JPH03138904A - Voltage dependent non-linear resistor element and its manufacture - Google Patents

Voltage dependent non-linear resistor element and its manufacture

Info

Publication number
JPH03138904A
JPH03138904A JP1277423A JP27742389A JPH03138904A JP H03138904 A JPH03138904 A JP H03138904A JP 1277423 A JP1277423 A JP 1277423A JP 27742389 A JP27742389 A JP 27742389A JP H03138904 A JPH03138904 A JP H03138904A
Authority
JP
Japan
Prior art keywords
varistor
voltage
varistor voltage
temperature
na2sio3
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1277423A
Other languages
Japanese (ja)
Other versions
JP2725406B2 (en
Inventor
Iwao Ueno
上野 巖
Yasuo Wakahata
康男 若畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1277423A priority Critical patent/JP2725406B2/en
Publication of JPH03138904A publication Critical patent/JPH03138904A/en
Application granted granted Critical
Publication of JP2725406B2 publication Critical patent/JP2725406B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)

Abstract

PURPOSE:To enable the title element to indicate a positive or zero value in the temperature coefficient of varistor voltage and to improve temperature characteristics, reliability, and lifetime characteristics through suppression of its directionalities by mixing an oxide having a perovskite structure whose main components are Si and Ti atoms with a 0.2-5.0mol% of Na2SiO3. CONSTITUTION:Electrodes 2, 3 are formed on a sinter 1 prepared from disc molding and baking of a stock that is a mixture granulation of SrTiO3, Nb2O5 a valence controller, and Na2SiO3 for improving the temperature coefficient of varistor voltage. In general a capacitive varistor prepared from addition of a valence controller such as Nb, Ta to SrTiO3 and baking of the mixture shows ununiformity in the degree of reoxidation, thereby decreasing varistor voltage and easily generating directionalities. Therefore, addition of Na2SiO3 and baking of the mixture as a method for eliminating this asymmetric energy barrier can produce uniform reoxidation inside the element, suppress the gradient of oxygen concentration. and suppress the varistor voltage decreases. This process can provide an element excellent in temperature characteristics, reliability, and lifetime characteristics.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電子機器、電気機器で発生する異常電圧、ノ
イズ、パルス、静電気から半導体及び回路を保護すると
ころの5rTi03を主成分とする電圧依存性非直線抵
抗体素子及びその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is directed to a voltage-dependent 5rTi03-based material that protects semiconductors and circuits from abnormal voltages, noise, pulses, and static electricity generated in electronic and electrical equipment. The present invention relates to a non-linear resistor element and a method for manufacturing the same.

従来の技術 従来、各種電子機器、電気機器で発生する異常電圧、ノ
イズ、パルス、静電気除去のために)(リスク特性を有
するSiCバリスタやZnO系バリスタが使用されてき
た。このようなバリスタの電圧−電流特性は近似的に次
式のように表すことができる。
Conventional technology In the past, SiC varistors and ZnO-based varistors, which have risk characteristics, have been used to eliminate abnormal voltages, noise, pulses, and static electricity generated in various electronic and electrical devices.The voltage of such varistors -The current characteristics can be expressed approximately as shown below.

I =  (V/C)α ここで、■は電流、■は電圧、Cはバリスタ固有の定数
であり、αは電圧非直線指数である。
I = (V/C) α Here, ■ is a current, ■ is a voltage, C is a constant specific to the varistor, and α is a voltage nonlinear index.

SiCバリスタの電圧非直線指数αは2〜7程度、Zn
O系バリスタではαが50にも及ぶものがある。このよ
うなバリスタは、比較的高い電圧の吸収にはすぐれた性
能を有しているが、誘電率が低く、固有の静電容量が小
さく応答性が遅いため、バリスタ電圧以下の低い電圧や
周波数の高いものの吸収に対してはほとんど効果を示さ
ない。
The voltage non-linearity index α of SiC varistor is about 2 to 7, Zn
Some O-type varistors have α as high as 50. Although such varistors have excellent performance in absorbing relatively high voltages, they have a low dielectric constant, small inherent capacitance, and slow response, so they cannot be used at low voltages or frequencies below the varistor voltage. It has little effect on the absorption of substances with high levels of

また、誘電損失tanδが5〜10%と大きい。Further, the dielectric loss tan δ is as large as 5 to 10%.

一方、低電圧のノイズなどの除去には、見掛は誘電率ε
が5X10’程度で、誘電損失tanδが1%前後の半
導体コンデンサが利用されている。しかし、このような
半導体コンデンサは、サージなどによりある程度以上の
電圧、電流が印加されると破壊したり、コンデンサとし
ての機能を果たさなくなる。そこで近年、S r T 
i 03を主成分とし、バリスタ特性とコンデンサ特性
の両方の機能を有するものが開発されてきている。
On the other hand, to remove low-voltage noise, etc., the apparent dielectric constant ε
A semiconductor capacitor with a dielectric loss tan δ of about 1% is used. However, such semiconductor capacitors break down or cease to function as a capacitor when a voltage or current exceeding a certain level is applied due to a surge or the like. Therefore, in recent years, S r T
Products that have i03 as a main component and have both varistor and capacitor characteristics have been developed.

発明が解決しようとする課題 SrTiO3を主成分とする容量性バリスタは、バリス
タ電圧の温度係数が負の値を示し、このような容量性バ
リスタを高温中で使用したり、長時間使用すると素子が
発熱しバリスタ電圧が低下することにより、ひどい場合
にはショートの原因となりうる。さらに、高温中や長時
間°使用する場合、バリスタ電圧が低下するのを見込ん
で使用するため、実効的な制限電圧が増加し、各種電子
機器や電気機器に大きな負荷がかかると言う問題点も同
時に有している。従って、S r T i 03を主成
分とする容量性バリスタにおいて、高温中や長時間使用
中でのバリスタ電圧の低下を抑えるために、バリスタ電
圧の温度係数が正または0の値を示す必要がある。
Problems to be Solved by the Invention Capacitive varistors whose main component is SrTiO3 exhibit a negative temperature coefficient of varistor voltage, and if such capacitive varistors are used at high temperatures or for long periods of time, the elements may deteriorate. Heat is generated and the varistor voltage decreases, which in severe cases can cause a short circuit. Furthermore, when used at high temperatures or for long periods of time, the effective limiting voltage increases because the varistor voltage is expected to decrease, which poses the problem of placing a heavy load on various electronic and electrical devices. have at the same time. Therefore, in a capacitive varistor whose main component is S r Ti 03, the temperature coefficient of the varistor voltage must exhibit a positive or zero value in order to suppress the drop in varistor voltage during high temperatures or long-term use. be.

本発明は、このような点に鑑みてなされたもので、5r
Ti03を主成分とする電圧依存性非直線抵抗体素子及
びその製造方法を提供することを目的とするものである
The present invention has been made in view of the above points, and is based on the 5r
The object of the present invention is to provide a voltage-dependent nonlinear resistor element containing TiO3 as a main component and a method for manufacturing the same.

課題を解決するための手段 上記のような問題点を解決するために本発明は、原子価
制御により半導体化したSr、Ti原子を主成分とする
ペロブスカイト型構造を有する酸化物に、Na2SiO
3を0.2〜5.0mo 1%含ませてなる電圧依存性
非直線抵抗体素子を提供するものである。さらに、Sr
TiO3の粉末を原料としNb、Taなどの原子価制御
剤を適量添加し、さらにNa2S i 03を0.2〜
5.0mol%添加した混合粉末を成形し、還元雰囲気
中や窒素雰囲気中で1200〜1500℃の温度範囲で
焼成し、その後、空気中で900〜1200℃の温度範
囲で熱処理を行った後に各種方法で電極を設けた電圧依
存性非直線抵抗体素子の製造方法を提供するものである
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention proposes to add Na2SiO
The present invention provides a voltage-dependent nonlinear resistor element containing 0.2 to 5.0 mo of 1% of No. 3. Furthermore, Sr.
Using TiO3 powder as a raw material, add appropriate amounts of valence control agents such as Nb and Ta, and further add 0.2 to 0.2 to
The mixed powder containing 5.0 mol% was molded and fired at a temperature range of 1200 to 1500°C in a reducing atmosphere or nitrogen atmosphere, and then heat treated in the air at a temperature range of 900 to 1200°C. The present invention provides a method for manufacturing a voltage-dependent nonlinear resistor element having electrodes provided therein.

作用 一般にSrTiO3にN b、 T aなどの原子を含
む原子価制御剤を適量添加し、還元雰囲気中や窒素雰囲
気中で焼成した素子を空気中で熱処理を行い、その後、
電極を設けて形成した容量性バリスタでは、再酸化の度
合が素子の表面と内部で異なり不均一となる。その結果
、表面では酸素の濃度が多く内部では少ないといった酸
素濃度勾配を持つ。このような容量性バリスタの電子伝
導メカニズムは酸素濃度勾配が原因である非対称エネル
ギー障壁によるものと考えられる。そこで、このような
電子伝導メカニズムを持つ容量性バリスタを高温中や長
時間使用すると、電子が熱エネルギーにより励起され、
常温中では乗り越えることが困難であったエネルギー障
壁を容易に乗り越えることが可能となり、結果としてバ
リスタ電圧が低下する。さらに、このような非対称エネ
ルギー障壁を持つ容量性バリスタでは、バリスタ電圧に
方向性(分極)が生じ易くなる。そこで、この非対称エ
ネルギー障壁をな(す方法、すなわち出来上がった素子
の酸素濃度勾配を抑える方法として、次の二つの方法が
考えられる。まず、第1の方法としてNa25 i 0
3を添加し、還元雰囲気中や窒素雰囲気中で焼成すると
、Na原子が5rTiO:+の結晶中に固溶し、状態的
に不安定な格子歪みを生じる。そして、この様な素子を
空気中で熱処理を行うと、状態的に安定な格子歪みを抑
える方向、すなわち酸化がされ易くなる方向に進み、結
果として素子の内部においても均一に再酸化が起こり酸
素濃度勾配が抑えられると考えられる。第2の方法とし
て空気中での熱処理温度を900℃以上で行なうと、第
1の方法と同様に素子の内部においても均一に再酸化が
起こり酸素濃度勾配が抑えられると考えられる。従って
、この様な組成や製造方法で得られた容量性バリスタで
は酸素濃度勾配がほとんどなく高温中や、長時間使用し
てもバリスタ電圧の低下が抑えられることとなる。
Function Generally, an appropriate amount of a valence control agent containing atoms such as Nb and Ta is added to SrTiO3, the element is fired in a reducing atmosphere or a nitrogen atmosphere, and then heat treated in air.
In a capacitive varistor formed with electrodes, the degree of reoxidation differs between the surface and the inside of the element, resulting in non-uniformity. As a result, there is an oxygen concentration gradient where the concentration of oxygen is high on the surface and low on the inside. The electron conduction mechanism of such a capacitive varistor is thought to be due to an asymmetric energy barrier caused by an oxygen concentration gradient. Therefore, when a capacitive varistor with such an electron conduction mechanism is used at high temperatures or for a long time, the electrons are excited by thermal energy,
It becomes possible to easily overcome the energy barrier, which was difficult to overcome at room temperature, and as a result, the varistor voltage decreases. Furthermore, in a capacitive varistor having such an asymmetric energy barrier, directionality (polarization) tends to occur in the varistor voltage. Therefore, the following two methods can be considered to create this asymmetric energy barrier, that is, to suppress the oxygen concentration gradient in the completed device.The first method is to use Na25 i 0
When 3 is added and fired in a reducing atmosphere or a nitrogen atmosphere, Na atoms are dissolved in the 5rTiO:+ crystal, resulting in state-unstable lattice strain. When such an element is heat-treated in air, the process progresses in the direction of suppressing the state-stable lattice strain, that is, in the direction of making oxidation more likely, and as a result, uniform re-oxidation occurs even inside the element, and oxygen is removed. It is thought that the concentration gradient can be suppressed. As the second method, when the heat treatment is performed in air at a temperature of 900° C. or higher, reoxidation occurs uniformly inside the element as in the first method, and the oxygen concentration gradient is thought to be suppressed. Therefore, in a capacitive varistor obtained with such a composition and manufacturing method, there is almost no oxygen concentration gradient, and a drop in varistor voltage can be suppressed even at high temperatures or when used for a long time.

また、この時、本発明のようにNa2S i 03の添
加量を0.2〜5.0mol%の範囲に規定したのは、
0.2mo1%未満では添加効果が得られず、5.0m
ol%を超えると焼結性や信頼性が低下するため容量性
バリスタとしての機能を果たさなくなるためである。な
お、好ましい範囲は、焼結性、信頼性を考えて、0.5
〜2.Qmo1%の範囲である。
In addition, at this time, the reason why the amount of Na2S i 03 added is specified in the range of 0.2 to 5.0 mol% as in the present invention is because
If it is less than 0.2mo1%, the addition effect cannot be obtained, and 5.0m
This is because if it exceeds ol%, the sinterability and reliability will deteriorate, and it will no longer function as a capacitive varistor. Note that the preferable range is 0.5 in consideration of sinterability and reliability.
~2. Qmo is in the range of 1%.

従って、原子価制御により半導体化しまたSr。Therefore, Sr can be made into a semiconductor through valence control.

Ti原子を主成分とするペロブスカイト型構造を有する
容量性バリスタと、原子価制御により半導体化したSr
、Ti原子を主成分とするペロブスカイト型構造を存す
る酸化物に、Na2SiO3を含ませてなる容量性バリ
スタでは、その微細構造、電気特性が著しく異なり、互
いにして全く別の組成物と考えられる。
Capacitive varistor with perovskite structure mainly composed of Ti atoms and Sr made into a semiconductor through valence control
, a capacitive varistor made by including Na2SiO3 in an oxide having a perovskite structure mainly composed of Ti atoms, has a significantly different microstructure and electrical properties, and is considered to be a completely different composition.

実施例 以下に本発明について、実施例を挙げて具体的に説明す
る。まず、原料の5rTi03.原子価制御剤のNb=
Os、バリスタ電圧の温度係数を改善するNa25iQ
、、を下記表に示す組成比になるように秤量、混合した
。これを乾燥後、自動乳鉢で粉砕した。その後、0.5
wt%ポリビニールアルコール溶液を添加し、1時間混
合し造粒した。
EXAMPLES The present invention will be specifically described below with reference to Examples. First, the raw material 5rTi03. Nb of valence control agent=
Os, Na25iQ to improve the temperature coefficient of varistor voltage
, were weighed and mixed to have the composition ratio shown in the table below. After drying, this was ground in an automatic mortar. Then 0.5
A wt% polyvinyl alcohol solution was added, mixed for 1 hour, and granulated.

造粒後、1ton/cdの圧力で12φX1.0(M)
の円板状に成形し、次に空気中で400℃、2時間の条
件で脱バインダーを行った。その後、N2・H2=io
 : 1の還元雰囲気中で1200−1500℃。
After granulation, 12φX1.0 (M) at a pressure of 1 ton/cd
The material was molded into a disk shape, and then the binder was removed in air at 400° C. for 2 hours. After that, N2・H2=io
: 1200-1500°C in a reducing atmosphere of 1.

2時間の条件で焼成した。このよう蹟して得られた第1
.第2図に示す焼結体1を空気中で900〜1200℃
、2時間の条件で熱処理を行い1、その後、外周を残す
ようにし電極2,3を形成した。
It was fired for 2 hours. The first result obtained in this way
.. The sintered body 1 shown in Fig. 2 was heated to 900 to 1200°C in air.
A heat treatment was performed for 2 hours 1, and then electrodes 2 and 3 were formed leaving the outer periphery.

このようにして得られた、N2: H2=10 : ]
の還元雰囲気中時で1400℃12時間の条件で焼成し
た焼結体を、空気中900〜1200℃。
Thus obtained, N2: H2=10: ]
The sintered body was fired at 1400°C for 12 hours in a reducing atmosphere of 900 to 1200°C in air.

2時間の条件で熱処理を行い、Xn−Ga@極を塗布し
て形成した容量性バリスタの熱処理温度を900.10
00.1100.1200℃と変えた場合のバリスタ電
圧の温度係数の値を下記表に併せて示す。ここで、バリ
スタ電圧の温度係数の値は測定温度20.80℃でのバ
リスタ電圧VO,1lllA値の変化率から以下の式よ
り計算した バリスタ電圧・温度係数△VO,l□ ×100÷60 (%/℃) (以  下  余  白) まず、上記表について解説すると、試料番号1〜3は比
較例である。これらの試料ではバリスタ電圧の温度係数
が負の値となり、測定温度の上昇と共にバリスタ電圧の
値が低下し、添加剤の効果が得られるものである。これ
に対し、その他の本発明の実施例にかかる試料番号4〜
14ではバリスタ電圧の温度係数が正または0の値とな
り、測定温度が上昇してもバリスタ電圧の値が低下せず
、添加剤の効果が得られるものである。
Heat treatment was performed for 2 hours, and the heat treatment temperature of the capacitive varistor formed by applying the Xn-Ga@ electrode was 900.10.
The temperature coefficient values of the varistor voltage when the temperature is changed to 00.1100.1200°C are also shown in the table below. Here, the value of the temperature coefficient of the varistor voltage is the varistor voltage/temperature coefficient △VO,l□ ×100÷60 ( %/°C) (Margin below) First, to explain the above table, sample numbers 1 to 3 are comparative examples. In these samples, the temperature coefficient of the varistor voltage is a negative value, and the value of the varistor voltage decreases as the measurement temperature increases, so that the effect of the additive can be obtained. In contrast, sample numbers 4 to 4 according to other embodiments of the present invention
In No. 14, the temperature coefficient of the varistor voltage is positive or zero, and even if the measured temperature increases, the value of the varistor voltage does not decrease, and the effect of the additive can be obtained.

ここで、本実施例のようにNa2SiO3の添加量を0
.2〜5.Qmo1%の範囲に規定したのは、Q、2m
o1%未満では添加効果が得られず、5、Qmo1%を
超えると焼結性や信頼性が低下するため容量性バリスタ
としての機能を果たさなくなるためである。また、熱処
理温度を900〜1200℃の範囲に規定したのは90
0℃未満では素子の内部まで均一に酸化されず酸素濃度
勾配を持ちバリスタ電圧の温度係数が負の値を示すこと
やバリスタ電圧に方向性が生じるためで、1200℃を
超えるとバリスタ電圧が上昇し、バリスタ特性が優先し
コンデンサ特性が低下し両特性のバランスが崩れるため
に容量性バリスタとしての機能を果たさなくなるためで
ある。なお、本発明の実施例では、一部の組み合わせに
ついて示したが、他の組み合わせについても同様の効果
があることを確認した。さらに、本発明の実施例では、
焼成を還元雰囲気中で行う場合について説明したが、こ
れは窒素雰囲気中で焼成を行うようにしても良いもので
ある。しかし、窒素雰囲気中で焼成を行った場合は、半
導体化が若干しにくい面があるため、還元雰囲気中で焼
成を行うより若干高温度(1400〜1500℃)側で
焼成する方が特性上は好ましいものである。
Here, as in this example, the amount of Na2SiO3 added is 0.
.. 2-5. The range specified for Qmo1% is Q,2m
This is because if O is less than 1%, the addition effect cannot be obtained, and if Qmo is more than 1%, sinterability and reliability are reduced and the function as a capacitive varistor is no longer achieved. In addition, the heat treatment temperature was specified in the range of 900 to 1200°C.
Below 0°C, the inside of the element is not uniformly oxidized and there is an oxygen concentration gradient, the temperature coefficient of the varistor voltage shows a negative value, and the varistor voltage becomes directional; when it exceeds 1200°C, the varistor voltage increases. However, the varistor characteristics take priority and the capacitor characteristics deteriorate, resulting in an imbalance between the two characteristics and the capacitive varistor no longer functions as a capacitive varistor. In addition, although some combinations were shown in the examples of the present invention, it was confirmed that other combinations had similar effects. Furthermore, in embodiments of the present invention,
Although the case where the firing is performed in a reducing atmosphere has been described, the firing may also be performed in a nitrogen atmosphere. However, when firing in a nitrogen atmosphere, it is somewhat difficult to convert into a semiconductor, so firing at a slightly higher temperature (1400 to 1500°C) is better than firing in a reducing atmosphere. This is preferable.

さらに、上記の実施例では、熱処理後の素子の両面にI
n−Gaを塗布し、電極を形成し電気特性を測定したが
、Agペーストなどの導電性ベーストを印刷し、500
〜900℃の温度範囲で焼付けて、電極を形成したり、
蒸着、スパッタリング、メツキなどの方法を用いて電極
を形成しても良いものである。
Furthermore, in the above embodiment, I
Although we applied n-Ga to form electrodes and measured electrical properties, we printed a conductive base such as Ag paste and
Baking at a temperature range of ~900℃ to form electrodes,
The electrodes may be formed using methods such as vapor deposition, sputtering, and plating.

このようにして得られた本実施例の素子は、バリスタ電
圧の温度係数が正または0の値を示し、高温中や長時間
使用してもバリスタ電圧の低下を抑えられシ1−トや実
効的制限電圧の増加が抑えられ、さらに、バリスタ電圧
の方向圧が抑えられるため温度特性、信頼性、寿命特性
が向上する。
The device of this example obtained in this manner exhibits a positive or zero temperature coefficient of varistor voltage, and can suppress the drop in varistor voltage even when used at high temperatures or for long periods of time, and is effective for seat and effective performance. The temperature characteristics, reliability, and life characteristics are improved because the increase in the limiting voltage is suppressed and the directional pressure of the varistor voltage is suppressed.

発明の効果 以上に示したように本発明によれば、SrTiO3を主
成分とする容量性バリスタにおいて、バリスタ電圧の温
度係数が正または0の値を示し、また、バリスタ電圧の
方向性が抑えられるため温度特性、信頼性、寿命特性が
向上すると言う効果が得られる。
Effects of the Invention As described above, according to the present invention, in a capacitive varistor whose main component is SrTiO3, the temperature coefficient of the varistor voltage exhibits a positive or zero value, and the directionality of the varistor voltage is suppressed. Therefore, the effect of improving temperature characteristics, reliability, and life characteristics can be obtained.

従来の容量性バリスタに比べると、バリスタ電圧の温度
係数が正またはOの値を示し、高温中や長時間使用して
もバリスタ電圧の低下を抑えられショートや実効的制限
電圧の増加が抑えられ、さらに、バリスタ電圧の方向性
が抑えられるため温度特性、信頼性、寿命特性が向上す
ることができる。
Compared to conventional capacitive varistors, the temperature coefficient of the varistor voltage shows a positive or O value, which suppresses the drop in varistor voltage even when used at high temperatures or for long periods of time, suppressing short circuits and increases in effective limit voltage. Furthermore, since the directionality of the varistor voltage is suppressed, temperature characteristics, reliability, and life characteristics can be improved.

従って、本発明によれば温度特性、信頼性、寿命特性に
すぐれたノイズ、静電気から半導体及び回路を保護する
ことができる素子を得ることができ、その実用的効果が
極めて大きいものである。
Therefore, according to the present invention, an element capable of protecting semiconductors and circuits from noise and static electricity with excellent temperature characteristics, reliability, and life characteristics can be obtained, and its practical effects are extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における電圧依存性非直線抵
抗体素子を示す上面図、第2図は同素子の断面図である
。 1・・・・・・焼結体、2,3・・・・・・電極。
FIG. 1 is a top view showing a voltage-dependent nonlinear resistor element according to an embodiment of the present invention, and FIG. 2 is a sectional view of the same element. 1... Sintered body, 2, 3... Electrode.

Claims (2)

【特許請求の範囲】[Claims] (1)原子価制御により半導体化したSr,Ti原子を
主成分とするペロブスカイト型構造を有する酸化物に、
Na_2SiO_3を0.2〜5.0mol%含ませて
なる電圧依存性非直線抵抗体素子。
(1) An oxide with a perovskite structure mainly composed of Sr and Ti atoms that has been made into a semiconductor through valence control,
A voltage-dependent nonlinear resistor element containing 0.2 to 5.0 mol% of Na_2SiO_3.
(2)SrTiO_3の粉末を原料としNb,Taなど
の原子価制御剤を適量添加し、さらに Na_2SiO_3を0.2〜5.0mol%添加した
混合粉末を成形し、還元雰囲気中や窒素雰囲気中で12
00〜1500℃の温度範囲で焼成し、その後、空気中
で900〜1200℃の温度範囲で熱処理を行った後に
、各種方法で電極を設けた電圧依存性非直線抵抗体素子
の製造方法。
(2) Using SrTiO_3 powder as a raw material, adding appropriate amounts of valence control agents such as Nb and Ta, and further adding 0.2 to 5.0 mol% of Na_2SiO_3, a mixed powder is molded in a reducing atmosphere or nitrogen atmosphere. 12
A method for producing a voltage-dependent non-linear resistor element, which comprises firing in a temperature range of 00 to 1,500°C, then heat-treating in air at a temperature in a range of 900 to 1,200°C, and then providing electrodes by various methods.
JP1277423A 1989-10-24 1989-10-24 Voltage-dependent nonlinear resistor element and method of manufacturing the same Expired - Fee Related JP2725406B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1277423A JP2725406B2 (en) 1989-10-24 1989-10-24 Voltage-dependent nonlinear resistor element and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1277423A JP2725406B2 (en) 1989-10-24 1989-10-24 Voltage-dependent nonlinear resistor element and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH03138904A true JPH03138904A (en) 1991-06-13
JP2725406B2 JP2725406B2 (en) 1998-03-11

Family

ID=17583352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1277423A Expired - Fee Related JP2725406B2 (en) 1989-10-24 1989-10-24 Voltage-dependent nonlinear resistor element and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2725406B2 (en)

Also Published As

Publication number Publication date
JP2725406B2 (en) 1998-03-11

Similar Documents

Publication Publication Date Title
JPH03138904A (en) Voltage dependent non-linear resistor element and its manufacture
JPS63312616A (en) Semiconductor porcelain composition
JPH0442855A (en) Porcelain composition and its production
JPH01289206A (en) Voltage-dependent nonlinear resistance element and manufacture thereof
JPH03138908A (en) Voltage dependent non-linear resistor element and its manufacture
JPH03138909A (en) Voltage dependent non-linear resistor element and its manufacture
KR100340667B1 (en) Semiconductor ceramic and semiconductor ceramic device
JP2727693B2 (en) Voltage-dependent nonlinear resistor porcelain composition and method for manufacturing varistor
JPH03138906A (en) Voltage dependent non-linear resistor element and its manufacture
JPH03138907A (en) Voltage dependent non-linear resistor element and its manufacture
JP2822612B2 (en) Varistor manufacturing method
JPH03138905A (en) Voltage dependent non-linear ceramic resistor and its manufacture
JPH01289203A (en) Voltage-dependent nonlinear resistance element and manufacture thereof
JP2555791B2 (en) Porcelain composition and method for producing the same
JPS61271802A (en) Voltage non-linear resistor ceramic composition
JP2725405B2 (en) Voltage-dependent nonlinear resistor porcelain and method of manufacturing the same
JPH01289205A (en) Voltage-dependent nonlinear resistance element and manufacture thereof
KR920001162B1 (en) Barium titanate-baseo semi-conductor porcelain
JPH03237058A (en) Porcerain composition for voltage dependent nonlinear resistor and production of varistor
JPH01289207A (en) Voltage-dependent nonlinear resistance element and manufacture thereof
JPH03109259A (en) Grain boundary oxidized voltage-nonlinear resistance composition
JPH03109257A (en) Grain boundary oxidized voltage-nonlinear resistance composition
JPS5850725A (en) Composite function element
JPS62252902A (en) Porcelain compound for voltage nonlinear resistance unit
JPH04245401A (en) Manufacture of semiconductor porcelain with positive temperature coefficient of resistance

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees