JPH03145977A - Rotary machine - Google Patents

Rotary machine

Info

Publication number
JPH03145977A
JPH03145977A JP1282667A JP28266789A JPH03145977A JP H03145977 A JPH03145977 A JP H03145977A JP 1282667 A JP1282667 A JP 1282667A JP 28266789 A JP28266789 A JP 28266789A JP H03145977 A JPH03145977 A JP H03145977A
Authority
JP
Japan
Prior art keywords
rotor
unit
fine movement
rotating machine
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1282667A
Other languages
Japanese (ja)
Inventor
Masayuki Nashiki
政行 梨木
Yoshio Hamada
浜田 好雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuma Corp
Original Assignee
Okuma Machinery Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuma Machinery Works Ltd filed Critical Okuma Machinery Works Ltd
Priority to JP1282667A priority Critical patent/JPH03145977A/en
Publication of JPH03145977A publication Critical patent/JPH03145977A/en
Pending legal-status Critical Current

Links

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To enable production of high torque by differentiating the diameter of a rotor at each rotor section which is rotary driven through one of a plurality of units juxtaposed in the axial direction of the rotor. CONSTITUTION:A rotor at a rotor section 11 being rotary driven through a rotary driving means, i.e., a first unit faint motion actuator 71, has a diameter D1 larger than the diameter D2 of a rotor at the rotor section 11 being rotary driven through a second unit faint motion actuator 72. Consequently, maximum rotary speed of N1 and maximum output torque of T1 are produced when the rotor 11 is rotary driven through the first unit faint motion actuator 71, whereas maximum rotary speed of N2 and maximum output torque of T2 are produced when the rotor 11 is rotary driven through the second unit faint motion actuator 72. When the first and second units are operated alternately and continuously, the rotor rotates continuously and a maximum output torque T3 equal to the sum of T1 and T2 is produced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、産業機械や工作機械等の機械11!!IJI
に用いる回転機に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention is directed to machines 11! such as industrial machines and machine tools. ! IJI
This invention relates to a rotating machine used for.

(従来の技術) 圧電素子等からなる微動アクチュエータを用いた回転機
は、小型で高トルクを出力し、かつ高精度な回転駆動を
行なうなどの理由により数多く開発されている。
(Prior Art) A large number of rotating machines using fine movement actuators made of piezoelectric elements or the like have been developed because they are small, output high torque, and perform highly accurate rotational drive.

第4図は従来の回転機の一例を示す軸方向断面図、第5
図はその八−^断面図であり、回転子1は固定子2及び
ハウジング3に装着されたベアリング4.5に軸支され
ている。固定子2の内周面は凹凸状に形成されており、
凹部底面には棒状の支柱6の一端面が固着され、支柱6
の他端面には棒状の圧電素子等からなる微動アクチュエ
ータ7の一端面が固着されている。そして、微動アクチ
ュエータ7が仲状態のときは微動アクチュエータ7の他
端面が回転子lの外周面に圧接され、微動アクチュエー
タ7が相状態のときは微動アクチュエータ7の他端面が
回転子1の外周面から分離されるようになっている。ま
た、凸部側面には棒状の圧電素子等から成る微動アクチ
ュエータ8の−端面が固着され、微動アクチュエータ8
の他端面が支柱6の側面に固着されている。従って、微
動アクチュエータ8の伸縮により支柱6及び微動アクチ
ュエータ7は支柱6と凹部底面との固着点を支点として
揺動されるようになっている。このような構成の回転駆
動手段がこの例では回転子1の回転方向に6等配され、
1つ置きに3個の回転駆動手段でなるAグループ及びB
グループがそれぞれ同一制御されるようになっている。
Figure 4 is an axial sectional view showing an example of a conventional rotating machine;
The figure is a sectional view taken along the line 8-^, and the rotor 1 is pivotally supported by a bearing 4.5 mounted on the stator 2 and the housing 3. The inner peripheral surface of the stator 2 is formed into an uneven shape.
One end surface of a rod-shaped support 6 is fixed to the bottom of the recess, and the support 6
One end surface of a fine movement actuator 7 made of a rod-shaped piezoelectric element or the like is fixed to the other end surface. When the fine movement actuator 7 is in the intermediate state, the other end surface of the fine movement actuator 7 is pressed against the outer circumferential surface of the rotor 1, and when the fine movement actuator 7 is in the phase state, the other end surface of the fine movement actuator 7 is in pressure contact with the outer circumferential surface of the rotor 1. It is designed to be separated from Further, the negative end face of a fine movement actuator 8 made of a bar-shaped piezoelectric element or the like is fixed to the side surface of the convex portion, and the fine movement actuator 8
The other end surface is fixed to the side surface of the support column 6. Therefore, as the fine movement actuator 8 expands and contracts, the column 6 and the fine movement actuator 7 are swung about the fixed point between the column 6 and the bottom surface of the recess as a fulcrum. In this example, six rotary drive means having such a configuration are equally distributed in the rotational direction of the rotor 1,
A group and B consisting of three rotary drive means every other
Each group is controlled in the same way.

第6図は上述した回転機の制御回路の一例を示すブロッ
ク図であり、アクチュエータコントローラlOは回転機
コントローラ9からの回転速度指令vAに従ってAプル
ーブの微動アクチュエータ7.8を駆動するドライバ^
3.^2及びBグループの微動アクチュエータ7.8を
駆動するドライバ0□B、に制御指令を送出する。ドラ
イバ^1又は[11の伸び指令によりAグループ又はB
グループの微動アクチュエータ7が伸びて回転子1に圧
接し、ドライバ^、又はB2の伸び指令によりAグルー
プ又はBグループの微動アクチュエータ8が伸びて支柱
6を押して回転子1を回転駆動する0次に、ドライバ^
1又B、の縮み指令によりAグループ又はBグループの
微動アクチュエータ7が縮んで回転子1から分離し、ド
ライバA2又はB2の縮み指令によりAグループ又はB
グループの微動アクチュエータ8が縮んで支社6を元の
状態に戻す、これら一連の動作をAグループ、Bグルー
プ交互に連続させて行なうことにより回転子1は連続回
転ず木。
FIG. 6 is a block diagram showing an example of the control circuit for the above-mentioned rotating machine, and the actuator controller IO is a driver that drives the fine movement actuator 7.8 of the A-probe in accordance with the rotational speed command vA from the rotating machine controller 9.
3. A control command is sent to the driver 0□B, which drives the fine movement actuators 7.8 of the ^2 and B groups. A group or B by extension command of driver ^1 or [11
The fine movement actuator 7 of the group extends and presses against the rotor 1, and in response to the extension command from the driver ^ or B2, the fine movement actuator 8 of the A group or B group extends and pushes the column 6 to drive the rotor 1. , driver ^
1 or B, the fine movement actuator 7 of the A group or B group contracts and separates from the rotor 1, and the contraction command of the driver A2 or B2 causes the fine movement actuator 7 of the A group or B group to contract and separate from the rotor 1.
The fine movement actuators 8 of the groups are contracted and the branch 6 is returned to its original state. By performing this series of operations alternately and continuously with the A group and the B group, the rotor 1 is continuously rotated.

(発明が解決しようとする課題) 例えば工作機械の送り軸の駆動に用いる回転機は、早送
り時には高トルクは必要とされないが、高速回転が必要
とされ、加工時には高速回転は必要とされないが、高ト
ルクが要求される。上述した従来の回転機においては回
転速度及び出力トルクは微動アクチ゛ユニータフにより
回転駆動される回転子部分の回転子径(第4図示D)に
よって決まる。即ち、@動アクチュエータフの駆動力及
び駆動速度が同じ場合、回転速度は回転子径りに反比例
し、出力トルクは回転子径りに比例するため、回転速度
を高速にするため(回転子径りを小さくすると出力トル
クが低くなり、出力トルクを高くするために回転子径り
を大きくすると回転速度が低速になる事から、高速回転
と高トルクが必要な場合、回転子径を小さくしてAグル
ープ及びBグループの回転駆動手段で成るユニットを回
転子の回転軸方向に多数並設する必要があり、回転機と
して大きくなると共に部品点数も増加してコスト高とな
る欠点があった0例えば第3図Cおいて、N2なる回転
速度となる様回転子径りを決めると、T3なる出力トル
クを出す為にはユニットを回転子の回転軸方向に3個並
設する必要がある。
(Problems to be Solved by the Invention) For example, a rotating machine used to drive the feed shaft of a machine tool does not require high torque during rapid traverse, but high-speed rotation is required, and high-speed rotation is not required during machining. High torque is required. In the conventional rotating machine described above, the rotational speed and output torque are determined by the rotor diameter (D in the fourth diagram) of the rotor portion rotationally driven by the fine movement actuator unitar. In other words, when the driving force and driving speed of @dynamic actuator tough are the same, the rotation speed is inversely proportional to the rotor diameter, and the output torque is proportional to the rotor diameter. If you make the rotor diameter smaller, the output torque will be lower, and if you increase the rotor diameter to increase the output torque, the rotation speed will become slower. Therefore, if high speed rotation and high torque are required, the rotor diameter should be made smaller. It is necessary to arrange a large number of units consisting of the rotary drive means of the A group and the B group in parallel in the direction of the rotation axis of the rotor, which has the disadvantage of increasing the size of the rotating machine and increasing the number of parts, resulting in high costs. In FIG. 3C, if the diameter of the rotor is determined to achieve a rotational speed of N2, it is necessary to arrange three units in parallel in the direction of the rotational axis of the rotor in order to produce an output torque of T3.

本発明は上述したような事情から成されたものであり、
本発明の目的は、小型かつ安価であって高速回転と高ト
ルクを出力することができる回転機を提供1°ることに
ある。
The present invention was made in view of the above-mentioned circumstances, and
An object of the present invention is to provide a rotating machine that is small and inexpensive and can output high speed rotation and high torque.

(課題を解決1゛るための手段) 本発明は、微動アクチュエータを用いた複数の回転駆動
手段で成るユニットが回転子を回転駆動する回転機に関
するものであり、本発明の上記目的は、前記ユニットを
前記回転子の回転軸方向に複数個並設し、前記複数個の
ユニットにより回転駆動される各回転子部分の回転子径
のうち全部を異径、又は一部をjil、j径とすること
によって達成される。
(Means for Solving the Problem 1) The present invention relates to a rotating machine in which a unit consisting of a plurality of rotation drive means using fine movement actuators rotationally drives a rotor. A plurality of units are arranged in parallel in the direction of the rotation axis of the rotor, and all of the rotor diameters of the rotor portions rotationally driven by the plurality of units are different diameters, or some of them are different diameters. This is achieved by

(作用) 本発明の回転機は、回転子の最小径にあるユニットのみ
による回転駆動により高速回転させ、複数個のユニット
Cよる回転駆動により高トルクを出力させるようにして
いる。
(Function) The rotating machine of the present invention rotates at high speed by rotationally driving only the unit at the smallest diameter of the rotor, and outputs high torque by rotationally driving a plurality of units C.

(実施例) 第1図は本発明の回転機の一例を第4図に対応させて示
す軸方向断面図であり、同一構成箇所は同符号を付して
説明を省略する。この回転機は、従来例で説明したAグ
ループ及びBグループの回転駆動手段で成るユニットが
2個並設されており、第1ユニツトの@動アクヂュエー
タ71により回転駆動される回転子部分の回転子径DI
は第2ユニツトの微動アクチュエータ72により回転駆
動される回転子部分の回転子径02より大径となってい
る。
(Example) FIG. 1 is an axial cross-sectional view showing an example of a rotating machine of the present invention in correspondence with FIG. 4, and the same components are given the same reference numerals and the description thereof will be omitted. In this rotating machine, two units consisting of the A group and B group rotary drive means described in the conventional example are arranged side by side, and the rotor of the rotor part is rotationally driven by the @dynamic actuator 71 of the first unit. Diameter DI
has a larger diameter than the rotor diameter 02 of the rotor portion rotationally driven by the fine movement actuator 72 of the second unit.

第2図は上述した回転機の制御回路の一例を第6図に対
応させて示すブロック図であり、アクチュエータコント
ローラ10’ は回転機コントローラ9からの回転速度
指令vAに従って、第1ユニツトのAグループ又はBグ
ループの微動アクチュ二一夕71.81を駆動するドラ
イバl^11^2又はIn、、In2と、第2ユニツト
のAグループ又はBグループの微動アクチュエータ72
.82を駆動するドライバ2^、2八、又は2B+ 、
2Jに制御指令を送出する。ここで、第1ユニツト、第
2ユニツトの微動アクチュエータ?1,72,81.8
2が回転子11を回転駆動した場合の回転速度と出力ト
ルクの関係を第3図に示す、第1ユニツトの微動アクチ
ュエータ71.81が回転子11を回転駆動した場合の
最高回転速度はNl+最高出力トルクはT、となり、第
2ユニツトの微動アクチュエータ72.82が回転子1
1を回転駆動した場合の最高回転速度はN2.最高出力
トルクはT、となる アクチュエータコントローラ10°は、回転機コントロ
ーラ9からの回転速度指令vAがN1より小さし)とき
には、ドライバl^1,1八2,2^1.2^2又は1
B、。
FIG. 2 is a block diagram showing an example of the control circuit for the above-mentioned rotating machine, corresponding to FIG. Or the driver l^11^2 or In, In2 that drives the fine movement actuator 71.81 of the B group, and the fine movement actuator 72 of the A group or B group of the second unit.
.. Driver 2^, 28, or 2B+ that drives 82,
Send control command to 2J. Here, the fine movement actuators of the first unit and the second unit? 1,72,81.8
Figure 3 shows the relationship between the rotational speed and output torque when the rotor 11 is rotationally driven by the fine movement actuator 71.81 of the first unit. The output torque becomes T, and the fine movement actuator 72.82 of the second unit moves the rotor 1.
The maximum rotational speed when rotating N2.1 is N2. The maximum output torque is T, and the actuator controller 10° has the rotational speed command vA from the rotating machine controller 9 smaller than N1), when the driver l^1, 182, 2^1.2^2 or 1
B.

1[1,,28ヨ202に制御指令を送出する。ドライ
バl^3,2八−又は10..2[1,の伸び指令によ
り第1ユニツト、第2ユニツトの各Aグループ又は各B
グループの微動アクチュエータ71.72が伸びて回転
子11に圧接し、ドライバl^7,2^、又はlB2.
21hの伸び指令により第1ユニツト、第2ユニツトの
各Aグループ又は各Bグループの微動アクチュエータ8
1.82が伸びて支柱61.62を押して回転子11を
回転駆動する0次に、ドライバl^+、2八を又はIl
l、。
1 [1,, 28 yo Sends a control command to 202. Driver l^3, 28- or 10. .. 2 [1, each A group or each B group of the 1st unit and 2nd unit by the elongation command
The fine movement actuators 71, 72 of the group extend and press against the rotor 11, and the drivers l^7, 2^ or lB2.
The fine movement actuator 8 of each A group or each B group of the first unit and second unit is activated by the extension command of 21h.
1.82 extends and pushes the column 61.62 to rotate the rotor 11. Next, the driver l^+, 28 or Il
l.

2[11の縮み指令により第1ユニツト、第2ユニツト
の各Aグループ又は各Bグループの微動アクチュエータ
71.72が縮んで回転子11から分離し、ドライバI
A2.2八2又は1[1,,2B、の縮み指令により第
1ユニツト、第1ユニツトの各Aグループ又は各Bグル
ープの微動アクチュエータ81.82が縮んで支柱61
.62を元の状態に戻す、これら一連の動作を第1ユニ
ツト、第2ユニツトの各Aグループ。
2 [11 contraction command causes the fine movement actuators 71, 72 of each A group or each B group of the first unit and second unit to contract and separate from the rotor 11, and the driver I
A2.282 or 1[1,,2B, the contraction command causes the first unit, the fine movement actuators 81, 82 of each A group or each B group of the first unit to contract, and the strut 61
.. These series of operations to return the unit 62 to its original state are carried out by each A group of the first unit and the second unit.

各Bグループ交互に連続させて行なうことにより回転子
11は連続回転し、そのときの最高出力トルクはT、と
T、とを加算したT、となる。
The rotor 11 rotates continuously by alternating and successively performing each B group, and the maximum output torque at that time is T, which is the sum of T and T.

一方、アクチュエータコントローラlO°は、回転機コ
ントローラ9からの回転速度指令vAがN1より大きい
とき(但し、N2以下とする)には、第1ユニツトのド
ライバl^1.1^2.IBI、IB2への制御指令の
送出を停止し、ドライバ2^1.2^z、2B+、2[
1tに制御指令を送出して第2ユニツトのみの上述した
動作により出力トルクT、で回転速度N、まで回転子1
1を回転駆動する。
On the other hand, when the rotational speed command vA from the rotating machine controller 9 is larger than N1 (but not more than N2), the actuator controller lO° controls the first unit's driver l^1.1^2. Stops sending control commands to IBI and IB2, and controls drivers 2^1.2^z, 2B+, 2[
1t, and the above-mentioned operation of only the second unit causes the rotor 1 to reach the output torque T and the rotational speed N.
1 to rotate.

なお、上述した実施例においては2個のユニットにより
回転駆動される各回転子部分の回転子径が異径である回
転機について説明したが、回転機として要求される性能
によっては2個以上のユニットにより回転駆動される各
回転子部分の回転子径のうち全部が異径、又は一部が異
径である回転機としてもよい、また、実施例における回
転子と固定子とが逆の関係にあるような回転機にも本発
明が適用可能である。
In addition, in the above-mentioned embodiment, a rotating machine was described in which the rotor diameters of the rotor parts that are rotationally driven by two units are different, but depending on the performance required for the rotating machine, two or more units may be used. A rotating machine may be used in which all or part of the rotor diameters of the rotor parts rotationally driven by the unit are different, or the rotor and stator in the embodiment have a reverse relationship. The present invention can also be applied to a rotating machine such as the one shown in FIG.

(発明の効果) 以上のように本発明によれば、小型かつ安価であって高
速回転と高トルクの出力に対応できる助転機を提供する
ことができ、適用される装置のコンパクト化やコストダ
ウンを図ることができる。
(Effects of the Invention) As described above, according to the present invention, it is possible to provide an auxiliary rotating machine that is small and inexpensive and can handle high-speed rotation and high-torque output, thereby making the equipment to which it is applied more compact and reducing costs. can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の回転機の一例を示す軸方向断面図、第
2図はその制御回路の一例を示すブロック図、第3図は
本発明の回転機の回転速度と出力トルクの関係を示す図
、第4図及び第5図は従来の回転機の一例を示す軸方向
断面図及びその八−^断面図、第6図はその制御回路の
一例を示すブロック図である。 1.11・・・回転子、2・・・固定子、3・・・ハウ
ジング、4.5・・・ベアリング、6,61.li2・
・・支柱、?、8,71,72゜81.82・・・微動
アクチュエータ、9・・・回転器コントローラ、10.
10’・・・アクチュエータコントローラ、へ+、/h
、IAI、lA2.2八+、2/h、[l+、[12,
IB+、IDt、2[1+。 2[12・・・ドライバ。 61 躬 / 臼 躬 第 図 −1 躬 図
FIG. 1 is an axial sectional view showing an example of the rotating machine of the present invention, FIG. 2 is a block diagram showing an example of its control circuit, and FIG. 3 is a diagram showing the relationship between the rotational speed and output torque of the rotating machine of the present invention. 4 and 5 are an axial sectional view and an 8-^ sectional view showing an example of a conventional rotating machine, and FIG. 6 is a block diagram showing an example of a control circuit thereof. 1.11...Rotor, 2...Stator, 3...Housing, 4.5...Bearing, 6,61. li2・
...The pillar? , 8, 71, 72° 81.82... Fine movement actuator, 9... Rotator controller, 10.
10'...actuator controller, to +, /h
, IAI, lA2.28+, 2/h, [l+, [12,
IB+, IDt, 2[1+. 2 [12...driver. 61 Tsutomu / Usutomi Diagram-1 Tsumugi Diagram

Claims (1)

【特許請求の範囲】 1、微動アクチュエータを用いた複数の回転駆動手段で
成るユニットが回転子を回転駆動する回転機において、
前記ユニットを前記回転子の回転軸方向に複数個並設し
、前記複数個のユニットにより回転駆動される各回転子
部分の回転子径のうち全部が異径、又は一部が異径であ
ることを特徴とする回転機 2、前記複数個のユニットが前記回転子の回転速度指令
に応じてそれぞれ制御される請求項1に記載の回転機。
[Claims] 1. A rotating machine in which a unit consisting of a plurality of rotation drive means using a fine movement actuator rotationally drives a rotor,
A plurality of the units are arranged in parallel in the direction of the rotation axis of the rotor, and all or some of the rotor diameters of the rotor portions rotationally driven by the plurality of units are different diameters. The rotating machine according to claim 1, wherein the rotating machine 2 and the plurality of units are each controlled according to a rotational speed command of the rotor.
JP1282667A 1989-10-30 1989-10-30 Rotary machine Pending JPH03145977A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1282667A JPH03145977A (en) 1989-10-30 1989-10-30 Rotary machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1282667A JPH03145977A (en) 1989-10-30 1989-10-30 Rotary machine

Publications (1)

Publication Number Publication Date
JPH03145977A true JPH03145977A (en) 1991-06-21

Family

ID=17655488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1282667A Pending JPH03145977A (en) 1989-10-30 1989-10-30 Rotary machine

Country Status (1)

Country Link
JP (1) JPH03145977A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7078847B2 (en) 1998-12-21 2006-07-18 Seiko Epson Corporation Piezoelectric actuator, timepiece, and portable device
JP2014506777A (en) * 2011-02-24 2014-03-17 セラムテック ゲゼルシャフト ミット ベシュレンクテル ハフツング Force module with sub-module and drive control protection module for high dynamics force generation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7078847B2 (en) 1998-12-21 2006-07-18 Seiko Epson Corporation Piezoelectric actuator, timepiece, and portable device
US7253552B2 (en) 1998-12-21 2007-08-07 Seiko Epson Corporation Piezoelectric actuator, timepiece, and portable device
JP2014506777A (en) * 2011-02-24 2014-03-17 セラムテック ゲゼルシャフト ミット ベシュレンクテル ハフツング Force module with sub-module and drive control protection module for high dynamics force generation

Similar Documents

Publication Publication Date Title
US4713985A (en) Transmission apparatus
JP6206779B2 (en) Forming machine, especially ring rolling machine
US7819655B2 (en) Linearly displaceable rotary drive for a plastic injection-molding machine
JPS61258679A (en) Rotor
JP2002257228A (en) Automobile
US5695390A (en) Finishing machines for internal spline tooth surfaces
KR880012298A (en) Drive
US5056971A (en) Operating head chuck unit for automatic machine tools
JPH03145977A (en) Rotary machine
JPH10277985A (en) Positioning device
JP3561761B2 (en) Gear shaping method by machining center
JP2934810B2 (en) Processing method and equipment
JP2001113489A (en) Industrial robot
JPS60125618A (en) Driving device of injection mechanism in injection molding machine
CN110000757B (en) Parallel mechanism with two-movement one-rotation and two-movement one-spiral motion modes
JPH0790475B2 (en) Articulated industrial robot
JP2773548B2 (en) Pitch change mechanism of multi-shaft nutrunner device
JPH02298451A (en) Compound movement actuator
CA2244629A1 (en) Drive device for a feed member in a machine tool
JP2001347400A (en) Press
CN210025276U (en) Three-degree-of-freedom parallel mechanism with 2T1R and 2T1H motion modes
KR200237551Y1 (en) sliding cover of machine tool
JP2794691B2 (en) Processing machine with camshaft rotation control mechanism
JPH01276209A (en) Numerical controller
US6826980B2 (en) Drive and control systems for high speed intermittent motion generations, control and applications