時間にて1例えば3〜15分間にて炭
化処理を行う。このように、不融化時には高温の富酸素
ガス雰囲気下にて迅速に繊維の表層を選択的に強く酸化
(内部の酸化は少)した後、融着しない範囲で不活性ガ
ス雰囲気下で迅速に炭化することにより達成される。更
に、このとき、本発明によれば、炭素繊維の配向角を改
良するために、lフィラメント当たり0.001〜0゜
2grのテンションが付与され、強制配向がなされる。
The infusible fibers are then heated to 400-550°C in an inert gas, for example nitrogen or argon gas, at a heating rate i.
The carbonization treatment is carried out in a very short time, for example, 3 to 15 minutes, by heating at a heating rate of 100 to 100°C to 550 to 1300°C. In this way, during infusibility, the surface layer of the fiber is quickly selectively strongly oxidized in a high-temperature oxygen-rich gas atmosphere (with little internal oxidation), and then quickly in an inert gas atmosphere to the extent that it does not fuse. This is achieved by carbonization. Further, at this time, according to the present invention, in order to improve the orientation angle of the carbon fibers, a tension of 0.001 to 0.2 gr is applied per 1 filament to effect forced orientation.

これにより、伸度が少なくとも1.0%以上であり、一
般に、1.0〜5.0%とされ、しかも、150Kg/
mm”以上の引張強度を有した高伸度のピッチ系炭素繊
維を得ることができる。
As a result, the elongation is at least 1.0% or more, generally 1.0 to 5.0%, and 150 kg/
It is possible to obtain high elongation pitch-based carbon fibers having a tensile strength of 10 mm or more.

このようにして得られた高伸度、高強度のピッチ系炭素
繊維は、その後、必要に応じて、不活性ガス雰囲気下に
て2000℃まで加熱して炭化するか、更に3000℃
まで加熱して黒鉛化される。その結果、引張強度が30
0Kg/mm”以上、及び引張弾性率が60 t o 
n / m m ”以上の高強度、高弾性率のピッチ系
炭素繊維が得られる。
The pitch-based carbon fiber with high elongation and high strength thus obtained is then carbonized by heating to 2000°C in an inert gas atmosphere, or further heated to 3000°C, as necessary.
It is heated to graphitize. As a result, the tensile strength is 30
0Kg/mm” or more, and tensile modulus of 60 t o
Pitch-based carbon fibers with high strength and high elastic modulus of n/mm'' or more can be obtained.

本明細書において、炭素繊維の特性は下記の如き測定方
法を採用した。
In this specification, the following measurement method was used to measure the characteristics of carbon fiber.

・X線構造パラメータ 配向角(φ) 積層厚さ(Lc)、層間隔(d、。)は
広角xI!回折より求められる炭素繊維の微細構造を表
わすパラメータである。
・X-ray structural parameters Orientation angle (φ) Layer thickness (Lc), Layer spacing (d, .) are wide angle xI! This is a parameter representing the fine structure of carbon fiber determined by diffraction.

配向角(φ)は結晶の繊維軸方向に対する選択的配向の
程度を示゛すもので、この角度が小さい程配向が良いこ
とを意味する。積層厚さ(Lc)は炭素微結晶中の(0
02)面の見掛けの積層の厚さを表わし、一般に積層厚
さ(Lc)が大きい程結晶性が良いと見なされる。又、
層間隔(d、。
The orientation angle (φ) indicates the degree of selective orientation of the crystal with respect to the fiber axis direction, and the smaller this angle, the better the orientation. The lamination thickness (Lc) is (0
02) Represents the apparent laminated thickness of a surface, and it is generally considered that the larger the laminated thickness (Lc), the better the crystallinity. or,
Layer spacing (d,.

2)は微結晶の(002)面の層間隔を表わし、層間隔
(do。2)が小さい程結晶性が良いと見なされる。
2) represents the layer spacing of the (002) plane of the microcrystal, and it is considered that the smaller the layer spacing (do. 2), the better the crystallinity.

配向角(φ)の測定は繊維試料台を使用し、繊維束が計
数管の走査面に垂直になっている状態で、計数管を走査
して(002)回折帯の強度が最大となる回折角2θ(
約26°)を予め求める。次に計数管をこの位置に保持
した状態で、繊維試料台を3600回転することにより
(002)回折環の強度分布を測定し、強度最大値の1
72の点における半価幅を配向角(φ)とする。
To measure the orientation angle (φ), use a fiber sample stage, scan the counter with the fiber bundle perpendicular to the scanning plane of the counter, and find the time at which the intensity of the diffraction band reaches its maximum (002). 2θ(
approximately 26°). Next, with the counter held in this position, the fiber sample stage was rotated 3600 times to measure the intensity distribution of the (002) diffraction ring, and the
The half width at point 72 is defined as the orientation angle (φ).

積層厚さ(Lc) 、層間隔(d、、t)は繊維を乳鉢
で粉末状にし、字種法「人造黒鉛の格子定数および結晶
子の大きさ測定法」に準拠して測定・解析を行ない、以
下の式から求めた。
Lamination thickness (Lc) and interlayer spacing (d, t) are measured and analyzed by grinding the fibers into powder in a mortar and following the method for measuring the lattice constant and crystallite size of artificial graphite. It was calculated using the following formula.

Lc=にえ/βCO5θ doom = L/ 2 S i nθここで、K=1
.0、ん= 1.5418人θ、  (002)回折角
2θより求めるβ:補正により求めた( 002)回折
帯の半価幅 ・濡れ性の評価 モノフィラメントの濡れ性は、m1cro4i1hel
o+y法(Applications of 5urf
ace 5cience 4(1980)340−35
5; F G、E、Hammer、L、T、Drzal
/”GRAPHITE FIBER5URFACE A
NALYSIS BY X−RAY PH0TOELE
CTRON 5PECTROSCOPY AND PO
LAR/DISPER3IVE FREE ENERG
YANALYSIS”を参照せよ)に基いて、接触角を
測定することにより行った。このとき使用した溶媒はエ
チレングリコールであった。
Lc=Nie/βCO5θ doom = L/ 2 S i nθ Here, K=1
.. 0, n = 1.5418 people θ, β determined from (002) diffraction angle 2θ: Evaluation of half-value width and wettability of (002) diffraction band determined by correction The wettability of monofilament is m1cro4i1hel
o+y method (Applications of 5urf
ace 5science 4 (1980) 340-35
5; F G, E, Hammer, L, T, Drzal
/”GRAPHITE FIBER5URFACE A
NALYSIS BY X-RAY PH0TOELE
CTRON 5PECTROSCOPY AND PO
LAR/DISPER3IVE FREE ENERG
This was carried out by measuring the contact angle based on "YANALYSIS".The solvent used at this time was ethylene glycol.

次に、本発明を実施例について説明する。Next, the present invention will be described with reference to examples.

実施例1 光学的異方性相(AP)を約50%含有する炭素質ピッ
チを前駆体ピッチとして使用し、これをローター内有効
容積200mj!の円筒型連続遠心分離装置でローター
温度350℃に制御しつつ遠心力10000GでAP排
出口よりピッチを抜き出した。得られたピッチは光学的
異方性相を98%含み、軟化点が276℃であった。
Example 1 A carbonaceous pitch containing about 50% of optically anisotropic phase (AP) was used as a precursor pitch, and the effective volume in the rotor was 200 mj! Pitch was extracted from the AP outlet using a centrifugal force of 10,000 G while controlling the rotor temperature to 350° C. using a cylindrical continuous centrifugal separator. The obtained pitch contained 98% of the optically anisotropic phase and had a softening point of 276°C.

次に、得られた光学的異方性相ピッチをノズル径0.3
mmの溶融紡糸装置で330℃で紡糸した。このとき使
用した紡糸装置及び紡糸口金の構造が第1図〜第3図に
図示される。
Next, the obtained optically anisotropic phase pitch was adjusted to a nozzle diameter of 0.3
The fibers were spun at 330° C. using a 1.0 mm melt spinning device. The structures of the spinning device and spinneret used at this time are illustrated in FIGS. 1 to 3.

紡糸装置10はピッチ配管より溶融したピッチ11が注
入された加熱シリンダー12と、該シリンダー12内の
ピッチを加圧するプランジャー13と、加熱シリンダー
12の底面側に取付けられた紡糸口金14とを具備し、
紡糸口金14は、紡糸ノズル15が1個穿設されており
、ボルト17及び口金押え18によって加熱シリンダー
12の低面側に着脱自在に固着することによって構成さ
れた。紡糸されたピッチ繊維は紡糸筒19を通過した後
巻き取りボビン20に巻き取られた。
The spinning device 10 includes a heating cylinder 12 into which molten pitch 11 is injected from a pitch pipe, a plunger 13 that pressurizes the pitch within the cylinder 12, and a spinneret 14 attached to the bottom side of the heating cylinder 12. death,
The spinneret 14 has one spinning nozzle 15 drilled therein, and is constructed by being removably fixed to the lower side of the heating cylinder 12 with a bolt 17 and a spinneret holder 18. After passing through the spinning tube 19, the spun pitch fibers were wound onto a winding bobbin 20.

本実施例で使用された紡糸口金14に形成された紡糸ノ
ズル15は、大径のノズル導入部15aと、該ノズル導
入部15aに連通して形成された小径のノズル部15b
とを有し、大径のノズル導入部15aと小径のノズル部
151)との間には切頭円錐形状のノズル遷移部15c
が形成された。紡糸口金14はステンレス鋼(SUS3
04)にて作製され、紡糸ノズル15部の厚さ(T)は
5mmとされ、大径のノズル導入部15a及び小径のノ
ズル部15bの長さ(T、)及び(T2)はそれぞれ4
mm及び0゜65mmとされた。又、大径のノズル導入
部15a及び小径のノズル部15bの直径(Dl)及び
(D2)はそれぞれ1mm及び0.3mmとされた。
The spinning nozzle 15 formed in the spinneret 14 used in this example includes a large diameter nozzle introduction part 15a and a small diameter nozzle part 15b formed in communication with the nozzle introduction part 15a.
and a truncated conical nozzle transition part 15c between the large diameter nozzle introduction part 15a and the small diameter nozzle part 151).
was formed. The spinneret 14 is made of stainless steel (SUS3
04), the thickness (T) of the spinning nozzle 15 part is 5 mm, and the lengths (T, ) and (T2) of the large diameter nozzle introduction part 15a and the small diameter nozzle part 15b are 4 mm, respectively.
mm and 0°65 mm. Further, the diameters (Dl) and (D2) of the large-diameter nozzle introduction part 15a and the small-diameter nozzle part 15b were 1 mm and 0.3 mm, respectively.

又、紡糸ノズル15の大径ノズル導入部15aには前記
紡糸口金14より大きい熱伝導度を有した、本実施例で
は銅製の挿入部材16が配置された。該挿入部材16は
、一端16aが小径ノズル部15bの入口に近接し、他
端16bは大径ノズル導入部1.5 aの入口より外方
へと延在する細長の棒状体とされ、全長(L)は20m
mであり、直径(d)は、挿入部材が大径ノズル導入部
15aに円滑に挿入され、且つ確実に保持されるように
、大径ノズル導入部15aと挿入部材16との間の空隙
が1 / 100〜5 / 100 m mとなるよう
に形成された。
Further, in the present embodiment, an insertion member 16 made of copper, which has a higher thermal conductivity than the spinneret 14, was arranged in the large-diameter nozzle introduction part 15a of the spinning nozzle 15. The insertion member 16 has one end 16a close to the inlet of the small diameter nozzle section 15b, and the other end 16b is an elongated rod-shaped body extending outward from the inlet of the large diameter nozzle introducing section 1.5a. (L) is 20m
m, and the diameter (d) is such that the gap between the large-diameter nozzle introduction part 15a and the insertion member 16 is such that the insertion member is smoothly inserted into the large-diameter nozzle introduction part 15a and is securely held. It was formed to have a thickness of 1/100 to 5/100 mm.

又、挿入部材16の該表面には溶融ピッチをノズル部1
5bへと流動案内するべく、該挿入部材の軸線方向に沿
って半径(r)が0.15mmの円弧状をした4個の溝
18が形成された。
Further, the surface of the insertion member 16 is coated with molten pitch at the nozzle portion 1.
5b, four arcuate grooves 18 with a radius (r) of 0.15 mm were formed along the axial direction of the insertion member.

上記構成の紡糸装置にて溶融ピッチを紡糸した場合には
、紡糸ノズルを通過する際の温度降下を3℃以下に抑え
ることができた。
When the molten pitch was spun using the spinning apparatus having the above configuration, the temperature drop during passing through the spinning nozzle could be suppressed to 3° C. or less.

このようにして得られたピッチ繊維を酸素60%の富酸
素ガス雰囲気で開始温度180℃、最終温度310℃、
昇温速度13℃/分で昇温しで10分間で不融化した。
The pitch fiber thus obtained was heated in an oxygen-rich gas atmosphere containing 60% oxygen at a starting temperature of 180°C and a final temperature of 310°C.
The temperature was raised at a heating rate of 13° C./min, and the mixture became infusible in 10 minutes.

不融化処理の終了後、窒素ガス雰囲気中で、400℃か
ら550℃まで50℃/分で昇温し、550℃から11
00℃まで250℃/分で昇温して炭化を行った。この
とき、1100℃での保持時間は零であった。総炭化時
間は5.2分であった。
After the infusibility treatment was completed, the temperature was raised from 400°C to 550°C at a rate of 50°C/min in a nitrogen gas atmosphere, and the temperature was increased from 550°C to 11°C.
Carbonization was performed by increasing the temperature to 00°C at a rate of 250°C/min. At this time, the holding time at 1100°C was zero. Total carbonization time was 5.2 minutes.

又、この炭化処理時には繊維の配向角を改良する目的で
、フィラメント1本当たり0゜017grのテンション
を掛けた。
Further, during this carbonization treatment, a tension of 0°017 gr was applied to each filament in order to improve the orientation angle of the fibers.

この炭素繊維は、X線回折の結果、配向角(φ)が33
° 積層厚さ(Lc)が19゜5人、層間隔(do、)
が3.485人であった。又、エチレングリコール溶媒
で測定した接触角(濡れ性)は23°であった。
As a result of X-ray diffraction, this carbon fiber has an orientation angle (φ) of 33
° Lamination thickness (Lc) is 19° 5 people, layer spacing (do,)
There were 3,485 people. Further, the contact angle (wettability) measured with an ethylene glycol solvent was 23°.

又、該繊維の糸径は10部mであり、引張強度は2.5
0Pa (250Kg/mm” )、引張弾性率はl 
10GPa (11ton/mm” )、伸度は2.3
%であって、伸びの大きいしなやかな糸であった。
Moreover, the thread diameter of the fiber is 10 parts m, and the tensile strength is 2.5.
0Pa (250Kg/mm”), tensile modulus is l
10GPa (11ton/mm”), elongation is 2.3
%, and was a flexible yarn with high elongation.

この炭素繊維を2500℃まで昇温して得た黒鉛繊維は
、糸径が9.8μmであり、引張強度は3.5GPa 
(350Kg/mm” )、引張弾性率は700GPa
 (70ton/mm” )と、高い物性を示した。
The graphite fiber obtained by heating this carbon fiber to 2500°C has a thread diameter of 9.8 μm and a tensile strength of 3.5 GPa.
(350Kg/mm”), tensile modulus is 700GPa
(70 ton/mm”), showing high physical properties.

比較例1 実施例1と同じ材料を使用し、同じ方法にて不融化繊維
を得た。
Comparative Example 1 Infusible fibers were obtained using the same materials and the same method as in Example 1.

該不融化繊維を、テンションを掛けなかった以外は実施
例1と同様に炭化して炭素繊維を作製した。
The infusible fibers were carbonized to produce carbon fibers in the same manner as in Example 1, except that no tension was applied.

この炭素繊維は、X線回折の結果、配向角(φ)が41
°、積層厚さ(Lc)が19゜5人、層間隔(do。2
)が3.497人であった。又、エチレングリコール溶
媒で測定した接触角(濡れ性)は31°であった。
As a result of X-ray diffraction, this carbon fiber has an orientation angle (φ) of 41
°, lamination thickness (Lc) is 19°, 5 people, layer spacing (do. 2)
) was 3.497 people. Further, the contact angle (wettability) measured with an ethylene glycol solvent was 31°.

又、該繊維の糸径は10LLmであり、引張強度は0.
7GPa (70Kg/mm” )、引張弾性率は80
GPa (8,0ton/mm” ) 、伸度は0.9
%であった。
The fiber has a thread diameter of 10 LLm and a tensile strength of 0.
7GPa (70Kg/mm”), tensile modulus is 80
GPa (8,0ton/mm”), elongation is 0.9
%Met.

この炭素繊維を2500℃まで昇温しで得た黒鉛繊維は
、糸径が9.8μmであり、引張強度は2.8GPa 
(280Kg/mm” )、引張弾性率は650GPa
 (65ton/mm” )であった。
The graphite fiber obtained by heating this carbon fiber to 2500°C has a thread diameter of 9.8 μm and a tensile strength of 2.8 GPa.
(280Kg/mm”), tensile modulus is 650GPa
(65 ton/mm”).

比較例2 実施例1と同じ材料を使用し、同じ方法にて不融化繊維
を得た。
Comparative Example 2 Infusible fibers were obtained using the same materials and the same method as in Example 1.

該不融化繊維にフィラメント1本当たり0゜33grの
テンションをかけて炭化した以外は実施例1と同様に処
理した。
The treatment was carried out in the same manner as in Example 1, except that the infusible fibers were carbonized by applying a tension of 0°33 gr per filament.

この炭素繊維は、X線回折の結果、配向角(φ)が24
6、積層厚さ(Lc)が19゜5人、層間隔(d、。2
)が3.482人であった。又、エチレングリコールで
測定した接触角(?需れ性)は31°であった。
As a result of X-ray diffraction, this carbon fiber has an orientation angle (φ) of 24
6. Lamination thickness (Lc) is 19°5, layer spacing (d, .2
) was 3.482 people. Further, the contact angle (?demandability) measured with ethylene glycol was 31°.

又、該繊維の糸径は10umであり、引張強度は1.3
GPa (140Kg/mm” ) 、引張強[生率は
140GPa (14ton/mm”)、伸度は0.9
%であった。
In addition, the fiber has a thread diameter of 10 um and a tensile strength of 1.3.
GPa (140Kg/mm”), tensile strength [viability is 140GPa (14ton/mm”), elongation is 0.9
%Met.

この炭素繊維を2500℃まで昇温しで得た黒鉛繊維は
、糸径が9.8μmであり、引張強度は2.8GPa 
(280Kg/mm2)、引張弾性率は750GPa 
(75ton/mm” )であった。
The graphite fiber obtained by heating this carbon fiber to 2500°C has a thread diameter of 9.8 μm and a tensile strength of 2.8 GPa.
(280Kg/mm2), tensile modulus is 750GPa
(75 ton/mm”).

比較例3 実施例1と同じ材料を使用し、同じ方法にて不融化繊維
を得た。
Comparative Example 3 Infusible fibers were obtained using the same materials and the same method as in Example 1.

該不融化繊維を、400℃から1100℃まで5℃/分
で昇温し、140分間かけて炭化した以外は実施例1と
同様に処理した。
The infusible fibers were treated in the same manner as in Example 1, except that the temperature was raised from 400°C to 1100°C at a rate of 5°C/min and carbonized for 140 minutes.

この炭素繊維は、X !1回折の結果、配向角(φ)が
41°、積層厚さ(Lc)が19゜6人、層間隔(do
oz)が3.495人であった。又、エチレングリコー
ル溶媒で測定した接触角()需れ性)は33°であった
This carbon fiber is X! As a result of one diffraction, the orientation angle (φ) is 41°, the lamination thickness (Lc) is 19°, and the layer spacing (do
oz) was 3.495 people. Further, the contact angle (demandability) measured with ethylene glycol solvent was 33°.

又、該繊維の糸径は10LLmであり、引張強度は0.
8GPa (80Kg/mm” )、引張弾性率は9’
 OG P a (9、Ot o n / m m ”
 ) 、伸度は0.9%であった。
The fiber has a thread diameter of 10 LLm and a tensile strength of 0.
8GPa (80Kg/mm”), tensile modulus is 9'
OG P a (9, Ot on / m m ”
), the elongation was 0.9%.

この炭素繊維を2500℃まで昇温しで得た黒鉛繊維は
、糸径が9.8μmであり、引張強度は2.8GPa 
(280Kg/mm2)、引張弾性率は650GPa 
(65ton/mm” )であった。
The graphite fiber obtained by heating this carbon fiber to 2500°C has a thread diameter of 9.8 μm and a tensile strength of 2.8 GPa.
(280Kg/mm2), tensile modulus is 650GPa
(65 ton/mm”).

比較例4 実施例1と同じ材料を使用し、同じ方法にて不融化繊維
を得た。
Comparative Example 4 Infusible fibers were obtained using the same materials and the same method as in Example 1.

該不融化繊維を、400℃から1100℃まで250℃
/分で昇温し、約3分間で炭化した以外は実施例1と同
様に処理して炭素繊維を作製した。
The infusible fiber was heated at 250°C from 400°C to 1100°C.
Carbon fibers were produced in the same manner as in Example 1, except that the temperature was raised at a rate of 1/min and carbonized for about 3 minutes.

この場合には、炭化時1部融着を起こし、正常な糸が得
られなかった。
In this case, some fusion occurred during carbonization, and a normal thread could not be obtained.

比較例5 実施例1と同一のピッチを用いて、挿入部材なしの紡糸
口金を用いて紡糸温度330℃で紡糸し、得られたピッ
チ繊維を空気雰囲気において180℃から0.3℃/分
の速度で255℃まで昇温して不融化した。
Comparative Example 5 Using the same pitch as in Example 1, spinning was carried out at a spinning temperature of 330°C using a spinneret without an insert member, and the obtained pitch fiber was spun at 0.3°C/min from 180°C in an air atmosphere. The temperature was raised to 255°C at a rapid rate to make it infusible.

該不融化繊維を、テンションなしで窒素ガス雰囲気中に
て400℃から1100℃まで15℃/分で昇温し、1
40分間かけて炭化した。
The temperature of the infusible fiber was raised from 400°C to 1100°C at a rate of 15°C/min in a nitrogen gas atmosphere without tension.
Carbonization took 40 minutes.

1100℃での保持時間はゼロであった。The holding time at 1100°C was zero.

この炭素繊維は、X線回折の結果、配向角(φ)が43
°、積層厚さ(Lc)が19゜5人、層間隔(do。2
)が3.497人であった。又、エチレングリコール溶
媒で測定した接触角(濡れ性)は31’であった。
As a result of X-ray diffraction, this carbon fiber has an orientation angle (φ) of 43
°, lamination thickness (Lc) is 19°, 5 people, layer spacing (do. 2)
) was 3.497 people. Further, the contact angle (wettability) measured with an ethylene glycol solvent was 31'.

又、該繊維の糸径はlOumであり、引張強度は0.6
GPa (60Kg/mm2)、引張弾性率は75GP
a (7,5ton/mm” ) 、伸度は0.8%で
あった。
Moreover, the thread diameter of the fiber is lOum, and the tensile strength is 0.6
GPa (60Kg/mm2), tensile modulus is 75GP
a (7.5 ton/mm"), and the elongation was 0.8%.

この炭素繊維を2500℃まで昇温して得た黒鉛繊維は
、糸径が9.9μmであり、引張強度は2.6GPa 
(260Kg/mm” )、引張弾性率は650GPa
 (65ton/mm” )であった。
The graphite fiber obtained by heating this carbon fiber to 2500°C has a thread diameter of 9.9 μm and a tensile strength of 2.6 GPa.
(260Kg/mm”), tensile modulus is 650GPa
(65 ton/mm”).

実施例1、及び比較例1〜5より、高伸度の、しかも所
定レベル以上の引張強度、引張弾性率を有した炭素繊維
を得るには、不融化繊維の炭化処理工程時に所定のテン
ションを掛け、更に、繊維が融着しない範囲で迅速に炭
化することが重要であることが分かる。
From Example 1 and Comparative Examples 1 to 5, in order to obtain carbon fibers with high elongation and tensile strength and tensile modulus above a predetermined level, a predetermined tension must be applied during the carbonization process of the infusible fibers. Furthermore, it is understood that it is important to carbonize quickly within a range where the fibers do not fuse together.

4艶曵皇1 本発明に係る製造方法にて作製された特異な結晶構造を
有したピッチ系炭素繊維は、伸度が1゜0〜5.0%と
いった高伸度でありながら、所定レベル以上の引張強度
及び引張弾性率を有しており、編織性に優れており、製
造時の糸扱いが非常に容易となり製造効率が大幅に改善
され、宇宙開発、自動車、建築物などの軽量構造材料用
強化繊維として極めて有効に使用し得る。更に本発明に
従って製造された繊維は、濡れ性(接触角)が30”未
満であって、複合材料用強化繊維に使用した場合にマト
リクス樹脂との接着性が極めて良好であり、高性能の炭
素繊維強化複合樹脂を得ることができるという利益があ
る。
4 Enbonko 1 The pitch-based carbon fiber with a unique crystal structure produced by the manufacturing method according to the present invention has a high elongation of 1°0 to 5.0%, yet it has a predetermined level of elongation. It has a tensile strength and tensile modulus of over It can be used extremely effectively as a reinforcing fiber for materials. Furthermore, the fibers produced according to the present invention have a wettability (contact angle) of less than 30", have extremely good adhesion with matrix resins when used in reinforcing fibers for composite materials, and have a high performance carbon fiber. There is an advantage that a fiber-reinforced composite resin can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係る製造方法を実施するに際して使
用される紡糸装置用紡糸口金の一実施例の断面図である
。 第2図は、第1図の紡糸口金に使用される挿入部材の一
実施例の平面図である。 第3図は、第2図の紡糸口金に使用される挿入部材の一
実施例の平面図である。 14:紡糸口金 15=紡糸ノズル 16:挿入部材 第2図 第3図 8
FIG. 1 is a cross-sectional view of one embodiment of a spinneret for a spinning device used when carrying out the manufacturing method according to the present invention. FIG. 2 is a plan view of one embodiment of an insert for use with the spinneret of FIG. 1; FIG. 3 is a plan view of one embodiment of an insert member used in the spinneret of FIG. 2; 14: Spinneret 15 = Spinning nozzle 16: Insertion member Fig. 2 Fig. 3 Fig. 8

Claims (1)

【特許請求の範囲】 1)120〜350℃の富酸素雰囲気下で3〜30分間
にて不融化処理を行い繊維の表層を選択的に強く酸化し
た後、不活性ガス雰囲気下で最低温度400℃、最高温
度1300℃にて融着しない範囲で昇温して、フィラメ
ント1本当り0.001〜0.2grの張力を付与しな
がら、3〜15分間にて炭化処理を行うことを特徴とす
る高伸度、高強度ピッチ系炭素繊維の製造方法。 2)請求項1記載の炭化処理は、400〜 550℃までは昇温温度10〜90℃/分で、550〜
1300℃までは昇温温度100〜500℃/分で行う
ことを特徴とする高伸度、高強度ピッチ系炭素繊維の製
造方法。 3)請求項1又は2記載の炭化処理を行った後、200
0℃まで昇温して炭化処理を行い、所望に応じて300
0℃まで昇温して黒鉛化処理を行うことを特徴とする高
伸度、高強度ピッチ系炭素繊維の製造方法。
[Claims] 1) After selectively and strongly oxidizing the surface layer of the fibers by performing infusibility treatment for 3 to 30 minutes in an oxygen-rich atmosphere at 120 to 350°C, the fibers are heated to a minimum temperature of 400°C in an inert gas atmosphere. ℃, the maximum temperature is 1300℃, the temperature is raised within a range that does not cause fusion, and the carbonization treatment is performed for 3 to 15 minutes while applying a tension of 0.001 to 0.2 gr per filament. A method for manufacturing pitch-based carbon fiber with high elongation and high strength. 2) The carbonization treatment according to claim 1 is performed at a heating temperature of 10 to 90°C/min from 400 to 550°C, and from 550 to 550°C.
A method for manufacturing pitch-based carbon fibers with high elongation and high strength, characterized in that heating up to 1300°C is carried out at a heating temperature of 100 to 500°C/min. 3) After performing the carbonization treatment according to claim 1 or 2, 200
Carbonization treatment is performed by increasing the temperature to 0°C, and if desired, the temperature is increased to 300°C.
A method for producing high-elongation, high-strength pitch-based carbon fiber, which comprises graphitizing the fiber by raising the temperature to 0°C.
JP28238889A 1989-10-30 1989-10-30 Production of pitch-based carbon fiber having high elongation and high strength Pending JPH03146719A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28238889A JPH03146719A (en) 1989-10-30 1989-10-30 Production of pitch-based carbon fiber having high elongation and high strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28238889A JPH03146719A (en) 1989-10-30 1989-10-30 Production of pitch-based carbon fiber having high elongation and high strength

Publications (1)

Publication Number Publication Date
JPH03146719A true JPH03146719A (en) 1991-06-21

Family

ID=17651754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28238889A Pending JPH03146719A (en) 1989-10-30 1989-10-30 Production of pitch-based carbon fiber having high elongation and high strength

Country Status (1)

Country Link
JP (1) JPH03146719A (en)

Similar Documents

Publication Publication Date Title
KR950008909B1 (en) High strength, ultra high modulus carbon fiber
Edie et al. Melt-spun non-circular carbon fibers
JPH0790725A (en) Milled meso-phase pitch carbon fiber and production thereof
US5209975A (en) High elongation, high strength pitch-type carbon fiber
US5114697A (en) High strength, high modulus pitch-based carbon fiber
JPH10298829A (en) Production of pitch-based carbon fiber
JPH0314624A (en) Production of carbon yarn
JPH03146719A (en) Production of pitch-based carbon fiber having high elongation and high strength
JPH03146717A (en) Pitch-based carbon fiber having high elongation and high strength
JPH03146720A (en) Production of pitch-based carbon fiber having high elongation and high strength
JPH03146718A (en) Pitch-based carbon fiber having high elongation and high strength
JP3406696B2 (en) Method for producing high thermal conductivity carbon fiber
JP2849156B2 (en) Method for producing hollow carbon fiber
JPH01282325A (en) Pitch-based carbon fibersheet and production thereof
JP2678384B2 (en) Pitch for carbon fiber and method of manufacturing carbon fiber using the same
JP4601875B2 (en) Carbon fiber manufacturing method
JP2695355B2 (en) Carbon fiber production method
JPH06146120A (en) Pitch-based carbon fiber having high strength and high elastic modulus and its production
JP2766530B2 (en) Method for producing pitch-based carbon fiber
JPH05287617A (en) Production of pitch carbon fiber
JP3164704B2 (en) Method for producing pitch-based high compressive strength carbon fiber
JPH09119024A (en) Carbon fiber and its production
JPS63120112A (en) Pitch type carbon yarn having high modulus of elasticity and production thereof
JP3024320B2 (en) Method for producing high strand strength carbon fiber
JPS62177220A (en) Production of pitch based carbon fiber