JPH03140752A - Waste heat recovery for cogeneration engine - Google Patents

Waste heat recovery for cogeneration engine

Info

Publication number
JPH03140752A
JPH03140752A JP1278557A JP27855789A JPH03140752A JP H03140752 A JPH03140752 A JP H03140752A JP 1278557 A JP1278557 A JP 1278557A JP 27855789 A JP27855789 A JP 27855789A JP H03140752 A JPH03140752 A JP H03140752A
Authority
JP
Japan
Prior art keywords
heat
temperature
exhaust gas
steam
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1278557A
Other languages
Japanese (ja)
Inventor
Takeshi Suzuki
剛 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP1278557A priority Critical patent/JPH03140752A/en
Publication of JPH03140752A publication Critical patent/JPH03140752A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

PURPOSE:To improve a thermal recovery efficiency and make a compact recovery device by a method wherein a waste heat of low temperature is guided to a vacuum steam generating device, steam got by the vacuum stem generating device is guided into a heat exchanger and then hot water is attained. CONSTITUTION:A discharged gas G' of a gas turbine 11 is guided into a discharged gas boiler 13. The discharged gas G' and fed water W are heat exchanged there and then the heat is recovered as a high pressure steam S. AS a result of thermal recovery at the discharged gas boiler 13, the discharging gas G'' of relatively low temperature is guided to a vacuum steam generating device 14, thereby the heat is recovered and then the gas is discharged into the surrounding air as the discharging gas Ge. Steam S' of low temperature and low pressure got by the vacuum steam generating device 14 is guided to the heat exchanger 15 by a line l3 heat exchanged with supplied water W supplied by a line l4 so as to get a hot water (h).

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はコージェネレーション機関の排熱回収方法、よ
り詳しくはコージェネレーション機関の比較的低温の排
熱を利用して温水を得るようにしたコージェネレーショ
ン機関の排ガスの熱を回収する方法に関するものである
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for recovering waste heat from a cogeneration engine, and more specifically to a method for recovering hot water from a cogeneration engine using relatively low-temperature waste heat. The present invention relates to a method for recovering heat from exhaust gas from a generation engine.

〔従来の技術〕[Conventional technology]

一般にコージェネレーション機関としてはガスタービン
、ガスエンジン、ディーゼルエンジン等が用いられるが
、これらの機関においては熱効率を向上させるために排
ガスの熱を回収する方法が採用されている。
Generally, gas turbines, gas engines, diesel engines, etc. are used as cogeneration engines, and in these engines, a method of recovering heat from exhaust gas is adopted in order to improve thermal efficiency.

ところで、かかる機関における排熱回収の比較的低温の
排熱を更に回収する手段としては、この排熱を熱交換器
に導き、温水として回収することが行なわれている。
By the way, as a means for further recovering comparatively low-temperature waste heat for waste heat recovery in such an engine, this waste heat is guided to a heat exchanger and recovered as hot water.

その−例をガスタービン機関とした場合について説明す
ると、第4図において、■はガスタービン、2は燃焼器
、3は排ガスライン!、に配置された排ガスボイラ、4
は熱交換器である。
An example of this is a gas turbine engine. In Fig. 4, ■ is a gas turbine, 2 is a combustor, and 3 is an exhaust gas line! , an exhaust gas boiler located in , 4
is a heat exchanger.

燃焼器2で発生された高温ガスGはライン12を経てガ
スタービン1へ導かれ、このガスタービン1を駆動し、
このガスタービン1により図示しない発電機を駆動して
発電する。一方、ガスタービン1からの排ガスG′は高
温・高圧であり、これが排ガスライン!、を経由して排
ガスボイラ3に導入されて、これによって高温高圧蒸気
Sが得られる。
The high temperature gas G generated in the combustor 2 is guided to the gas turbine 1 through the line 12, and drives the gas turbine 1.
This gas turbine 1 drives a generator (not shown) to generate electricity. On the other hand, the exhaust gas G' from the gas turbine 1 is high temperature and high pressure, and this is the exhaust gas line! , and is introduced into the exhaust gas boiler 3, thereby obtaining high-temperature and high-pressure steam S.

そして、比較的低温(150’C程度)となった排ガス
G“」よ熱交換器4に導入され、ここで温水(60〜8
0°C程度)を得る構造となっている。
Then, the exhaust gas G", which has become relatively low temperature (about 150'C), is introduced into the heat exchanger 4, where it is heated with hot water (60-8
0°C).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、前述したような従来のコージェネレーション
機関における排熱回収方法においては、徘ガスボイラ3
において熱回収が行なわれた比較的低温の排ガスG″よ
り熱交換器4において熱回収が行なわれるが、この場合
この熱交換器4は直接排ガスG″と水との間で熱交換す
ることとなる。
However, in the conventional exhaust heat recovery method for cogeneration engines as described above, the wandering gas boiler 3
Heat is recovered in the heat exchanger 4 from the comparatively low temperature exhaust gas G'' from which heat has been recovered in the heat exchanger 4, but in this case, the heat exchanger 4 does not directly exchange heat between the exhaust gas G'' and water. Become.

従って、管壁の両側に形成される流体の境膜が水側の大
きな熱抵抗になり、熱伝達の効率が悪(、熱交換器4を
含む設備が大型となり、その結果、据付面積が広くかつ
コストが高くなるという問題があった。
Therefore, the fluid film formed on both sides of the pipe wall becomes a large thermal resistance on the water side, resulting in poor heat transfer efficiency (the equipment including the heat exchanger 4 becomes large, and as a result, the installation area is large). In addition, there was a problem that the cost was high.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は前記したような従来の問題点を解決するために
なされたものであって、コージェネレーション機関の低
温排熱を真空蒸気発生装置に導き、この真空蒸気発生装
置により得られた蒸気を熱交換器に導入して、熱交換し
て温水を得るようにしたコージェネレーション機関の排
熱回収方法を提供せんとするものである。
The present invention has been made in order to solve the above-mentioned conventional problems, and the present invention is to guide the low-temperature waste heat of a cogeneration engine to a vacuum steam generator, and to convert the steam obtained by the vacuum steam generator into a heat generator. It is an object of the present invention to provide a method for recovering waste heat from a cogeneration engine by introducing the heat into an exchanger and exchanging heat to obtain hot water.

〔作 用〕[For production]

かかるコージェネレーション機関の排熱回収方法におい
ては、真空蒸気発生装置に導かれた低温の排ガスの有す
る熱は、ここで「蒸発伝熱作用」により低圧蒸気として
熱回収され、この低圧蒸気が熱交換器に導入されて、凝
縮伝熱作用により熱交換されて温水が得られることにな
る。即ち、排ガスからの熱を水への伝熱において、水側
の蒸発という形態で行う事により前記境膜に存在に伴う
熱抵抗は極めて小さくなる。
In such an exhaust heat recovery method for a cogeneration engine, the heat possessed by the low-temperature exhaust gas led to the vacuum steam generator is recovered as low-pressure steam by "evaporative heat transfer", and this low-pressure steam is used for heat exchange. The water is introduced into a vessel, where heat is exchanged by condensation heat transfer and hot water is obtained. That is, when heat is transferred from the exhaust gas to water, the heat resistance due to the presence of the boundary film becomes extremely small by performing evaporation on the water side.

従って、その伝熱効果を向上させることができ、その結
果、全体としての排熱回収設備をコンパクトにできる。
Therefore, the heat transfer effect can be improved, and as a result, the overall exhaust heat recovery equipment can be made more compact.

なお、当然のことであるが、本発明によれば温水が不要
で蒸気のままで使用したいケースにおいては、熱交換器
15が蒸気使用機器である。
As a matter of course, according to the present invention, in a case where hot water is not required and it is desired to use steam as it is, the heat exchanger 15 is a device that uses steam.

〔実 施 例〕〔Example〕

以下、第1図ないし第3図に基づき本発明によるコージ
ェネレーション機関の排熱回収方法の一実施例を説明す
る。
An embodiment of the method for recovering exhaust heat from a cogeneration engine according to the present invention will be described below with reference to FIGS. 1 to 3.

第1図において、11はガスタービン、12は燃焼器、
13は排ガスライン2Iに配置された排ガスボイラ、1
4は排ガスボイラ13の後流側に配置された真空蒸気発
注装置、15は熱交換器である。
In FIG. 1, 11 is a gas turbine, 12 is a combustor,
13 is an exhaust gas boiler arranged in the exhaust gas line 2I, 1
4 is a vacuum steam ordering device arranged downstream of the exhaust gas boiler 13, and 15 is a heat exchanger.

燃焼器12で発生された高温ガスGはライン2zを経て
ガスタービン11へ供給され、このガスタービン11を
駆動するとともにこのガスタービン11で図示しない発
電機を作動させて発電を行なう。
The high-temperature gas G generated in the combustor 12 is supplied to the gas turbine 11 through a line 2z, drives the gas turbine 11, and also operates a generator (not shown) with the gas turbine 11 to generate electricity.

ガスタービン11の排ガスG′ は排ガスライン!、を
経由して排ガスボイラ13に導入され、ここで排ガスG
′ と給水Wとは熱交換されて高圧蒸気Sとして熱回収
される。前記のようにしてこの排ガスボイラ13で熱回
収された結果、比較的低温となった排ガスG″は本発明
において特に採用した真空蒸気発生装置14に導かれ、
これによって熱回収されて排ガスG0として大気へ放出
される。
The exhaust gas G' of the gas turbine 11 is the exhaust gas line! , the exhaust gas G is introduced into the exhaust gas boiler 13 via
' and the feed water W undergo heat exchange and the heat is recovered as high pressure steam S. As a result of the heat recovery in the exhaust gas boiler 13 as described above, the exhaust gas G'', which has become relatively low temperature, is led to the vacuum steam generator 14, which is especially adopted in the present invention.
Thereby, heat is recovered and released into the atmosphere as exhaust gas G0.

真空蒸気発生装置14で得られた低温低圧蒸気S′はラ
イン!、で熱交換器15に導入され、ライン14で供給
される給水Wと熱交換され、温水りを得るようになって
いる。
The low-temperature, low-pressure steam S' obtained by the vacuum steam generator 14 is the line! , and is introduced into the heat exchanger 15, where it exchanges heat with the feed water W supplied through the line 14 to obtain hot water.

詳述すれば、第2図に示すように排ガスボイラ13r(
A)部Jには予熱部16、蒸発部17及び過熱部18よ
り構成され、この排ガスボイラ13に導入されるガスタ
ービン11より排出された高温の排ガスG′により高温
高圧の蒸気Sが発生するようになっている。
To be more specific, as shown in FIG. 2, the exhaust gas boiler 13r (
A) Section J is composed of a preheating section 16, an evaporation section 17, and a superheating section 18, and high-temperature and high-pressure steam S is generated by the high-temperature exhaust gas G' discharged from the gas turbine 11 introduced into the exhaust gas boiler 13. It looks like this.

この排ガスボイラ13の後流側に配置される真空蒸気発
生装置14r(B)部1は、加熱部19、気水分離ドラ
ム20、及びエジェクター21で構成され、このエジェ
クター21に前記(A)部を構成する蒸発部17で得ら
れた高温高圧の蒸気Sの一部をライン!、から導いて作
動させ、その減圧を気水分離ドラム20に作用させてそ
の内部を減圧することによって低温、好ましくは60〜
80°C程度で蒸気S′が得られるようにする。
The vacuum steam generator 14r (B) section 1 disposed on the downstream side of the exhaust gas boiler 13 is composed of a heating section 19, a steam/water separation drum 20, and an ejector 21. A part of the high-temperature, high-pressure steam S obtained in the evaporation section 17 that makes up the line! , and the reduced pressure is applied to the steam/water separation drum 20 to reduce the pressure inside the drum 20 at a low temperature, preferably 60 to 60 ℃.
Steam S' should be obtained at about 80°C.

そして、この真空蒸気発生装置14で得られた低温低圧
の蒸気S′はライン13を経て熱交換器15に導入され
、ライン14で供給される給水Wを加熱して温水h (
60〜80°C)を得るのである。なお、22は熱交換
器15と気水分離ドラム20との間を結ぶ循環ポンプで
ある。
The low-temperature, low-pressure steam S' obtained by the vacuum steam generator 14 is introduced into the heat exchanger 15 through the line 13, and heats the feed water W supplied through the line 14, thereby heating the hot water h (
60-80°C). Note that 22 is a circulation pump that connects the heat exchanger 15 and the steam/water separation drum 20.

第3図は熱流線図であって、Xは排ガス温度勾配であり
、Yは排ガスボイラ13での被加熱流体の温度勾配、Z
は真空蒸気発生装置14側の被加熱流体の温度線である
FIG. 3 is a heat flow diagram, where X is the exhaust gas temperature gradient, Y is the temperature gradient of the heated fluid in the exhaust gas boiler 13, and Z
is a temperature line of the fluid to be heated on the side of the vacuum steam generator 14.

ガスタービン11より排出された高温の排ガスG′ は
温度T、で排ガスボイラ13内に流入し、予熱部16、
蒸発部17及び過熱部18を経由して供給される温度t
lの給水Wより温度り、の高温高圧蒸気Sを発生させ、
排出温度T2で真空蒸気発生装置14へ流入する。そし
てこの真空蒸気発生装置14において加熱部19を加熱
して低温低圧蒸気S“を発生させ、温度T、の低温排ガ
スG、とじて大気へ放出される。
The high-temperature exhaust gas G' discharged from the gas turbine 11 flows into the exhaust gas boiler 13 at a temperature T, and is heated in the preheating section 16,
Temperature t supplied via evaporation section 17 and superheating section 18
Generate high-temperature, high-pressure steam S at a temperature lower than 100 liters of water supply W,
It flows into the vacuum steam generator 14 at the discharge temperature T2. In the vacuum steam generator 14, the heating section 19 is heated to generate low-temperature, low-pressure steam S'', which is discharged into the atmosphere as a low-temperature exhaust gas G at a temperature T.

一方、排ガスボイラ13への温度り、の給水Wは予熱部
16を経由して給水され、蒸発部17において加熱され
温度L2まで上昇し、更に過熱部18で過熱されて温度
り、の高温高圧蒸気Sとして回収される。更に真空蒸気
発生装置14ではエジェクター21で減圧されて温度t
4の低温低圧蒸気S″が得られる。
On the other hand, the water W supplied to the exhaust gas boiler 13 is supplied via the preheating section 16, heated in the evaporation section 17 and raised to a temperature L2, and further heated in the superheating section 18 to reach a high temperature and high pressure. It is recovered as steam S. Further, in the vacuum steam generator 14, the pressure is reduced by the ejector 21, and the temperature is reduced to t.
4 low-temperature, low-pressure steam S'' is obtained.

そのため、かかる真空蒸気発生装置14を設けない場合
の排熱回収(温度:T:1−Tzの間の排熱回収)に比
較して排ガス温度勾配Xにおいて、Hなる範囲の排熱回
収(温度:TZ−T、)が更に付加されることになる。
Therefore, compared to exhaust heat recovery in the case where such a vacuum steam generator 14 is not installed (temperature: T: exhaust heat recovery between 1-Tz), in the exhaust gas temperature gradient X, exhaust heat recovery in the range H (temperature: :TZ-T, ) will be further added.

前記実施例においては、コージェネレーション機関にガ
スタービンを用いた場合について説明したが、第1図に
示す(A)部を高温回収部、(B)部を低温回収部とす
ることができるため、例えばガスエンジンやディーゼル
エンジンの場合においては、高温回収部を排ガスとし、
低温回収部をシリンダジャケット冷却排水やインターク
ーラー等とみなすことができ、本発明による思想がこれ
ら他の機関に適用できることは明らかである。
In the above embodiment, a case was explained in which a gas turbine was used as a cogeneration engine, but since the section (A) shown in FIG. 1 can be used as a high temperature recovery section and the section (B) as a low temperature recovery section, For example, in the case of a gas engine or diesel engine, the high temperature recovery section is used as exhaust gas,
It is clear that the low temperature recovery section can be considered as a cylinder jacket cooling wastewater, an intercooler, etc., and the idea according to the present invention can be applied to these other engines.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明によるコージェ
ネレーション機関の排熱回収方法おいては、「蒸発伝熱
部」を併設したため、比較的低温の排熱をも容易に回収
可能であるため熱回収効率を向上させることがでる。
As is clear from the above explanation, in the waste heat recovery method for a cogeneration engine according to the present invention, since the "evaporative heat transfer section" is also provided, even comparatively low-temperature waste heat can be easily recovered. Collection efficiency can be improved.

しかも本発明によれば、低温における熱伝導効率が良い
ので、回収装置をコンパクトに構成することができるた
め据付場所を狭くすることができるばかりでなく、装置
コストを低減させることができる等の効果がある。
Moreover, according to the present invention, since the heat conduction efficiency at low temperatures is good, the collection device can be configured compactly, which not only makes it possible to reduce the installation space, but also reduces the cost of the device. There is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第3図は本発明によるコージェネレーション
機関の排熱回収方法の一実施例を説明するもので、第1
図は排熱回収装置の系統図、第2図は第1図の要部拡大
図、第3図は熱流線図である。そして第4図は従来の排
熱回収装置の系統図である。 3.13・・・排ガスボイラ 14・・・真空蒸気発生装置 17・・・蒸発部 19・・・加熱部 21・・・エジェクター 4.15・・・熱交換器 16・・・予熱部 1日・・・過熱部 20・・・気水分離ドラム 22・・・循環ポンプ
FIGS. 1 to 3 illustrate one embodiment of the method for recovering exhaust heat from a cogeneration engine according to the present invention.
The figure is a system diagram of the exhaust heat recovery device, Figure 2 is an enlarged view of the main part of Figure 1, and Figure 3 is a heat flow diagram. FIG. 4 is a system diagram of a conventional exhaust heat recovery device. 3.13...Exhaust gas boiler 14...Vacuum steam generator 17...Evaporation section 19...Heating section 21...Ejector 4.15...Heat exchanger 16...Preheating section 1 day ... Superheating section 20 ... Steam-water separation drum 22 ... Circulation pump

Claims (1)

【特許請求の範囲】[Claims] コージェネレーション機関の低温排熱を真空発生装置に
導き、該真空蒸気発生装置により得られた蒸気を熱交換
器に導入して熱交換させ温水を得るようにしたことを特
徴とするコージェネレーション機関の排熱回収方法。
A cogeneration engine characterized in that low-temperature waste heat of the cogeneration engine is guided to a vacuum generator, and steam obtained by the vacuum steam generator is introduced into a heat exchanger to exchange heat and obtain hot water. Exhaust heat recovery method.
JP1278557A 1989-10-27 1989-10-27 Waste heat recovery for cogeneration engine Pending JPH03140752A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1278557A JPH03140752A (en) 1989-10-27 1989-10-27 Waste heat recovery for cogeneration engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1278557A JPH03140752A (en) 1989-10-27 1989-10-27 Waste heat recovery for cogeneration engine

Publications (1)

Publication Number Publication Date
JPH03140752A true JPH03140752A (en) 1991-06-14

Family

ID=17598924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1278557A Pending JPH03140752A (en) 1989-10-27 1989-10-27 Waste heat recovery for cogeneration engine

Country Status (1)

Country Link
JP (1) JPH03140752A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010266074A (en) * 2009-05-12 2010-11-25 Miura Co Ltd Steam system
CN103185331A (en) * 2012-08-06 2013-07-03 哈尔滨工大金涛科技股份有限公司 Medium-high temperature waste water heat energy recovery method and device
JP2013228188A (en) * 2012-03-29 2013-11-07 Mitsui Eng & Shipbuild Co Ltd Superheated steam generator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010266074A (en) * 2009-05-12 2010-11-25 Miura Co Ltd Steam system
JP2013228188A (en) * 2012-03-29 2013-11-07 Mitsui Eng & Shipbuild Co Ltd Superheated steam generator
CN103185331A (en) * 2012-08-06 2013-07-03 哈尔滨工大金涛科技股份有限公司 Medium-high temperature waste water heat energy recovery method and device

Similar Documents

Publication Publication Date Title
KR950019139A (en) Waste heat recovery system
US20070017207A1 (en) Combined Cycle Power Plant
IL132813A (en) Combined cycle power plant
JPH03124902A (en) Combined cycle power plant and operating method therefor
JPS582301U (en) A device that converts low-grade thermal energy into mechanical energy
JP2757290B2 (en) Gas / steam turbine combined facility with coal gasification facility
JPH094510A (en) Combustion engine plant, supercharging combustion engine device for combustion engine plant and improving method of efficiency of combustion engine plant
US20100095648A1 (en) Combined Cycle Power Plant
JP3905967B2 (en) Power generation / hot water system
EP2601394B1 (en) Gas turbine apparatus with improved exergy recovery
WO2023193477A1 (en) Thermoelectric decoupling system used for heat supply unit, and method
JPH03140752A (en) Waste heat recovery for cogeneration engine
JPH08501381A (en) Methods and equipment for producing high steam temperatures when burning problematic fuels
JPH06212909A (en) Compound electric power plant
JPS5744712A (en) Waste-heat recovering system for heat engine
JP3784616B2 (en) Thermoelectric ratio control method for small capacity gas turbine cogeneration system
JPS63235650A (en) Thermoelectric combination feed system
JP2987127B2 (en) Combined power generation system using waste as fuel
JPS627905A (en) Internal-combustion engine with steam turbine
JPH0318656A (en) Co-generation system
CN213711133U (en) Back pressure type ORC combined heat and power generation system
JP2001214758A (en) Gas turbine combined power generation plant facility
JP3778690B2 (en) Power generator
CN109282274B (en) A kind of liquid metal heat-transfer Turbo-generator Set and its working method
JPH0821207A (en) Steam producing system by waste heat of steam, gas turbine composite plant