JPH03142952A - Semiconductor device and its manufacture - Google Patents

Semiconductor device and its manufacture

Info

Publication number
JPH03142952A
JPH03142952A JP1282396A JP28239689A JPH03142952A JP H03142952 A JPH03142952 A JP H03142952A JP 1282396 A JP1282396 A JP 1282396A JP 28239689 A JP28239689 A JP 28239689A JP H03142952 A JPH03142952 A JP H03142952A
Authority
JP
Japan
Prior art keywords
substrate
groove
recess
semiconductor substrate
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1282396A
Other languages
Japanese (ja)
Other versions
JPH0687480B2 (en
Inventor
Mitsutaka Katada
満孝 堅田
Kazuhiro Tsuruta
和弘 鶴田
Seiji Fujino
藤野 誠二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soken Inc
Original Assignee
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc filed Critical Nippon Soken Inc
Priority to JP1282396A priority Critical patent/JPH0687480B2/en
Publication of JPH03142952A publication Critical patent/JPH03142952A/en
Priority to US07/731,268 priority patent/US5164218A/en
Priority to US07/844,889 priority patent/US5313092A/en
Publication of JPH0687480B2 publication Critical patent/JPH0687480B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Bipolar Integrated Circuits (AREA)

Abstract

PURPOSE:To form a vertical type power element, and evade the increase of element size, by providing a first function element part formed in a region of a bonded substrate, and a second function element part formed in the other region of the bonded substrate. CONSTITUTION:On the bonded substrate 10, the following are constituted; an insulating layer 6, a trench part 4 filled with filler 7, and a first function element part 40 electrically isolated by a recessed part 3. In the region other than the first function element part 40, a first and a second semiconductor substrates 1, 8 are electrically continuous, so that a vertical type power element 30 is formed as a second function element part. As a result the trench part 4 of the vertical type power element 30 can be formed, e.g. in a so-called inverse mesa type, so that the substrate area necessary for dielectric strength can be reduced. Thereby a vertical type power element can be formed, and the increase of size of the power element part can be excluded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体装置およびその製造方法に関するもの
で、特に高耐圧素子の素子間分離に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device and a method for manufacturing the same, and particularly to isolation between high voltage elements.

〔従来の技術〕[Conventional technology]

従来、例えば高耐圧パワー素子と論理回路とを1チツプ
上に搭載する複合素子を形成する場合にはパワー素子と
論理回路の素子間分離が必要となる。なお、パワー素子
において駆動可能な電流量を向上させるには論理部を形
成するのと同じ面にソース及びゲートをまた反対の面に
はドレインを形成する、いわゆる縦型の素子が不可欠で
ある。
Conventionally, when forming a composite device in which, for example, a high-voltage power device and a logic circuit are mounted on one chip, it is necessary to separate the power device and the logic circuit. Note that in order to improve the amount of current that can be driven in a power element, it is essential to use a so-called vertical element in which the source and gate are formed on the same side where the logic section is formed, and the drain is formed on the opposite side.

すなわち、この縦型のパワー素子と論理部を電気的に分
離することのできる構造が必要とされる。
That is, a structure is required that can electrically isolate the vertical power element and the logic section.

いわゆる素子間分離技術としてはPN接合による素子間
分離が一般的に知られている。このPN接合による素子
間分離方法は、P型半導体素子上にN型エピタキシャル
層を形成し、このエピタキシャル層の表面からP型基板
に達するまで拡散によってP″層を設け、このP″層に
よってパワー素子部と論理回路部を分離するものである
。これにより、論理回路部をP″層により囲んだ状態で
PN接合が形成され、高電圧発生時にはこのPN接合が
逆バイアスされ、論理部は他の領域と電気的に分離する
ことができる。
As a so-called element isolation technique, element isolation using a PN junction is generally known. In this method of isolation between elements using a PN junction, an N-type epitaxial layer is formed on a P-type semiconductor element, a P'' layer is provided by diffusion from the surface of this epitaxial layer to a P-type substrate, and this P'' layer provides power. This separates the element section and the logic circuit section. As a result, a PN junction is formed with the logic circuit section surrounded by the P'' layer, and when a high voltage is generated, this PN junction is reverse biased, and the logic section can be electrically isolated from other regions.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、この方法は300v以上のパワー素子を
形成する場合には分離用拡散層の拡散−深さが40μm
以上となり、素子間分離構造形成のための拡散により横
方向の拡散幅が増大し、素子形成に利用できる面積の損
失が大きくなってしまう、更にパワー素子部の外周上に
は、高耐圧を保持するための、フィールドプレート或い
はガードリングといった高耐圧素子構造を形成しなけれ
ばならず、前記の素子分離の拡散に加えて更に面積の損
失を増大させてしまうことになる。また、PN接合分離
は熱的に不安定であり、100°C以上の高温になると
リーク電流によりランチアップが発生しやすくなるとい
う問題点も有している。
However, when forming a power element of 300 V or more, this method requires a diffusion depth of 40 μm for the isolation diffusion layer.
As a result, the lateral diffusion width increases due to diffusion to form an isolation structure between elements, resulting in a large loss of area that can be used for element formation.Furthermore, a high withstand voltage is maintained on the outer periphery of the power element part. For this purpose, a high voltage element structure such as a field plate or a guard ring must be formed, which results in an increase in area loss in addition to the above-mentioned element isolation diffusion. Furthermore, PN junction isolation is thermally unstable, and has the problem that launch-up is likely to occur due to leakage current at high temperatures of 100° C. or higher.

本発明は上記種々の問題に鑑みてなされたものであり、
基板表面を電流経路とする縦型のパワー素子の形成が可
能であるとともに、パワー素子の耐圧構造に要する基板
面積によりパワー素子部の素子寸法が大きくなることの
ない素子間分離が実現できる半導体装置およびその製造
方法を提供することを目的とする。
The present invention has been made in view of the various problems mentioned above,
A semiconductor device that enables the formation of a vertical power element with the substrate surface as a current path, and also achieves isolation between elements without increasing the element dimensions of the power element part due to the substrate area required for the voltage-resistant structure of the power element. The purpose is to provide a method for producing the same.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は上記目的を達成するために、 請求項1記載の発明では、いわゆる基板接合法を応用し
、 第1半導体基板および第2半導体基板の各々鏡面研磨面
を接合面として密着接合した接合基板において、 前記接合面の所定領域に配設された凹部と、少なくとも
前記第1半導体基板に設けられ、前記接合面から前記第
2半導体基板に対向する面方向に対して垂直方向の断面
積が徐々に小さくなる形状の溝部と、 前記凹部および溝部の内壁を被覆する絶縁層と、前記凹
部および溝部を埋込む充填材料と、前記溝部および凹部
にて区画され、前記絶縁層と前記充填材料にて電気的に
絶縁分離された前記接合基板の一領域に形成された第1
の機能素子部と、 前記溝部に隣接する前記接合基板の他領域に形成された
第2の機能素子部と、 を具備することを特徴とする半導体装置を提供する。
In order to achieve the above object, the present invention provides a bonded substrate in which a so-called substrate bonding method is applied, and a first semiconductor substrate and a second semiconductor substrate are closely bonded using mirror-polished surfaces of each as a bonding surface. A recess provided in a predetermined region of the bonding surface, and a cross-sectional area of a recess provided in at least the first semiconductor substrate in a direction perpendicular to a surface facing from the bonding surface to the second semiconductor substrate gradually increases. a groove having a shape that becomes smaller in size; an insulating layer that covers the inner wall of the recess and the groove; a filling material that fills the recess and the groove; A first
Provided is a semiconductor device comprising: a functional element portion; and a second functional element portion formed in another region of the bonded substrate adjacent to the groove portion.

また、請求項2記載の発明においては、第1半導体基板
の一方の面の一領域に凹部を形成し、 この凹部の周縁部に前記凹部よりも深い溝部を形成し、 前記凹部および溝部を形威した面を全て絶縁物で被覆し
た後、前記凹部および溝部を充填材料で埋設し、 前記一方の面を鏡面研磨して、前記一方の面の他領域を
面出させ、 この鏡面研磨された前記第1半導体の一方の面と、少な
くとも一方の面が鏡面研磨された第2半導体基板の鏡面
研磨面とを接合することにより接合基板とし、 前記第1半導体基板の他方の面から前記溝部を表出させ
、 前記溝部および凹部にて区画され、前記絶縁物と前記充
填材料で電気的に分離された領域を前記接合基板の前記
第1半導体基板に形成することを特徴とする半導体装置
の製造方法を提供する。
Further, in the invention according to claim 2, a recess is formed in a region of one surface of the first semiconductor substrate, a groove deeper than the recess is formed in a peripheral portion of the recess, and the recess and the groove are shaped. After covering all the exposed surfaces with an insulating material, the recesses and grooves are filled with a filling material, and the one surface is mirror-polished to expose the other area of the one surface. A bonded substrate is obtained by bonding one surface of the first semiconductor and a mirror-polished surface of a second semiconductor substrate whose at least one surface is mirror-polished, and the groove portion is opened from the other surface of the first semiconductor substrate. Manufacturing a semiconductor device characterized in that a region is formed in the first semiconductor substrate of the bonded substrate, and is defined by the groove and the recess and is electrically isolated by the insulator and the filling material. provide a method.

〔作用・効果〕[Action/Effect]

すなわち、請求項1記載の発明を採用することによって
、接合基板には絶縁層および充填材料にて埋設された溝
部および凹部にて電気的に絶縁分離された第1の機能素
子部が構成される。
That is, by employing the invention set forth in claim 1, the first functional element section is configured in the bonded substrate, which is electrically insulated and isolated by the groove and the recess filled with the insulating layer and the filling material. .

また、この第1の機能素子部以外の領域においては、第
1および第2半導体基板が電気的に導通しているため、
第2の機能素子部として縦型のパワー素子が形成可能で
ある。
In addition, since the first and second semiconductor substrates are electrically connected in a region other than the first functional element section,
A vertical power element can be formed as the second functional element section.

さらに、その縦型のパワー素子は、溝部の形状が例えば
いわゆる逆メサ状に形成可能であるために、その耐圧構
造に要する基板面積を小さくすることができる。
Further, in the vertical power element, the groove can be formed into a so-called inverted mesa shape, so that the substrate area required for the voltage-resistant structure can be reduced.

従って、請求項1記載の発明によれば、基板裏面を電流
経路とする縦型のパワー素子の形成が可能であるととも
に、パワー素子の耐圧構造に要する基板面積によりパワ
ー素子部の素子寸法が大きくなることのない素子間分離
が実現できるという優れた効果がある。
Therefore, according to the invention described in claim 1, it is possible to form a vertical power element with the back surface of the substrate as a current path, and the element size of the power element portion can be increased due to the substrate area required for the voltage-resistant structure of the power element. This has the excellent effect of realizing isolation between elements without causing damage.

また、請求項2記載の発明によれば、上記効果を有する
半導体装置を製造できるという優れた効果がある。
Further, according to the second aspect of the invention, there is an excellent effect that a semiconductor device having the above-mentioned effects can be manufactured.

〔実施例〕〔Example〕

以下本発明を図に示す実施例に基づいて説明する。 The present invention will be described below based on embodiments shown in the drawings.

第1図は本発明第1実施例を適用した半導体装置の断面
図である。
FIG. 1 is a sectional view of a semiconductor device to which a first embodiment of the present invention is applied.

以下、第1図に示す半導体装置を第2図(a)〜(ロ)
に示す製造工程に従って説明する。
Below, the semiconductor device shown in FIG. 1 is shown in FIGS. 2(a) to (b).
This will be explained according to the manufacturing process shown in .

まず、第2図(a)の如く、低濃度の第1半導体基板1
の一方の面に所定のパターンを有する例えばSin、膜
によるマスク2を形威し、第2図(b)の如く、将来S
ol構造に論理部40を構成する論理部構成予定領域を
選択的にエツチングし、凹部3を形成する。凹部3の深
さは後述するようにシリコンのラップポリッシュの精度
及び素子の耐圧とも関係するが2μm以上あればよい。
First, as shown in FIG. 2(a), a first semiconductor substrate 1 with a low concentration
A mask 2 made of, for example, a Sin film having a predetermined pattern is formed on one surface of the S, as shown in FIG.
The region where the logic section 40 is to be formed is selectively etched in the OL structure to form the recess 3. The depth of the recess 3 is related to the accuracy of silicon lap polishing and the withstand voltage of the element, as will be described later, but it is sufficient if it is 2 μm or more.

次に、第2図(C)に示す如く、凹部3の周縁およびパ
ワー素子構成領域5の周縁に沿って楔状の、すなわち深
くなる程幅の狭くなる溝4を形成する。
Next, as shown in FIG. 2(C), a wedge-shaped groove 4 is formed along the periphery of the recess 3 and the periphery of the power element forming region 5, that is, the groove becomes narrower as it gets deeper.

溝4形成法としては、例えば角度付ブレードによりダイ
ジグで溝を形成した後、溝側面の結晶欠陥除去のためI
TF、HNOs、CH3CO0H?li合液により化学
エツチングを施す。そして、第2図(d)に示す如く、
この凹部3及び溝4を形成した面に絶縁膜6を形成する
。絶縁膜材料としては例えば熱酸化、CVD等により形
成したシリコン酸化膜、或いはCVD、 スパッタ法等
により形成した窒化珪素膜等が適当である。更に、ゲッ
タリング効果を付加するためにPSG膜、或いはBPS
C膜を絶縁膜6の形成後形成するようにしてもよい。
The method for forming the groove 4 is, for example, to form the groove with a die jig using an angled blade, and then to remove crystal defects on the sides of the groove.
TF, HNOs, CH3CO0H? Chemical etching is performed using a li mixture. Then, as shown in Figure 2(d),
An insulating film 6 is formed on the surface where the recesses 3 and grooves 4 are formed. Suitable materials for the insulating film include, for example, a silicon oxide film formed by thermal oxidation, CVD, etc., or a silicon nitride film formed by CVD, sputtering, etc. Furthermore, in order to add a gettering effect, a PSG film or BPS film is used.
The C film may be formed after the insulating film 6 is formed.

しかる後、第2図(e)に示す如く、凹部3及び溝4が
埋まるようにCVD法、スパック法、蒸着法等により多
結晶シリコン、酸化シリコン、窒化珪素等のシールド用
充填材料7を堆積させる。この時、第1半導体基板1の
反り等をできるだけ低減させるため、堆積する充填材料
は熱膨張係数が第1半導体基板1に近いことが望ましく
、単一材料では多結晶シリコンが適当である。
Thereafter, as shown in FIG. 2(e), a filling material 7 for shielding such as polycrystalline silicon, silicon oxide, silicon nitride, etc. is deposited by CVD, spacing, vapor deposition, etc. so as to fill the recesses 3 and grooves 4. let At this time, in order to reduce warpage of the first semiconductor substrate 1 as much as possible, it is desirable that the deposited filling material have a coefficient of thermal expansion close to that of the first semiconductor substrate 1, and polycrystalline silicon is suitably used as a single material.

次に充填材料7をラップポリッシュ法によりパワ一部形
成領域5の第1半導体基板lの面が露出するまで鏡面研
磨を行い、第2図(f)に示す如く、鏡面研磨面1aを
形成する。
Next, the filler material 7 is lap-polished until the surface of the first semiconductor substrate l in the power part formation region 5 is exposed, thereby forming a mirror-polished surface 1a as shown in FIG. 2(f). .

この鏡面研磨面1aを有する第1半導体基板1と、少な
くとも一方の面を鏡面研磨した高濃度の第2半導体1v
isとを、例えばトリクロルエタン煮沸、アセトン超音
波洗浄、NHz、HtOz、HzOの混合液による有機
物の除去、H(1,H□0□。
A first semiconductor substrate 1 having a mirror-polished surface 1a and a highly concentrated second semiconductor 1v having at least one mirror-polished surface.
is, for example, by boiling in trichloroethane, ultrasonic cleaning in acetone, removal of organic matter with a mixed solution of NHz, HtOz, and HzO, H(1, H□0□.

11.0の混合液による金属汚染の除去および純水洗浄
を順次施すことにより充分洗浄する。その後、HF、t
rgo混合液により自然酸化膜を除去した後、例えばH
tSo、−HzOzの混合液に浸漬することにより、ウ
ェハ表面に15Å以下の酸化膜を形成し、親水性を持た
せ、純水にて洗浄する。
Thorough cleaning is performed by sequentially removing metal contamination with the mixed solution of No. 11.0 and washing with pure water. After that, HF,t
After removing the natural oxide film with rgo mixed solution, for example, H
By immersing the wafer in a mixed solution of tSo and -HzOz, an oxide film of 15 Å or less is formed on the wafer surface to make it hydrophilic, and the wafer is washed with pure water.

次に乾燥窒素等による乾燥を行い、基板表面に吸着する
水分量を制御した後、第2図(濁に示す如く、2枚の半
導体基板1.8の鏡面研摩面同士を密着させる。これに
より、2枚の基板1.8は表面に形成されたシラノール
基゛及び表面に吸着した水分子の水素結合により接着さ
れる。更に、この接着した基板lおよび8を例えば窒素
、アルゴン等の不活性ガス雰囲気中で1100°C以上
、1時間以上の熱処理を施すことにより、Si原子同士
の結合ができ、2枚の基板lおよび8は強固に接合され
、接合基板lOが形成される。
Next, after drying with dry nitrogen or the like to control the amount of moisture adsorbed on the substrate surface, as shown in FIG. , the two substrates 1.8 are bonded together by hydrogen bonds between silanol groups formed on the surfaces and water molecules adsorbed on the surfaces.Furthermore, the bonded substrates 1 and 8 are treated with an inert gas such as nitrogen or argon. By performing heat treatment in a gas atmosphere at 1100° C. or more for one hour or more, Si atoms are bonded to each other, and the two substrates 1 and 8 are firmly bonded to form a bonded substrate 10.

この後、第2図(ロ)に示す如く、第1半導体基板lの
第2半導体基板8に対向する側の表面1bに溝4が露出
するまでラップポリッシュを行う。これにより絶縁膜6
で電気的に絶縁され、充填材料7により埋められた基板
内部に空洞のない、SO■領域20を有する半導体基板
10が形成される。
Thereafter, as shown in FIG. 2(b), lap polishing is performed until the grooves 4 are exposed on the surface 1b of the first semiconductor substrate 1 on the side facing the second semiconductor substrate 8. As a result, the insulating film 6
A semiconductor substrate 10 is formed having an SO2 region 20 which is electrically insulated from the wafer and filled with the filler material 7 and without a cavity inside the substrate.

この得られた基板10に所定の素子を通常のプロセスに
従って形成することにより、第1図に示す半導体装置が
製造される。
By forming predetermined elements on the obtained substrate 10 according to a normal process, the semiconductor device shown in FIG. 1 is manufactured.

第1図は、上記製造工程において基板lとしてN−型、
基板8としてN°型を用いて接合したもので、縦型パワ
ートランジスタ30とこれを制御ゴ■する論理回路部4
0が1つの半導体基板IOに形成されている。
FIG. 1 shows that the substrate l used in the above manufacturing process is an N-type,
It is bonded using an N° type substrate 8, and includes a vertical power transistor 30 and a logic circuit section 4 that controls it.
0 is formed on one semiconductor substrate IO.

この縦型パワートランジスタ30は接合基板10の第1
半導体基板l側の表面1bにソース電極31、ゲート電
極32が形成され、基板8の表面すなわち接合基+7i
10の裏面にはドレイン電極33が形成されている。ま
た、前述のごとく分離溝4は基板lの裏面すなわち接合
基板10内部の接合面から楔状に形成しであるため、基
板1側から見た場合、N−層は逆台形(逆メサ)形状と
なっている。従って、素子の耐圧を保持するPN接合面
は平坦とされて、絶縁膜6で保護された溝4による所定
の傾斜側面により、そのPN接合面周縁部においても湾
曲した部分すなわち電界集中のおこりやすい領域のない
平坦面とされ、かつ逆メサ構造を構成するため、PN接
合面の端部の電界は弱められ、基板濃度に対応した理論
的に予想される高耐圧化が可能である。しかも、前述の
ようにPN接合面に湾曲部がないため、ガードリングの
ような水平方向に空乏層を広げて電界を緩和する余分な
耐圧構造が不用であるため、パワー素子部の面積が低減
可能である。さらに、絶縁膜6および基板内部の空洞の
無により、吸湿等が原因となるパワー素子部の表面漏れ
電流が生じることはなく、経時変化の少ない安定した耐
圧が得られる。
This vertical power transistor 30 is connected to the first
A source electrode 31 and a gate electrode 32 are formed on the surface 1b on the semiconductor substrate l side, and the surface of the substrate 8, that is, the junction group +7i
A drain electrode 33 is formed on the back surface of 10. Furthermore, as described above, since the separation groove 4 is formed in a wedge shape from the back surface of the substrate 1, that is, the bonding surface inside the bonded substrate 10, the N- layer has an inverted trapezoid (inverted mesa) shape when viewed from the substrate 1 side. It has become. Therefore, the PN junction surface that maintains the withstand voltage of the element is flat, and due to the predetermined inclined side surface formed by the groove 4 protected by the insulating film 6, curved portions, that is, electric field concentration are likely to occur even at the periphery of the PN junction surface. Since it is a flat surface with no regions and has an inverted mesa structure, the electric field at the end of the PN junction is weakened, making it possible to achieve a theoretically high breakdown voltage corresponding to the substrate concentration. Moreover, as mentioned above, since there is no curved part on the PN junction surface, there is no need for an extra voltage-resistant structure such as a guard ring that expands the depletion layer in the horizontal direction and alleviates the electric field, reducing the area of the power element part. It is possible. Furthermore, since there are no cavities inside the insulating film 6 and the substrate, surface leakage current in the power element section caused by moisture absorption, etc. does not occur, and a stable breakdown voltage with little change over time is obtained.

また、接合基板の内部は前述のように充填材料7により
埋められて空洞部が存在しないため、製造工程時に基板
1例の表面1bをラップポリッシュしても論理部40と
パワー素子部30の境界において欠けなどの発生する心
配はない、さらに境界部を表面1bに露出させることが
可能となるため、各領域への素子位置合わせは非常に容
易である。
Further, since the inside of the bonded substrate is filled with the filling material 7 as described above and there is no cavity, even if the surface 1b of one example of the substrate is lap-polished during the manufacturing process, the boundary between the logic section 40 and the power element section 30 is There is no fear of chipping, etc., and since the boundary portion can be exposed on the surface 1b, alignment of the element to each region is very easy.

また、領域20は単結晶基板により形成されているため
、素子特性が良好であり、また、絶縁層6によってパワ
一部30と絶縁分離されているため、分離耐圧が大きく
耐熱性にも優れている。
Further, since the region 20 is formed of a single crystal substrate, the device characteristics are good, and since the region 20 is insulated from the power part 30 by the insulating layer 6, it has a high isolation voltage and excellent heat resistance. There is.

次に第3図に本発明第2実施例を適用した複合化素子の
断面構造を示す。以下、本実施例を第4図(a)〜(f
)に示す製造工程に従って説明する。
Next, FIG. 3 shows a cross-sectional structure of a composite element to which the second embodiment of the present invention is applied. Hereinafter, this example will be explained in Figs. 4(a) to (f).
) will be explained according to the manufacturing process shown in ().

まず第4図(a)の如く、第1半導体基板50にマスク
51を形成した後S OI rfl域及びパワ一部の端
部に対応する領域に窓52を開ける。次にHF。
First, as shown in FIG. 4(a), a mask 51 is formed on a first semiconductor substrate 50, and then a window 52 is opened in a region corresponding to the S OI rfl region and the end of the power part. Next is HF.

HNO3,CHffCOOH混合液の北側酢酸系エツチ
ング液により窓52の部分をエツチングする。
The window 52 is etched using an acetic acid-based etching solution on the north side of a mixed solution of HNO3 and CHffCOOH.

この時、北側酢酸は窓の端部のエツチング速度が速く、
第4図(b)のごとく窓に沿って溝部53が形成される
ことになる。エツチング量を所定の耐圧が得られるまで
の深さにまで行った後、マスク材51を除去し、第1実
施例と同様の方法で第1半導体基板50のエツチングを
行った面50aに酸化膜等の絶縁膜54を形成し、第4
図(C)に示す如く、充填材料55を堆積する。しかる
後、第4図(d)に示す如く、パワ一部に対応する領域
56が露出するまでラップポリッシュを行う、更に前記
第2図(濁に示す工程と同様の方法で第4図(e)に示
す如く第1半導体基板50と第2半導体基板60を接合
し、−枚の基板とする。そして最後に、第4図(「)に
示す如く、第1半導体基板50の表面を第4図(b)で
形威した凹部53が表面上に現れるまでラップポリッシ
ュを行い、3016U域20を形成する。そして、通常
のプロセスに従って所定の素子を形威し、第3図に示す
半導体装置が製造される。
At this time, the northern acetic acid has a faster etching speed at the edge of the window.
A groove 53 is formed along the window as shown in FIG. 4(b). After etching has been performed to a depth that provides a predetermined breakdown voltage, the mask material 51 is removed and an oxide film is formed on the etched surface 50a of the first semiconductor substrate 50 in the same manner as in the first embodiment. A fourth insulating film 54 is formed.
As shown in Figure (C), a filling material 55 is deposited. Thereafter, as shown in FIG. 4(d), lap polishing is performed until a region 56 corresponding to a part of the power is exposed, and further, as shown in FIG. ), the first semiconductor substrate 50 and the second semiconductor substrate 60 are bonded together to form a second substrate.Finally, as shown in FIG. Lap polishing is performed until the recesses 53 shaped as shown in FIG. Manufactured.

上記方法によれば、素子間分離用の溝を形成する工程が
北側酢酸のエツチングというl工程だけで行えるため、
工程が簡略化可能であり、容易にウェハを形成すること
が可能である。なお、第3図において、第1実施例と同
−構成には第1図と同一符号が付しである。
According to the above method, the step of forming grooves for isolation between elements can be performed with only one step of etching with acetic acid on the north side.
The process can be simplified, and wafers can be easily formed. In FIG. 3, the same components as in the first embodiment are given the same reference numerals as in FIG. 1.

なお、上記種々の実施例においては、MO3型構造のも
のについて説明したが、バイポーラ型素子を複合化する
ようにしたものに適用してもよい。
In the various embodiments described above, MO3 type structures have been described, but the present invention may also be applied to structures in which bipolar type elements are combined.

また、基板の導電型もN型で説明したが、P型であって
もよい。また、接合基板と高耐圧部についての組み合わ
せもP−N、P−P、N−P、NNのいずれでも構わな
い。
Furthermore, although the conductivity type of the substrate has been described as N type, it may also be P type. Further, the combination of the bonded substrate and the high voltage part may be any of PN, PP, NP, and NN.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明第1実施例を適用した複合素子の断面図
、第2図(a)〜(ロ)は本発明第1実施例の製造工程
順断面図、第3図は本発明第2実施例を適用した複合素
子の断面図、第4図(a)〜(f)は本発明第2実施例
の製造工程順断面図である。 1・・・第1半導体基板、3・・・凹部、4・・・溝、
6・・・絶縁膜、7・・・充填材料、8・・・第2半導
体基板、10・・・接合基板、20・・・SOI領域、
30・・・縦型パワー素子部、40・・・論理回路部、
50・・・第1半導体基板、53・・・溝、54・・・
絶縁膜、55・・・充填材料、60・・・第2半導体基
板。
FIG. 1 is a sectional view of a composite element to which the first embodiment of the present invention is applied, FIGS. 4(a) to 4(f) are sectional views of a composite element to which the second embodiment is applied, and FIGS. 4(a) to 4(f) are sectional views in the order of manufacturing steps of the second embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... First semiconductor substrate, 3... Recessed part, 4... Groove,
6... Insulating film, 7... Filling material, 8... Second semiconductor substrate, 10... Bonding substrate, 20... SOI region,
30... Vertical power element section, 40... Logic circuit section,
50... First semiconductor substrate, 53... Groove, 54...
Insulating film, 55... Filling material, 60... Second semiconductor substrate.

Claims (2)

【特許請求の範囲】[Claims] (1)第1半導体基板および第2半導体基板の各々鏡面
研磨面を接合面として密着接合した接合基板において、 前記接合面の所定領域に配設された凹部と、少なくとも
前記第1半導体基板に設けられ、前記接合面から前記第
2半導体基板に対向する面方向に対して垂直方向の断面
積が徐々に小さくなる形状の溝部と、 前記凹部および溝部の内壁を被覆する絶縁層と、前記凹
部および溝部を埋込む充填材料と、 前記溝部および凹部にて区画され、前記絶縁層と前記充
填材料にて電気的に絶縁分離された前記接合基板の一領
域に形成された第1の機能素子部と、 前記溝部に隣接する前記接合基板の他領域に形成された
第2の機能素子部と、 を具備することを特徴とする半導体装置。
(1) In a bonded substrate in which a first semiconductor substrate and a second semiconductor substrate are closely bonded using mirror-polished surfaces of each as a bonding surface, a recess provided in a predetermined area of the bonding surface and a recess provided in at least the first semiconductor substrate. a groove portion having a shape in which the cross-sectional area in a direction perpendicular to a surface direction facing the second semiconductor substrate from the bonding surface gradually decreases; an insulating layer covering the inner wall of the recess portion and the groove portion; a filling material for filling the groove; a first functional element portion formed in a region of the bonded substrate defined by the groove and the recess and electrically isolated by the insulating layer and the filling material; A semiconductor device comprising: a second functional element portion formed in another region of the bonded substrate adjacent to the groove portion.
(2)第1半導体基板の一方の面の一領域に凹部を形成
し、 この凹部の周縁部に前記凹部よりも深い溝部を形成し、 前記凹部および溝部を形成した面を全て絶縁物で被覆し
た後、前記凹部および溝部を充填材料で埋設し、 前記一方の面を鏡面研磨して、前記一方の面の他領域を
面出させ、 この鏡面研磨された前記第1半導体の一方の面と、少な
くとも一方の面が鏡面研磨された第2半導体基板の鏡面
研磨面とを接合することにより接合基板とし、 前記第1半導体基板の他方の面から前記溝部を表出させ
、 前記溝部および凹部にて区画され、前記絶縁物と前記充
填材料で電気的に分離された領域を前記接合基板の前記
第1半導体基板に形成することを特徴とする半導体装置
の製造方法。
(2) A recess is formed in a region of one surface of the first semiconductor substrate, a groove deeper than the recess is formed at the periphery of the recess, and the entire surface on which the recess and the groove are formed is covered with an insulating material. After that, the recesses and grooves are filled with a filling material, and the one surface is mirror-polished to expose the other area of the one surface, and the mirror-polished one surface of the first semiconductor and , a bonded substrate is obtained by bonding a mirror-polished surface of a second semiconductor substrate whose at least one surface is mirror-polished, the groove is exposed from the other surface of the first semiconductor substrate, and the groove and the recess are A method of manufacturing a semiconductor device, comprising forming a region on the first semiconductor substrate of the bonding substrate, which is partitioned by the insulating material and the filling material.
JP1282396A 1989-05-12 1989-10-30 Method for manufacturing semiconductor device Expired - Lifetime JPH0687480B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP1282396A JPH0687480B2 (en) 1989-10-30 1989-10-30 Method for manufacturing semiconductor device
US07/731,268 US5164218A (en) 1989-05-12 1991-07-17 Semiconductor device and a method for producing the same
US07/844,889 US5313092A (en) 1989-05-12 1992-03-03 Semiconductor power device having walls of an inverted mesa shape to improve power handling capability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1282396A JPH0687480B2 (en) 1989-10-30 1989-10-30 Method for manufacturing semiconductor device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP5238039A Division JP2746075B2 (en) 1993-09-24 1993-09-24 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH03142952A true JPH03142952A (en) 1991-06-18
JPH0687480B2 JPH0687480B2 (en) 1994-11-02

Family

ID=17651864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1282396A Expired - Lifetime JPH0687480B2 (en) 1989-05-12 1989-10-30 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JPH0687480B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5298449A (en) * 1992-03-06 1994-03-29 Nec Corporation Semiconductor substrate having a silicon-on-insulator structure and method of fabricating the same
JPH06204331A (en) * 1993-09-24 1994-07-22 Nippon Soken Inc Semiconductor device
US5374582A (en) * 1994-04-28 1994-12-20 Nec Corporation Laminated substrate for semiconductor device and manufacturing method thereof
US5847438A (en) * 1995-03-31 1998-12-08 Nec Corporation Bonded IC substrate with a high breakdown voltage and large current capabilities
US5985681A (en) * 1995-10-13 1999-11-16 Nec Corporation Method of producing bonded substrate with silicon-on-insulator structure
US6930359B2 (en) 1999-11-18 2005-08-16 Kabushiki Kaisha Toshiba Semiconductor device and method of manufacturing the same
JP2006128230A (en) * 2004-10-27 2006-05-18 Fuji Electric Holdings Co Ltd Semiconductor device and manufacturing method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01251635A (en) * 1988-03-31 1989-10-06 Toshiba Corp Dielectric isolation type semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01251635A (en) * 1988-03-31 1989-10-06 Toshiba Corp Dielectric isolation type semiconductor device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5298449A (en) * 1992-03-06 1994-03-29 Nec Corporation Semiconductor substrate having a silicon-on-insulator structure and method of fabricating the same
JPH06204331A (en) * 1993-09-24 1994-07-22 Nippon Soken Inc Semiconductor device
US5374582A (en) * 1994-04-28 1994-12-20 Nec Corporation Laminated substrate for semiconductor device and manufacturing method thereof
US5847438A (en) * 1995-03-31 1998-12-08 Nec Corporation Bonded IC substrate with a high breakdown voltage and large current capabilities
US5985681A (en) * 1995-10-13 1999-11-16 Nec Corporation Method of producing bonded substrate with silicon-on-insulator structure
US6930359B2 (en) 1999-11-18 2005-08-16 Kabushiki Kaisha Toshiba Semiconductor device and method of manufacturing the same
US7588973B2 (en) 1999-11-18 2009-09-15 Kabushiki Kaisha Toshiba Semiconductor device and method of manufacturing the same
JP2006128230A (en) * 2004-10-27 2006-05-18 Fuji Electric Holdings Co Ltd Semiconductor device and manufacturing method thereof

Also Published As

Publication number Publication date
JPH0687480B2 (en) 1994-11-02

Similar Documents

Publication Publication Date Title
US5164218A (en) Semiconductor device and a method for producing the same
JP2788269B2 (en) Semiconductor device and manufacturing method thereof
US5442223A (en) Semiconductor device with stress relief
KR920006851B1 (en) Method of forming trench isolation in an intergrated circuit
US4593459A (en) Monolithic integrated circuit structure and method of fabrication
JPH1174514A (en) Manufacture of semiconductor device
JPS6276645A (en) Structure of composite semiconductor crystal
US4131909A (en) Semiconductor integrated circuit isolated through dielectric material and a method for manufacturing the same
JP3531291B2 (en) Method for manufacturing silicon carbide semiconductor device
JPS61292934A (en) Manufacture of semiconductor element
JPH03129765A (en) Semiconductor device and manufacture thereof
JP2685244B2 (en) Method for manufacturing semiconductor device
JPH03142952A (en) Semiconductor device and its manufacture
JPH02277253A (en) Manufacture of semiconductor device
JP2746075B2 (en) Method for manufacturing semiconductor device
US4633290A (en) Monolithic CMOS integrated circuit structure with isolation grooves
JP2010129820A (en) Semiconductor apparatus
JPH1074939A (en) Power mosfet
JP3921764B2 (en) Manufacturing method of semiconductor device
JP3226669B2 (en) Semiconductor device
JP2586422B2 (en) Method of manufacturing dielectric integrated composite integrated circuit device
KR100286775B1 (en) Method of manufacturing soi device
JPH1051010A (en) Manufacture of semiconductor device
JP3157595B2 (en) Dielectric separation substrate
JPS6249643A (en) Semiconductor device and its manufacture

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term