JPH03140436A - Manufacture of soft magnetic sintered alloy - Google Patents

Manufacture of soft magnetic sintered alloy

Info

Publication number
JPH03140436A
JPH03140436A JP27704289A JP27704289A JPH03140436A JP H03140436 A JPH03140436 A JP H03140436A JP 27704289 A JP27704289 A JP 27704289A JP 27704289 A JP27704289 A JP 27704289A JP H03140436 A JPH03140436 A JP H03140436A
Authority
JP
Japan
Prior art keywords
powder
alloy
particle size
iron
vanadium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27704289A
Other languages
Japanese (ja)
Other versions
JPH0440420B2 (en
Inventor
Morikazu Yamada
盛一 山田
Akira Matsumoto
彰 松本
Toshihiko Yokoyama
横山 俊彦
Kensuke Hidaka
日高 謙介
Katsu Okumura
奥村 濶
Ki Hara
原 機
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuda Metal Foil and Powder Co Ltd
Tokin Corp
Original Assignee
Fukuda Metal Foil and Powder Co Ltd
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuda Metal Foil and Powder Co Ltd, Tokin Corp filed Critical Fukuda Metal Foil and Powder Co Ltd
Priority to JP27704289A priority Critical patent/JPH03140436A/en
Publication of JPH03140436A publication Critical patent/JPH03140436A/en
Publication of JPH0440420B2 publication Critical patent/JPH0440420B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the soft magnetic sintered alloy having good precision and good magnetic characteristics by mixing Fe-Co-V series material powder contg. the mixed powder of Fe-Co alloy powder and Fe-V alloy powder in which the content of V is prescribed with thermoplastic resins, kneading the mixture, subjecting it to compacting and thereafter executing degreasing and sintering. CONSTITUTION:Fe-Co-V series material powder contg. the mixed powder of Fe-Co water atomizing powder or gas atomizing powder including 0.5 to 15% V with Fe-V alloy powder obtd. by mechanical grinding or the like is prepd. In the material powder, 0.5 to 15% V shall be incorporated. Furthermore, the average grain size of the material powder shall be regulated to 5 to 15mum and the maximum grain size to <=44mum. Then, a green compact obtd. by mixing the material powder with thermoplastic resins, kneading the mixture and executing injection molding or extruding is subjected to degreasing and sintering, by which the objective soft magnetic sintered alloy can stably be obtd.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はFe−Co−V系焼結合金を製造する軟磁性焼
結合金の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing a soft magnetic sintered alloy for producing a Fe-Co-V based sintered alloy.

[従来の技術] Fe−Co−V系合金において1重量%で49Fe−4
9Co−2V合金は、軟磁性合金のなかで最も高い磁束
密度と、高い電気抵抗を有しているため、ヨーファーマ
チ十等の磁気回路部品として重要な役割を果している。
[Prior art] 49Fe-4 at 1% by weight in Fe-Co-V alloy
Since the 9Co-2V alloy has the highest magnetic flux density and high electrical resistance among soft magnetic alloys, it plays an important role as a magnetic circuit component such as a magnetic circuit.

また、Fe−Co−10V合金は、半硬質材として磁気
回路用部品に使用されている。
Further, Fe-Co-10V alloy is used as a semi-hard material in magnetic circuit parts.

ところが、この49F e−49Co−2V合金は、加
工性に乏しく、冷間圧延及び打抜き加工は可能であるが
絞り加工等の曲げ加工を施すことができない。
However, this 49F e-49Co-2V alloy has poor workability, and although cold rolling and punching are possible, bending such as drawing cannot be performed.

よって工業的には、比較的単純な形状の部品しか生産す
ることができない。ごく一部には切削により複雑形状の
部品を製造することもあるが1部品重量の割に加工費が
高くなり工業的に生産することは困難である。
Therefore, industrially, only parts with relatively simple shapes can be produced. In some cases, parts with complex shapes can be manufactured by cutting, but the processing costs are high relative to the weight of each part, making it difficult to produce them industrially.

一方、複雑形状の金属部品を工業的に生産する方法とし
て粉末冶金技術がある。しかし、従来の粉末冶金技術で
は上下のパンチで圧縮成形することにより、成形体を作
るため製造可能な製品形状には、複雑さの点で限界があ
る。
On the other hand, powder metallurgy is a method for industrially producing metal parts with complex shapes. However, with conventional powder metallurgy techniques, compacts are created by compression molding using upper and lower punches, so there is a limit to the product shape that can be manufactured in terms of complexity.

この欠点を解決する方法として、プラスチックの成形技
術と粉末冶金の技術を総合した金属粉末の射出成形法が
近年注目を集めている。この射出成形法を用いて焼結合
金を作製する場合1重要となる技術が、金属粉末の粒子
形状2粒径分布及びバインダーの選択である。金属粉末
は成形に必要な流動性を得るために比表面積が小さいこ
と、つまりは、なめらかな表面形状を有していることが
要求される。かつ、従来の粉末冶金技術で作られる成形
体に比ベバインダーの含有量が重量%で約10%も多(
含まれているため、高い焼結密度を得るには平均粒径で
約10μm程度の微細粉末が必要となる。これらの射出
成形に適する金属粉末の粒子形状及び粒径分布を有する
粉末は工業的には水アトマイズ法又はガスアトマイズ法
によって製造される。
As a method to solve this drawback, a metal powder injection molding method that combines plastic molding technology and powder metallurgy technology has been attracting attention in recent years. When producing a sintered alloy using this injection molding method, one important technique is the particle shape and particle size distribution of the metal powder and the selection of the binder. In order to obtain the fluidity necessary for molding, metal powder is required to have a small specific surface area, that is, to have a smooth surface shape. Moreover, the content of binder is approximately 10% higher (by weight) compared to compacts made using conventional powder metallurgy technology.
Therefore, in order to obtain a high sintered density, a fine powder with an average particle size of about 10 μm is required. These metal powders having particle shapes and particle size distributions suitable for injection molding are industrially produced by water atomization or gas atomization.

[発明が解決しようとする課題] しかし、Fe−Co−V系合金粉末を、従来の水アトマ
イズ法又はガスアトマイズ法により製造する場合Vの含
有によって溶湯の粘性が増大し又Vは酸化性が強い性質
を有すること等が相よって溶湯噴射が安定せず、そのた
め平均粒径1oμm程度の微粉末の回収率が悪くかつ安
定しないと言う困難がある。
[Problems to be solved by the invention] However, when Fe-Co-V alloy powder is manufactured by the conventional water atomization method or gas atomization method, the viscosity of the molten metal increases due to the inclusion of V, and V has strong oxidizing properties. Due to these characteristics, the injection of molten metal is not stable, and as a result, the recovery rate of fine powder with an average particle size of about 1 μm is poor and unstable.

また、溶湯噴射の不安定性のため、得られた微粉末中の
V含有量が一定しないと言う問題がある。
Furthermore, due to the instability of molten metal injection, there is a problem that the V content in the obtained fine powder is not constant.

そこで1本発明の技術的課題は、上記欠点に鑑み、Fe
−Co−V系焼結合金を安定した成形性と安定した組成
の焼結合金として、射出成形又は押出し成形する製造方
法を提供することである。
In view of the above drawbacks, one technical problem of the present invention is to
It is an object of the present invention to provide a manufacturing method for injection molding or extrusion molding a -Co-V based sintered alloy as a sintered alloy having stable formability and a stable composition.

[課題を解決するための手段] 重量%で、0,5%以上かつ15%以下のバナジウムV
を含むFe−Co−V茶原料粉末と、熱可塑性樹脂とを
混合・混練し、射出成形又は押出し成形し、得られた成
形体を、脱脂・焼結して焼結体を製造する軟磁性焼結合
金の製造方法において。
[Means for solving the problem] Vanadium V of 0.5% or more and 15% or less in weight%
Fe-Co-V tea raw material powder containing Fe-Co-V and a thermoplastic resin are mixed and kneaded, injection molded or extrusion molded, and the obtained molded product is degreased and sintered to produce a sintered body. In a method for producing a sintered alloy.

前記Fe−Co−V茶原料粉末は、鉄−コノにルト合金
粉末と鉄−バナジウム合金粉末との混合粉末を含むこと
を特徴とする軟磁性焼結合金の製造方法が得られる。
A method for producing a soft magnetic sintered alloy is obtained, characterized in that the Fe-Co-V tea raw material powder contains a mixed powder of iron-containing ruto alloy powder and iron-vanadium alloy powder.

即ち1本発明は1重量%で0.5%以上かつ15%以下
のVを含む鉄−コバルト−バナジウム系焼結合金の製造
方法において、金属粉末と熱可塑性樹脂を混合・混練し
射出成形又は押出し成形することで成形体を作製し1次
いでこの成形体を脱脂。
That is, 1. The present invention is a method for producing an iron-cobalt-vanadium sintered alloy containing 1% by weight of 0.5% or more and 15% or less of V, in which a metal powder and a thermoplastic resin are mixed and kneaded, and injection molding or A molded body is produced by extrusion molding, and then this molded body is degreased.

焼結することにより鉄−コバルト−バナジウム系焼結合
金を製造する方法において金属粉末として。
As a metal powder in a method for producing an iron-cobalt-vanadium based sintered alloy by sintering.

最大粒径で44μm(325メツシユ)、平均粒径で5
〜15μmの粒径分布を有するFe−Co系粉末とFe
−V系粉末を混合した混合粉末を用いることを特徴とす
る鉄−コバルト−バナジウム系焼結合金の製造方法であ
る。
The maximum particle size is 44 μm (325 mesh), the average particle size is 5
Fe-Co powder with a particle size distribution of ~15 μm and Fe
This is a method for producing an iron-cobalt-vanadium-based sintered alloy, characterized by using a mixed powder containing -V-based powder.

本発明者らは、後加工なしに寸法精度の良い焼結部品を
製造することのできる射出成形又は押出し成形を用いて
、鉄−コバルト−バナジウム系焼結部品を得る方法につ
いて鋭意検討を重ねた結果、金属粉末として、鉄−コバ
ルト合金粉末と鉄−バナジウム合金粉末とを混合した粉
末を用いることにより安定して成形性が可能であり、か
つ、それから得られる焼結体の組成及び特性が安定する
ことを見い出した。以下に、特許請求の範囲の限定理由
を述べる。
The present inventors have conducted intensive studies on a method for obtaining iron-cobalt-vanadium-based sintered parts using injection molding or extrusion molding, which can produce sintered parts with good dimensional accuracy without post-processing. As a result, by using a powder that is a mixture of iron-cobalt alloy powder and iron-vanadium alloy powder as the metal powder, stable moldability is possible, and the composition and properties of the sintered body obtained from it are stable. I found something to do. Below, the reasons for limiting the scope of the claims will be described.

先ず、粉末冶金法により鉄−コバルト−バナジウム系焼
結合金を得るには、原料粉末として所望の組成に調整さ
れた合金粉末を用いることが最も好ましい。
First, in order to obtain an iron-cobalt-vanadium-based sintered alloy by a powder metallurgy method, it is most preferable to use an alloy powder adjusted to a desired composition as a raw material powder.

しかしながら1本発明の目的とする射出成形又は押出し
成形プロセスを経て成形体を作製する場合1合金粉末と
熱可塑性樹脂の混練物が充分な流動性を持たなくてはな
らずこの目的のためには。
However, when producing a molded body through injection molding or extrusion molding process, which is the object of the present invention, the kneaded mixture of alloy powder and thermoplastic resin must have sufficient fluidity. .

鉄−コバルト−バナジウム合金の塊を機械粉砕して得ら
れる粉末を用いることは困難である。つまり、原料粉末
としては水アトマイズ法又はガスアトマイズ法によって
作られたなめらかな表面形状を有する粉末が最も好まし
い。水アトマイズ法又はガスアトマイズ法により鉄−コ
バルト−バナジウム合金粉末を作製した場合、バナジウ
ムの含有により溶噴の流動性が顕著に低下し、所望の粒
径の粉末の歩留が低下し、また、バナジウムの含有量も
安定しないため、水アトマイズ法又はガスアトマイズ法
により鉄−コバルト−バナジウム合金粉末を工業的に安
定して得ることは実質的に不可能である。
It is difficult to use a powder obtained by mechanically crushing a lump of iron-cobalt-vanadium alloy. In other words, the most preferable raw material powder is a powder with a smooth surface made by water atomization or gas atomization. When iron-cobalt-vanadium alloy powder is produced by water atomization method or gas atomization method, the fluidity of melt spraying is significantly reduced due to the presence of vanadium, and the yield of powder with the desired particle size is reduced. Since the content of iron is also unstable, it is virtually impossible to stably obtain iron-cobalt-vanadium alloy powder industrially by water atomization or gas atomization.

一方、鉄−コバルト合金粉末は容易に水アトマイズ法又
はガスアトマイズ法による微粉化が可能であるため、原
料粉末として工業的に使用することが可能である。つま
り、水アトマイズ法又はガスアトマイズ法によって作ら
れた鉄−コバルト粉末に所望のバナジウムを含有させる
ため機械粉砕等によって作られる鉄−バナジウム合金粉
末を混合することにより、安価でかつ成形可能な原料粉
末を得ることができる。
On the other hand, since iron-cobalt alloy powder can be easily pulverized by water atomization or gas atomization, it can be used industrially as a raw material powder. In other words, by mixing iron-cobalt powder made by water atomization or gas atomization with iron-vanadium alloy powder made by mechanical pulverization to contain the desired vanadium, an inexpensive and moldable raw material powder is produced. Obtainable.

又、原料粉末として、鉄粉、コバルト粉、鉄−バナジウ
ム粉末の混合粉末も考えられるが鉄とコバルトはその原
子拡散係数の違いから工業的に使用可能な粒度の粉末を
用いて焼結による均−同容体を得ることが出来ないため
、実質的に使用不可能である。しかしバナジウムはコバ
ルトと同等の原子拡散係数をもつため、鉄−バナジウム
合金粉末の形で混合しても均−同容対とすることができ
るため1本発明を成すに至った。
In addition, mixed powders of iron powder, cobalt powder, and iron-vanadium powder are also considered as raw material powders, but due to the difference in atomic diffusion coefficients of iron and cobalt, it is possible to use powders with industrially usable particle sizes and homogenize them by sintering. -It is practically unusable because it is not possible to obtain the same dosage form. However, since vanadium has an atomic diffusion coefficient equivalent to that of cobalt, even when mixed in the form of an iron-vanadium alloy powder, it can be made into a homogeneous pair, which led to the completion of the present invention.

次に、粉末の粒径について射出成形又は押出し成形にお
いて成形の原料は金属粉末に熱可塑性樹脂を混合した混
線物である。この混練物の可塑化状態での流動性が成形
性を決定する。混練物の流動性を決める要因は金属粉末
の形状2粒径1粒径分布及び樹脂の成分である。
Next, regarding the particle size of the powder, in injection molding or extrusion molding, the raw material for molding is a mixture of metal powder and thermoplastic resin. The fluidity of this kneaded material in a plasticized state determines its moldability. The factors that determine the fluidity of the kneaded product are the shape, particle size, and particle size distribution of the metal powder and the components of the resin.

熱可塑性樹脂の成分によって混線物の流動性が決定され
ると言って良いが、成形時の熱的安定性。
It can be said that the fluidity of the mixed material is determined by the components of the thermoplastic resin, and the thermal stability during molding.

脱脂時の分解揮散性及びリサイクル可能であること等の
諸要求が満たされなければならず、実質的な成分は極め
て限られた範囲の成分となっている。
Various requirements such as decomposition and volatilization during degreasing and recyclability must be met, and the actual components are within an extremely limited range.

よってどのような性状の金属粉末をもって来ても焼結体
が製造できるとは限らず最終的には金属粉末の性状を限
定しなくてはならない。以下の限定理由はその様な状況
で要求されるものである。
Therefore, it is not always possible to produce a sintered body no matter what kind of metal powder is used, and ultimately the properties of the metal powder must be limited. The following limitations are required in such circumstances.

粉末性状のなかで混線物の流動性及び焼結性に影響を与
える要因は粒子の形状、平均粒径1粒径分布、比表面積
等があげられる。ここで粒子の形状は比表面積をもって
代表させることが可能である。一般に熱可塑性樹脂の配
合量は1体積百分率で40〜50%である。よって1通
常のプレス成形で作製される成形体に比べ金属粉末の充
てん率は10%以上低くなっている。よって、焼結密度
を充分高くするには1通常粉末冶金で用いられる粉末よ
り粒径を小さくする必要がある。
Among the powder properties, factors that influence the fluidity and sinterability of the mixed material include particle shape, average particle size distribution, specific surface area, etc. Here, the shape of the particles can be represented by the specific surface area. Generally, the amount of thermoplastic resin blended is 40 to 50% in terms of 1 volume percentage. Therefore, the metal powder filling rate is 10% or more lower than that of a molded body produced by normal press molding. Therefore, in order to achieve a sufficiently high sintered density, it is necessary to make the particle size smaller than that of the powder normally used in powder metallurgy.

しかし1粒径が小さくなるに従い、混線物の流動性は低
下する。よって充分な焼結性と、混線性を兼ねそなえた
粉末の性状が平均粒径で5〜15μm最大粒径が44μ
m以下の範囲内になくてはならない。平均粒径が5μm
以下の場合、焼結密度は向上するが、混練物が充分な流
動性を示さず精度の良い成形体が得られない。又、平均
粒径が15μ■を超えると混線物は充分な流動性を示す
が、焼結体の焼結密度が85%以下となり良好な特性が
得られなくなるので平均粒径は15μm以下としなけれ
ばならない。又、最大粒径が44μmを超えると未焼結
粒子として残存し、均一な焼結体組織が得られないので
、最大粒径は44μm以下としなければならない。
However, as the particle size becomes smaller, the fluidity of the mixed material decreases. Therefore, the properties of the powder that have sufficient sintering properties and crosstalk properties are 5 to 15 μm in average particle size and 44 μm in maximum particle size.
It must be within the range of m or less. Average particle size is 5μm
In the following cases, although the sintered density is improved, the kneaded material does not exhibit sufficient fluidity and a molded body with high precision cannot be obtained. Furthermore, if the average particle size exceeds 15 μm, the mixed material will exhibit sufficient fluidity, but the sintered density of the sintered body will be less than 85%, making it impossible to obtain good properties, so the average particle size must be 15 μm or less. Must be. Furthermore, if the maximum particle size exceeds 44 μm, the particles remain as unsintered particles and a uniform sintered body structure cannot be obtained, so the maximum particle size must be 44 μm or less.

[実゛施例] 次に1本発明に係る実施例を説明する。[Example] Next, an embodiment according to the present invention will be described.

−第1実施例− 最大粒径31μmの重量%で5o%Fe−50%Coの
水アトマイズ粉末と機械粉砕によって作られた17.3
%F e −82,7%Vと49%Fe−51%Vの合
金粉末とを第1表に示す粒径の粉末同士を混合して原料
粉末として、第2表に示すバインダーを9wt%配合し
混合混練し射出成形により内径φ20mm、外径φ30
mm厚み5 mmのリング状の試料を作製した。
-First Example- 17.3 made by mechanical grinding with water atomized powder of 5o% Fe-50% Co in wt% with a maximum particle size of 31 μm.
%Fe-82.7%V and 49%Fe-51%V alloy powders with particle sizes shown in Table 1 were mixed to form a raw material powder, and 9wt% of the binder shown in Table 2 was blended. By mixing, kneading and injection molding, the inner diameter is φ20mm and the outer diameter is φ30.
A ring-shaped sample with a thickness of 5 mm was prepared.

刀 2 表 61練は130℃で20分間、加圧ニーダ−を用いた。sword 2 table Kneading No. 61 was carried out at 130° C. for 20 minutes using a pressure kneader.

射出成形は、温度190°C,ゲージ圧力100kg/
cjの条件で行なった。この成形体をアルミナセッター
上に置き内容積216gの脱脂炉に入れArガス5fI
/minを流した状態で、室温から毎時10℃の昇温速
度で600℃まで昇温加熱し、2時間保持した後、室温
まで冷却して脱脂体を得た。
Injection molding is performed at a temperature of 190°C and a gauge pressure of 100kg/
The test was conducted under the conditions of cj. This molded body was placed on an alumina setter and placed in a degreasing furnace with an internal volume of 216 g, and Ar gas was 5 fI.
/min, the temperature was raised from room temperature to 600°C at a rate of 10°C per hour, held for 2 hours, and then cooled to room temperature to obtain a defatted body.

次に、この脱脂体を水素炉中に投入し、室温から毎時2
00℃の昇温速度で1200℃まで昇温し5時間保持し
た後、室温まで炉冷し焼結体を得た。
Next, this degreased body was put into a hydrogen furnace, and the temperature was increased from room temperature to 2 hours per hour.
The temperature was raised to 1200°C at a temperature increase rate of 00°C, held for 5 hours, and then cooled in the furnace to room temperature to obtain a sintered body.

第3表に得られた焼結体の焼結密度、残存Fe−■粒子
の有無結晶粒内及び残存粒子内のX線マイクロアナライ
ザーによる成分分析の結果を示す。
Table 3 shows the sintered density of the obtained sintered body, the presence or absence of residual Fe-■ particles, and the results of component analysis using an X-ray microanalyzer in the crystal grains and in the remaining particles.

以下余白 表から最大粒径で44μD以下平均粒径で5〜15μm
の原料粉末を用いることによって焼結密度が相対比で9
0%以上で、残存粒子がなく、結晶粒内にバナジウムが
重量%で1,7〜2.0%拡散した49Fe−49Co
−2V (通称パーメンジューム)焼結体が得られたこ
とが分かる。残存粒子のなかった試料について、その磁
気特性を評価したところ第4表に示す特性を得た。特に
、バナジウムが結晶粒内に固溶した結果として電気抵抗
率が48〜50μΩ印を示し、鉄−コバルト合金の約1
0倍の高電気抵抗を示している。
From the margin table below, the maximum particle size is 44 μD or less, and the average particle size is 5 to 15 μD.
By using raw material powder, the sintered density is 9 in relative ratio
49Fe-49Co with 0% or more, no residual particles, and 1.7 to 2.0% vanadium diffused in the crystal grains by weight.
It can be seen that a -2V (commonly known as permendium) sintered body was obtained. When the magnetic properties of the samples with no residual particles were evaluated, the properties shown in Table 4 were obtained. In particular, as a result of vanadium being dissolved in crystal grains, the electrical resistivity shows a mark of 48 to 50 μΩ, which is about 1
It shows 0 times higher electrical resistance.

第  4  表 以上の結果から射出成形プロセスを用いて安定した特性
2組成の鉄−コバルト−バナジウム焼結合金の製造が所
要の粉末性状を有する鉄−コバルト粉末と鉄−バナジウ
ム粉末の混合粉末を用いて可能であることが示された。
From the results shown in Table 4, it is possible to produce an iron-cobalt-vanadium sintered alloy with stable properties 2 composition using an injection molding process using a mixed powder of iron-cobalt powder and iron-vanadium powder having the required powder properties. It was shown that it is possible.

一第2実施例− 平均粒径10.8μm8最大粒径31μm1重量%で5
0%Co−50%Feの水アトマイズ粉末に平均粒径9
,7μm、最大粒径37μmの機械粉砕された49Fe
−51V粉末を3.9%混合し原料粉末とした。この原
料粉末100重量部にエチレン酢酸ビニル共重合体5.
5重量部、高密度ポリエチレン2.7重量部、ジオクチ
ルフタレート1.6重量部を混合、混練し押出し成形用
原料とした。
1 Second Example - Average particle size 10.8 μm 8 Maximum particle size 31 μm 1% by weight 5
0% Co-50% Fe water atomized powder with an average particle size of 9
, 7 μm, mechanically crushed 49Fe with maximum particle size of 37 μm
A raw material powder was prepared by mixing 3.9% of -51V powder. Add 5 parts of ethylene vinyl acetate copolymer to 100 parts by weight of this raw material powder.
5 parts by weight, 2.7 parts by weight of high-density polyethylene, and 1.6 parts by weight of dioctyl phthalate were mixed and kneaded to obtain a raw material for extrusion molding.

ついで、130℃に加熱したシリンダー内に原料を投入
し押出し速さ1m/minの一定速度で厚み2報1幅5
0 mmの板状成形体を押出し成形した。
Next, the raw materials were put into a cylinder heated to 130°C and extruded at a constant speed of 1 m/min to a thickness of 2, 1 and a width of 5.
A 0 mm plate-shaped molded body was extruded.

この成形体を実施例1で用いた脱脂炉に投入し。This molded body was placed in the degreasing furnace used in Example 1.

Arガス541)/minを流した状態で室温から毎時
10℃の昇温速度で600℃まで加熱昇温しその後室温
まで冷却し、脱脂体を得た。
The temperature was raised from room temperature to 600° C. at a heating rate of 10° C./hour while flowing Ar gas at a rate of 541)/min, and then cooled to room temperature to obtain a degreased body.

次に、この脱脂体を水素炉中に投入し、室温から毎時2
00℃の昇温速度で1200℃まで昇温し5時間保持し
た後室温まで炉冷し、焼結体を得た。
Next, this degreased body was put into a hydrogen furnace, and the temperature was increased from room temperature to 2 hours per hour.
The temperature was raised to 1200°C at a temperature increase rate of 00°C, held for 5 hours, and then cooled in the furnace to room temperature to obtain a sintered body.

焼結体中には1未焼結の鉄−バナジウム粒子は見られな
かった。焼結密度7.70g/cc、結晶粒内のバナジ
ウム量は1.82重量%であった。板状焼結体から、レ
ーザー加工でφ20×φ30 X t L、Sのリング
を切り出し、830℃で2時間、水素焼鈍した。これの
磁気特性はB、。。−21,0KG、 HO2)−1,
6508であった。
No unsintered iron-vanadium particles were found in the sintered body. The sintered density was 7.70 g/cc, and the amount of vanadium in the crystal grains was 1.82% by weight. A ring of φ20×φ30 X t L, S was cut out from the plate-shaped sintered body by laser processing, and hydrogen annealed at 830° C. for 2 hours. The magnetic properties of this are B. . -21,0KG, HO2)-1,
It was 6508.

一第3実施例 重量%で50%Fe−50%Coの最大粒径37μm、
平均粒径12.1μmのガスアトマイズ法で作られた合
金粉末に1機械粉砕された最大粒径37μm、平均粒径
9.7μmの49%Fe−51%V合金粉末を重量%で
3.9%混合した粉末と、上記Fe−Co粉末に平均粒
径10.1μm、最大粒径37μmのV粉末2%を混合
した2種の混合粉を作った。これらを原料として第2表
に示す成分のバインダーを重量%で9%配合し、混合混
練し。
1. Third Example Maximum particle size of 50% Fe-50% Co by weight %: 37 μm;
49% Fe-51% V alloy powder with a maximum particle size of 37 μm and an average particle size of 9.7 μm, which was mechanically crushed into an alloy powder made by gas atomization with an average particle size of 12.1 μm, was added to 3.9% by weight. Two kinds of mixed powders were prepared by mixing the mixed powder and the above Fe-Co powder with 2% V powder having an average particle size of 10.1 μm and a maximum particle size of 37 μm. Using these as raw materials, 9% by weight of the binder shown in Table 2 was blended and mixed and kneaded.

射出成形により内径φ20mm、外径φ30mm、厚み
5報のリング状試料を作製した。混線は130℃で20
分間、加圧ニーダ−で行なった。射出成形は温度190
℃、ゲージ圧力100 kg / c#の条件で行なっ
た。この成形体をアルミナセッター上に置き、内容積2
16gの脱脂炉に入れ、Arガスを5N/IWin流し
た状態で、室温から毎時10℃の昇温速度で600℃ま
で昇温加熱し2時間保持した後室温まで冷却して脱脂体
を得た。次いでこの脱脂体を水素炉中に投入し、室温か
ら毎時200℃の昇温速度で1200℃まで昇温し5時
間保持した後、室温まで炉冷し焼結体を得た。
Ring-shaped samples with an inner diameter of 20 mm, an outer diameter of 30 mm, and 5 thicknesses were produced by injection molding. Crosstalk is 20 at 130℃
The kneading process was carried out using a pressure kneader for 1 minute. Injection molding temperature is 190
The test was conducted at a temperature of 100 kg/c# and a gauge pressure of 100 kg/c#. This molded body was placed on an alumina setter, and the internal volume was 2
A 16g sample was placed in a degreasing furnace, and with Ar gas flowing at 5N/IWin, the temperature was increased from room temperature to 600°C at a rate of 10°C per hour, held for 2 hours, and then cooled to room temperature to obtain a degreased body. . Next, this degreased body was placed in a hydrogen furnace, and the temperature was raised from room temperature to 1200° C. at a heating rate of 200° C. per hour, held for 5 hours, and then cooled to room temperature to obtain a sintered body.

第5表に得られた焼結体の特性を、第6表に組成分析値
を示す。
Table 5 shows the properties of the obtained sintered body, and Table 6 shows the compositional analysis values.

以下余白 以下余白 Fe−Go粉末にFe−V粉末を混合した試料では、残
存するFe−7粒子は見られず、電気抵抗率が49.5
μΩ印であり、■は結晶粒内に均一に固溶している。一
方、■粉末を混合した試料では残存する7粒子が見られ
、結晶粒内に0.3%程度しか拡散していない。よって
Fe−V粉末の形で添加した方が良いことが分る。
In the sample in which Fe-V powder was mixed with Fe-Go powder, no residual Fe-7 particles were observed, and the electrical resistivity was 49.5.
The mark is μΩ, and ■ indicates a uniform solid solution within the crystal grains. On the other hand, in the sample mixed with powder (2), 7 particles remained, and only about 0.3% was diffused within the crystal grains. Therefore, it can be seen that it is better to add it in the form of Fe-V powder.

一節4実施例− 平均粒径10,8μm、最大粒径31μ曙、重量%で5
0%Fe−50%Coの水アトマイズ粉末に平均粒径9
.7μm、最大粒径37μ簡の機械粉砕された49%F
e−51%V粉末を3,9%、平均粒径5,5μmのカ
ルボニルFe粉を5%、平均粒径B、4%の水アトマイ
ズCo粉末を5%混合し、原料粉末とした。第2表に示
すバインダーを9重量%配合し混合混練し射出成型によ
り内径φ20■、外径φ30mm、厚み5Iのリング状
の試料を作製した。混線方法及び脱脂・焼結方法は第1
実施例と同一条件である。その結果得られた焼結体中に
は、未焼結のFe−7粒子、Fe粒子、Co粒子は見ら
れなかった。焼結密度は’y、55g7cc、結晶粒内
のバナジウム量は1.76重置火であった。又、磁気特
性はB +oo = 20.2K G % Hcss 
”” 1.730 eであった。以上の結果から、成分
調整のために純Fe粉末、又は純Co粉末を混合しても
、同様の組成及び特性を有する焼結体の得られることが
わかる。
Section 4 Example - Average particle size 10,8 μm, maximum particle size 31 μm, weight% 5
Water atomized powder of 0%Fe-50%Co has an average particle size of 9.
.. 49% F mechanically milled with a maximum particle size of 7μm and 37μm
A raw material powder was prepared by mixing 3.9% e-51% V powder, 5% carbonyl Fe powder with an average particle size of 5.5 μm, and 5% water atomized Co powder with an average particle size B of 4%. A ring-shaped sample having an inner diameter of 20 mm, an outer diameter of 30 mm, and a thickness of 5 mm was prepared by mixing and kneading 9% by weight of the binder shown in Table 2 and injection molding. The cross-wire method and degreasing/sintering method are the first.
The conditions are the same as in the example. In the resulting sintered body, no unsintered Fe-7 particles, Fe particles, or Co particles were found. The sintered density was 'y, 55g7cc, and the amount of vanadium in the crystal grains was 1.76 times. Also, the magnetic properties are B +oo = 20.2K G % Hcss
"" It was 1.730 e. The above results show that even if pure Fe powder or pure Co powder is mixed for component adjustment, sintered bodies having similar compositions and characteristics can be obtained.

第7表に得られた焼結体の特性を示す。第8表に結晶粒
内の分析値を示す。
Table 7 shows the properties of the obtained sintered body. Table 8 shows the analysis values within the crystal grains.

以下余日 第 茅 表 表 以下仝臼 ■は結晶粒内に均一に固溶し、約3%及び約4%Vの焼
結体が得られた。バナジウム量の増加にともない高電気
抵抗率で良好な磁気特性の焼結体が得られた。
The material below was uniformly dissolved in the crystal grains, and sintered bodies with V of about 3% and about 4% were obtained. As the amount of vanadium increased, a sintered body with high electrical resistivity and good magnetic properties was obtained.

尚、第1表は原料粉末の性状と配合比率を示す。Incidentally, Table 1 shows the properties and blending ratios of the raw material powders.

第2表は、射出成形に用いたバインダーの組成を示す。Table 2 shows the composition of the binder used in injection molding.

第3表は射出成形体から得られた焼結体のX線マイクロ
アナライザーによる微小分析結果を示す。
Table 3 shows the results of microanalysis by an X-ray microanalyzer of the sintered bodies obtained from the injection molded bodies.

第4表は焼結体の磁気特性及び電気抵抗率を示す。ここ
で+Bl。。は1000eの磁場を印加したときの磁束
密度、 Hc3.は350e印加したときに測定される
保磁力を示す。
Table 4 shows the magnetic properties and electrical resistivity of the sintered bodies. +Bl here. . is the magnetic flux density when a magnetic field of 1000e is applied, Hc3. indicates the coercive force measured when 350e is applied.

第5表は焼結体の磁気特性及び電気抵抗率を示す。Table 5 shows the magnetic properties and electrical resistivity of the sintered bodies.

第6表は焼結体のX線マイクロアナライザーによる微小
分析結果を示す。
Table 6 shows the results of microanalysis of the sintered body using an X-ray microanalyzer.

第7表は焼結体の磁気特性及び電気抵抗率を示す。Table 7 shows the magnetic properties and electrical resistivity of the sintered bodies.

第8表は焼結体X線マイクロアナライザーによる微小分
析結果を示す。
Table 8 shows the results of microanalysis using a sintered compact X-ray microanalyzer.

[発明の効果] 以上述べた様に本発明によれば、鉄−コバルト水アトマ
イズ粉末又はガスアトマイズ粉末と鉄−バナジウム粉末
を所望の性状とし混合した粉末を原料として用いること
により安定した成形性が得られ、かつ、焼結合金も安定
した特性2組成の得られることがわかった。よって工業
的に容易に製造可能な原料粉末を用いて精度が良く、良
好な磁気特性を有する鉄−コバルト−バナジウム焼結合
金を製造する方法として極めて有益である。
[Effects of the Invention] As described above, according to the present invention, stable moldability can be obtained by using as a raw material a powder obtained by mixing iron-cobalt water atomized powder or gas atomized powder and iron-vanadium powder with desired properties. It was found that a sintered alloy with a stable property 2 composition can be obtained. Therefore, it is extremely useful as a method for producing an iron-cobalt-vanadium sintered alloy having good precision and good magnetic properties using raw material powder that can be easily produced industrially.

Claims (1)

【特許請求の範囲】 1)重量%で、0.5%以上かつ15%以下のバナジウ
ムVを含むFe−Co−V系原料粉末と、熱可塑性樹脂
とを混合・混練し、射出成形又は押出し成形し、得られ
た成形体を、脱脂・焼結して焼結体を製造する軟磁性焼
結合金の製造方法において、 前記Fe−Co−V系原料粉末は、鉄−コバルト合金粉
末と鉄−バナジウム合金粉末との混合粉末を含むことを
特徴とする軟磁性焼結合金の製造方法。 2)特許請求の範囲第1項記載の軟磁性焼結合金の製造
方法において、前記Fe−Co−V系原料粉末は、鉄−
コバルト合金粉末と鉄−バナジウム合金粉末との混合粉
末に、鉄粉、コバルト粉末の1種又は2種を混合した粉
末を含むことを特徴とする軟磁性焼結合金の製造方法。
[Scope of Claims] 1) Fe-Co-V-based raw material powder containing 0.5% or more and 15% or less of vanadium V by weight and a thermoplastic resin are mixed and kneaded, and the mixture is injection molded or extruded. In the method for producing a soft magnetic sintered alloy, the Fe-Co-V raw material powder is formed by molding and degreasing and sintering the obtained molded body to produce a sintered body. - A method for producing a soft magnetic sintered alloy, comprising a mixed powder with a vanadium alloy powder. 2) In the method for producing a soft magnetic sintered alloy according to claim 1, the Fe-Co-V raw material powder is iron-
A method for producing a soft magnetic sintered alloy, characterized in that a mixed powder of a cobalt alloy powder and an iron-vanadium alloy powder contains a powder that is a mixture of one or both of iron powder and cobalt powder.
JP27704289A 1989-10-26 1989-10-26 Manufacture of soft magnetic sintered alloy Granted JPH03140436A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27704289A JPH03140436A (en) 1989-10-26 1989-10-26 Manufacture of soft magnetic sintered alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27704289A JPH03140436A (en) 1989-10-26 1989-10-26 Manufacture of soft magnetic sintered alloy

Publications (2)

Publication Number Publication Date
JPH03140436A true JPH03140436A (en) 1991-06-14
JPH0440420B2 JPH0440420B2 (en) 1992-07-02

Family

ID=17577975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27704289A Granted JPH03140436A (en) 1989-10-26 1989-10-26 Manufacture of soft magnetic sintered alloy

Country Status (1)

Country Link
JP (1) JPH03140436A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012054569A (en) * 2011-09-30 2012-03-15 Seiko Epson Corp Soft magnetic powder, method for producing soft magnetic powder, dust core, and magnetic element
JP2013204119A (en) * 2012-03-29 2013-10-07 Seiko Epson Corp Composition for injection molding and method for manufacturing sintered body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012054569A (en) * 2011-09-30 2012-03-15 Seiko Epson Corp Soft magnetic powder, method for producing soft magnetic powder, dust core, and magnetic element
JP2013204119A (en) * 2012-03-29 2013-10-07 Seiko Epson Corp Composition for injection molding and method for manufacturing sintered body

Also Published As

Publication number Publication date
JPH0440420B2 (en) 1992-07-02

Similar Documents

Publication Publication Date Title
JP5311941B2 (en) Metal powder for powder metallurgy, sintered body and method for producing sintered body
US4721599A (en) Method for producing metal or alloy articles
EP0379583B1 (en) SINTERED MAGNETIC Fe-Co MATERIAL AND PROCESS FOR ITS PRODUCTION
JPH0647684B2 (en) Degreasing method for injection molded products
US5689796A (en) Method of manufacturing molded copper-chromium family metal alloy article
JPH01150303A (en) Magnetic anisotropy type sintered magnet and manufacture thereof
EP0409647A2 (en) Manufacturing process for sintered Fe-P alloy product having soft magnetic characteristics
EP0523658B1 (en) Method for making injection molded soft magnetic material
JPH03140436A (en) Manufacture of soft magnetic sintered alloy
JPH1174140A (en) Manufacture of dust core
JPH093510A (en) Copper powder for injection-molding of metallic powder and production of injection-molded product using the same
EP0409646A2 (en) Compound for an injection molding
JP2643002B2 (en) Degreasing method for powder compacts
JPH01184203A (en) Alloy powder for injected-compacting
JP3001541B1 (en) Prealloy powder and method for producing sintered Ti alloy using the same
JP2794473B2 (en) Method for producing sintered member made of amorphous alloy
JPH01212702A (en) Manufacture of magnetic material
JPH0257613A (en) Production of sintered metallic material and its raw powder
JPH01212706A (en) Manufacture of magnetic material
JP2756287B2 (en) Method for producing composition for injection molding powder metallurgy
JPH02194104A (en) Binder for forming and sintering metal powder and manufacture of sintered body using this binder
JPH01319601A (en) Production of sintering metal
JPH05171211A (en) Composition for injection compacting and production of carbide dispersed sintered product with the same
JP2758569B2 (en) Method for producing iron-based sintered body by metal powder injection molding method
JPH01212705A (en) Manufacture of magnetic material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees