JPH03136697A - Operation control method for dehydrator - Google Patents

Operation control method for dehydrator

Info

Publication number
JPH03136697A
JPH03136697A JP1276445A JP27644589A JPH03136697A JP H03136697 A JPH03136697 A JP H03136697A JP 1276445 A JP1276445 A JP 1276445A JP 27644589 A JP27644589 A JP 27644589A JP H03136697 A JPH03136697 A JP H03136697A
Authority
JP
Japan
Prior art keywords
dehydration
rotation
tank
jar
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1276445A
Other languages
Japanese (ja)
Inventor
Ichiro Yano
一朗 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Kentetsu Co Ltd
Mitsubishi Electric Corp
Original Assignee
Nihon Kentetsu Co Ltd
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Kentetsu Co Ltd, Mitsubishi Electric Corp filed Critical Nihon Kentetsu Co Ltd
Priority to JP1276445A priority Critical patent/JPH03136697A/en
Publication of JPH03136697A publication Critical patent/JPH03136697A/en
Pending legal-status Critical Current

Links

Landscapes

  • Accessory Of Washing/Drying Machine, Commercial Washing/Drying Machine, Other Washing/Drying Machine (AREA)
  • Control Of Washing Machine And Dryer (AREA)

Abstract

PURPOSE:To prevent a large swaying of a dehydration jar and to reach to the rotation at a specific rotation frequency smoothly by feeding a current to either the left side or the right side for a short time to exhaust the water at the initial phase of the dehydration operation, and then feeding the current to the reverse direction to brake a dehydration motor before a large eccentric load is generated and before the rotation of the jar reaches to the intrinsic oscillation frequency so as to stop suddenly. CONSTITUTION:By repeating an acceleration by the rotation in the right direction of a dehydration jar 3 and a braking by the rotation in the reverse left direction, the water in the jar 3 is exhausted gradually at a frequency less than the intrinsic oscillation frequency at the initial phase of the dehydration operation, and when the residual water becomes little, the current is fed again to the dehydration motor in the right direction rotation, and the motor is stopped. In this stopped time, the residual water overtakes the rotation speed of the jar 3, and a large eccentric load is generated, but by feeding then the current only for the time t3 to the dehydration motor 7 in the left direction rotation, the rotation of the jar 3 is braked suddenly, and thereby the residual water can not follow the rotation of the jar 3 again but generates a sliding. By reducing the rotation frequency of the dehydration jar 3 instantly in such a way, the jar 3 can pass the intrinsic oscillation frequency.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、洗濯槽と脱水槽とを備え、脱水槽で洗い運転
と脱水運転とを行う二槽式洗濯機の脱水機の運転制御方
法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a method for controlling the operation of a dehydrator in a two-tub washing machine, which is equipped with a washing tub and a dehydrating tub, and performs washing operation and dehydrating operation in the dehydrating tub. It is related to.

〔従来の技術〕[Conventional technology]

洗濯機構と脱水機構とを併設しである二槽式洗濯機は、
第3図に示すように外箱(1)内に洗濯槽(2)と脱水
受槽(4)とを隣接させて設けたもので、第4図に示す
ように脱水受槽(4)の内側に、周囲側壁に脱水孔(1
2)を穿設した脱水槽(3)を回転自在に設置する。
A two-tub washing machine that has both a washing mechanism and a dehydrating mechanism,
As shown in Figure 3, a washing tub (2) and a dewatering tank (4) are installed adjacent to each other inside an outer box (1), and as shown in Figure 4, a washing tub (2) and a dehydrating tank (4) are installed inside the dehydrating tank (4). , dehydration holes (1
2) A dehydration tank (3) is installed rotatably.

そして、底枠(5)に防振バネ(6)を介して取付けた
脱水モーター(7)の回転軸(8)と、脱水槽(3)の
下部に突出した脱水軸(9)とをネジ(11)で固定す
るカップリング(10)を介して連結する。
Then, screw the rotation shaft (8) of the dehydration motor (7) attached to the bottom frame (5) via the vibration isolation spring (6) and the dehydration shaft (9) protruding from the bottom of the dehydration tank (3). They are connected via a coupling (10) fixed at (11).

かかる脱水槽(3)での脱水運転の制御方法として、従
来、例えば実公昭49−25491号公報に示されてい
るものがある。これは、脱水率の悪い布の場合は強い回
転力で脱水し、脱水率のよい布の場合は少ない回転数で
適当時間脱水して、常に布地に適した回転数で脱水しよ
うとするもので、その制御回路を第5図について説明す
る。
As a method of controlling the dehydration operation in the dehydration tank (3), there is a conventional method disclosed in, for example, Japanese Utility Model Publication No. 49-25491. This method uses a strong rotational force to dehydrate fabrics with a poor dehydration rate, and dehydrates fabrics with a good dehydration rate at a low rotational speed for an appropriate amount of time. , its control circuit will be explained with reference to FIG.

(18)は前記脱水モーター(7)の誘電コイル、(1
9)は該誘電コイル(18)の一端に接続された起動用
コンデンサ、(20)はタイムスイッチ、(21)は電
源(15)に接続されたタイムスイッチ(20)の時限
接点、(22)は時限接点(21)の固定接点側を分岐
して設けた時限接点で、これは円弧部と歯状部を有する
カム(23)等からなる間欠連動機構と連動する。(2
4)は制御回路の切換スイッチで時限接点(21)の固
定接点側に設けた固定接点Aと、前記時限接点(22)
と接続される固定接点Bとを選択するものである。
(18) is the induction coil of the dehydration motor (7);
9) is a starting capacitor connected to one end of the inductive coil (18), (20) is a time switch, (21) is a time contact of the time switch (20) connected to the power source (15), (22) A time contact is provided by branching off the fixed contact side of the time contact (21), and is interlocked with an intermittent interlocking mechanism consisting of a cam (23) having an arcuate portion and a toothed portion. (2
4) is a changeover switch of the control circuit, which connects the fixed contact A provided on the fixed contact side of the time contact (21) and the time contact (22).
and fixed contact B to be connected.

このような構造の脱水機で脱水運転を行うには、脱水槽
(3)内に洗濯物を入れ、任意の時間を設定して時限接
点(21)を閉路し、切換スイッチ(24)を固定接点
Aに接続して脱水モーター(7)に通電すれば、脱水槽
(3)は回転を開始し、その回転の遠心力によって脱水
槽(3)に設けである脱水孔(12)から洗濯物に含ま
れている水分が脱水槽(3)外に飛び出して脱水される
。この時、第6図の曲線(イ)に示すように時間の経過
とともに回転数が増加し、強い脱水力を得ることができ
る。また、切換スイッチ(24)を固定接点Bに接続す
れば、カム(23)が駆動し連動機構が円弧部を摺動す
る時限となる。すなわち、曲線(ロ)に示すように脱水
モーター(7)の回転数が0より約150Orpm程度
に達するまでは時限接点(22)は閉路し、その後は歯
状部によって数秒間毎に時限接点の開閉を繰り返すこと
で、ある一定の回転数に達したところで安定した低速回
転を続行し弱い回転力を得るようにしている。
To perform dehydration with a dehydrator with such a structure, put the laundry in the dehydration tank (3), set the desired time, close the time contact (21), and fix the changeover switch (24). When connected to contact A and energized to the dehydration motor (7), the dehydration tank (3) starts rotating, and the centrifugal force of the rotation causes the laundry to be removed from the dehydration hole (12) provided in the dehydration tank (3). The water contained in the water flows out of the dehydration tank (3) and is dehydrated. At this time, as shown by curve (a) in FIG. 6, the rotational speed increases with the passage of time, and a strong dewatering force can be obtained. Furthermore, when the changeover switch (24) is connected to the fixed contact B, the cam (23) is driven and the interlocking mechanism slides on the arc portion. That is, as shown in the curve (b), the time contact (22) is closed until the rotational speed of the dehydration motor (7) reaches about 150 rpm from 0, and then the time contact (22) is closed every few seconds by the teeth. By repeatedly opening and closing, it continues to rotate at a stable low speed once it reaches a certain number of rotations, producing a weak rotational force.

ところで、脱水槽(3)を回転させた時の角加速度と振
動量とは第7図に示すように、横軸に角加速度W、縦軸
に振動量をとると、振動量は角加速度Wと共に増大し、
脱水槽(3)、回転軸(8)、脱水軸(9)、カップリ
ング(10) 、脱水モーター(7)、ネジ(11) 
、防振バネ(6)等全てを含んだ防振系の固有振動数W
2O点で最大となり、その後下降し、ある値で一定とな
る。
By the way, the angular acceleration and the amount of vibration when rotating the dehydration tank (3) are as shown in Figure 7. If the horizontal axis is the angular acceleration W and the vertical axis is the amount of vibration, then the amount of vibration is the angular acceleration W. increases with
Dehydration tank (3), rotating shaft (8), dehydration shaft (9), coupling (10), dehydration motor (7), screw (11)
, the natural frequency W of the vibration isolation system including all the vibration isolation springs (6), etc.
It reaches a maximum at the 2O point, then decreases, and becomes constant at a certain value.

かかる角加速度と振動量の関係は、前記従来例において
もあてはまるもので、第6図に示すように、脱水槽(3
)が停止状態から回転を開始する初期の角加速度は(d
W、/dTl )=α、となっており、この角加速度α
1は脱水機を全速運転する場合も間欠運転する場合も同
様で、脱水モーター(7)の起動トルクと脱水槽(3)
内の重量によって決定され、脱水機の固有振動数付近で
最大の振動量となっている。
This relationship between angular acceleration and vibration amount also applies to the conventional example, and as shown in FIG.
) starts rotating from a stopped state, the initial angular acceleration is (d
W,/dTl)=α, and this angular acceleration α
1 is the same whether the dehydrator is operated at full speed or intermittently, and the starting torque of the dehydrating motor (7) and the dehydrating tank (3) are the same.
The maximum amount of vibration occurs near the natural frequency of the dehydrator.

また、脱水モーター(7)に印加される電源電圧が基準
の100■に対して変動すると、例えばこれよりも低い
場合は第6図において曲線(ハ)に示すように、また高
い場合は曲線(ニ)に示すようにそれぞれ脱水槽(3)
の回転数の上昇カーブが異なってくる。すなわち角加速
度はα2〉α1〉α3の関係となり、電源電圧の高低に
よって、脱水槽(3)の回転が固有振動数付近を通過す
るために要する時間が異なってくる。
Also, if the power supply voltage applied to the dehydration motor (7) fluctuates with respect to the standard 100cm, for example, if it is lower than this, the curve (c) in Figure 6 shows, and if it is higher, the curve (c) As shown in (d), each dehydration tank (3)
The increase curve of the rotation speed will be different. That is, the angular acceleration has a relationship of α2>α1>α3, and the time required for the rotation of the dehydration tank (3) to pass around the natural frequency varies depending on the level of the power supply voltage.

他方、洗濯物の量が少ないときは、この脱水槽(3)で
脱水運転のみならず洗い運転を行うこともあり、洗い運
転に続く脱水運転においては、洗いに使用した水をこの
脱水工程で排水するようにしており、排水の方法として
は、脱水と同様に、脱水モーター(7)に通電して脱水
槽(3)を回転させ、その回転の遠心力により、脱水槽
(3)に設けた脱水孔(12)から脱水槽(3)内の水
を外部に排出する。
On the other hand, when the amount of laundry is small, this dehydration tank (3) may perform not only dehydration operation but also washing operation, and in the dehydration operation that follows the washing operation, the water used for washing is used in this dehydration process. As with dewatering, the dehydrating motor (7) is energized to rotate the dehydrating tank (3), and the centrifugal force of the rotation is used to remove water from the dehydrating tank (3). The water in the dehydration tank (3) is discharged to the outside from the dehydration hole (12).

洗濯槽で洗い運転を行い、その後、洗濯物を脱水槽で脱
水する場合は、脱水槽内には衣類が投入されるだけなの
で、脱水槽の重心は衣類を投入した時点である程度定ま
っており、脱水運転進行中もこの重心位置はほとんど変
わらない。よって、脱水運転開始後、脱水槽の回転数が
高くなるにしたがい、衣類に含まれている水分が徐々に
排出され、全速運転の場合は全回転に、間欠運転の場合
は所定の回転数にそれぞれスムーズに立上がることがで
きる。
When washing is performed in the washing tub and then the laundry is dehydrated in the spin-drying tank, the center of gravity of the spin-drying tank is determined to some extent when the clothes are placed in the spin-drying tank, as the clothes are simply thrown into the spin-drying tank. This center of gravity position hardly changes even during dehydration operation. Therefore, as the rotation speed of the dehydration tank increases after the start of dehydration operation, the moisture contained in the clothes is gradually discharged, and the rotation speed decreases to full rotation in the case of full-speed operation, or to a predetermined rotation speed in the case of intermittent operation. Each can stand up smoothly.

しかし、脱水槽側で洗い運転を行い、そのまま同じ脱水
槽で脱水運転を行って、この脱水工程で洗いに使用した
水を排水させようとする場合は、脱水槽を回転すると槽
内の水が回転により動き、この水の動きによって脱水槽
の重心位置が回転とともに大きく変わり、この重心変動
が偏芯荷重として脱水槽に作用することとなる。
However, if you perform washing operation on the dehydration tank side, then perform dehydration operation in the same dehydration tank, and then drain the water used for washing in this dehydration process, rotating the dehydration tank will drain the water in the tank. It moves due to rotation, and the movement of this water causes the position of the center of gravity of the dehydration tank to change significantly as it rotates, and this change in the center of gravity acts on the dehydration tank as an eccentric load.

その結果、脱水槽が揺れて脱水受槽にぶつかり、スムー
ズに全回転、あるいは所定の回転に達することができな
いという不都合が生じていた。
As a result, the dehydration tank shakes and collides with the dehydration receiving tank, resulting in an inconvenience in that the dehydration tank cannot smoothly reach a full rotation or a predetermined rotation.

この偏芯荷重は、脱水槽と内部の水とが滑っているとき
、すなわち脱水槽の加速に内部の水が追従しきれない間
はそれ程大きいものではないが、内部の水の回転速度が
脱水槽の回転速度に追いついた時にはかなり大きな偏芯
荷重となる。
This eccentric load is not so large when the dehydration tank and the water inside are slipping, that is, when the internal water cannot follow the acceleration of the dehydration tank, but the rotational speed of the internal water is When it catches up with the rotational speed of the aquarium, it becomes a fairly large eccentric load.

また、脱水槽の揺れは、前記のごと(その固有振動数で
最大となるが、脱水槽での洗い運転に続く脱水運転では
、槽内に入っている水によって脱水槽の全体重量が大き
くなっているために、固有振動数付近を通過するのにあ
る程度の時間を要し、しかもこの固有振動数付近の回転
数に達すると脱水槽内の水に大きな振動が与えられて水
が片寄り、大きな偏芯荷重となる。
In addition, the shaking of the dehydration tank is as described above (maximum at its natural frequency), but in the dehydration operation that follows the washing operation in the dehydration tank, the overall weight of the dehydration tank increases due to the water in the tank. Because of this, it takes a certain amount of time to pass around the natural frequency, and when the rotational speed reaches around this natural frequency, large vibrations are applied to the water in the dehydration tank, causing the water to shift to one side. This results in a large eccentric load.

その結果、この固有振動数付近で脱水槽が特に大きく揺
れて脱水受槽にぶつかるおそれがあり、脱水槽の回転を
スムーズに立上げることができなかった。
As a result, the dehydration tank vibrates particularly strongly around this natural frequency and may collide with the dehydration receiving tank, making it impossible to start up the rotation of the dehydration tank smoothly.

しかも、脱水モーターに印加される電源電圧の高低のバ
ラツキによって、脱水槽が固有振動数付近を通過する時
間が異なるため、例えば電源電圧が低い場合は、脱水槽
内の水が排水しきれないうちに全速回転に移行してしま
い、内部の残水の偏芯によって脱水槽が脱水受槽に当た
ることもある。
Moreover, the time it takes for the dehydration tank to pass around the natural frequency varies depending on the variation in the power supply voltage applied to the dehydration motor. The machine may shift to full speed rotation and the dehydration tank may hit the dehydration receiving tank due to the eccentricity of the residual water inside.

本発明の目的は前記従来例の不都合を解消し、脱水槽で
の洗い運転に続けて脱水運転を行う場合に、槽内の水の
動きが脱水槽の回転速度と同期して偏芯荷重となるのを
防止し、また脱水モーターに印加される電源電圧の高低
にかかわらず、固有振動数付近を通過するまでに脱水槽
内の残水を所定値以下に排水して固有振動数付近を早く
通過するようにして脱水槽が大きく揺れるのを防止し、
所定の回転数による回転にスムーズに達することのでき
る脱水機の運転制御方法を提供することにある。
The purpose of the present invention is to eliminate the disadvantages of the conventional example, and to provide a system in which, when a dehydration operation is performed following a washing operation in a dehydration tank, the movement of water in the tank is synchronized with the rotational speed of the dehydration tank, resulting in an eccentric load. In addition, regardless of the level of the power supply voltage applied to the dehydration motor, the remaining water in the dehydration tank is drained to a predetermined value or less before it passes around the natural frequency, and the natural frequency is quickly reached. To prevent the dehydration tank from shaking greatly,
An object of the present invention is to provide an operation control method for a dehydrator that can smoothly reach rotation at a predetermined rotation speed.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、前記目的を達成するため、洗濯槽と脱水槽と
を備え、脱水槽で洗い運転と脱水運転とを行う二槽式洗
濯機において、脱水運転時に初期の段階で脱水モーター
への短時間の通電と脱水モーターが停止するよう前記通
電時の回転方向とは逆方向への短時間の通電とを1サイ
クルとしてこれを数サイクル行った後に脱水モーターに
連続通電するようにし、かつ、前記正逆転のサイクル数
は脱水モーターへの印加電圧に応じてこれを決定するこ
とを要旨とするものである。
In order to achieve the above-mentioned object, the present invention provides a two-tub washing machine that is equipped with a washing tub and a spin-drying tank and performs washing and spin-drying operations in the spin-drying tank, and in which a short circuit is provided to the spin-driving motor at an early stage during the spin-driving operation. One cycle consists of energization for a certain period of time and energization for a short time in the direction opposite to the direction of rotation when the energization is applied so that the dehydration motor stops, and after several cycles of this, the dehydration motor is continuously energized; The gist is that the number of forward and reverse rotation cycles is determined depending on the voltage applied to the dehydration motor.

〔作用〕 本発明によれば、脱水槽での洗い運転に続いて、該槽で
脱水運転を行う場合、脱水運転の初期の段階で、左右い
ずれかに短時間通電して排水を行い、大きな偏芯荷重が
生じないうちに、かつ固有振動数に達しないうちに今度
は逆の方向に通電して脱水モーターに制動を加え急速に
停止させる。この状態では脱水槽内の水は、脱水槽の急
速な停止に追従しきれずに前回の通電時の回転方向に回
り続ける。
[Function] According to the present invention, when a dehydration operation is performed in a dehydration tank following a washing operation in the dehydration tank, in the initial stage of the dehydration operation, electricity is applied for a short time to either the left or right side to drain water, and a large amount of water is removed. Before an eccentric load occurs and before the natural frequency is reached, current is applied in the opposite direction to apply braking to the dewatering motor and bring it to a rapid stop. In this state, the water in the dehydration tank cannot follow the rapid stoppage of the dehydration tank and continues to rotate in the direction of rotation when the current was last applied.

そして、再び短時間通電して排水を行い、次いで逆方向
に再び通電して脱水モーターに制動を加える。
Then, the water is energized again for a short time to drain the water, and then the water is energized again in the opposite direction to brake the dewatering motor.

かかる正逆転のサイクルの回数は、脱水モーターに印加
される電源電圧の高低に応じて決定され、脱水槽内の残
水が多すぎないようにある程度まで確実に排水されてか
ら、脱水モーターを連続回転する脱水工程に移行する。
The number of such forward and reverse cycles is determined depending on the level of the power supply voltage applied to the dehydration motor, and the dehydration motor is continuously operated after the remaining water in the dehydration tank has been drained to a certain extent to prevent too much water. Move on to the rotating dehydration process.

よって、この脱水工程で脱水槽の回転数は固有振動数に
達しここを通過するが、この時、脱水槽内の残水は確実
に少なくなっているので、大きな振動が生ずることはな
い。
Therefore, in this dehydration step, the rotational speed of the dehydration tank reaches the natural frequency and passes through this, but at this time, the remaining water in the dehydration tank is definitely reduced, so no large vibrations occur.

〔実施例〕〔Example〕

以下、図面について本発明の実施例を詳細に説明する。 Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は本発明の脱水機の運転制御方法の実施例を示す
通電時間と脱水槽の回転数との関係を示す特性曲線図、
第2図は脱水モーターの電気回路図で、第2図中、(1
6)は脱水モーター(7)に接続した右回転スイッチ、
(17)は左回転スイッチ、(14)は起動用コンデン
サ、(13a)(13b)は誘電コイル、(15)は電
源を示し、この電源(15)と脱水モーター(7)との
間には、該電源(15)の電圧を検出しこの検出した電
圧値に応じて脱水モーター(7)への正逆通電のサイク
ル数を決定する電源電圧検出部(15a)が設けられる
FIG. 1 is a characteristic curve diagram showing the relationship between the energization time and the rotation speed of the dehydrating tank, showing an embodiment of the dehydrator operation control method of the present invention;
Figure 2 is an electrical circuit diagram of the dehydration motor.
6) is a clockwise rotation switch connected to the dehydration motor (7),
(17) is a counterclockwise rotation switch, (14) is a starting capacitor, (13a) and (13b) are induction coils, and (15) is a power supply. Between this power supply (15) and the dehydration motor (7), A power supply voltage detection unit (15a) is provided which detects the voltage of the power supply (15) and determines the number of cycles of forward and reverse energization to the dehydration motor (7) according to the detected voltage value.

なお、本発明方法で使用する脱水機は第4図について既
に説明した従来例と同様であるから、ここでの詳細な説
明は省略する。
The dehydrator used in the method of the present invention is the same as the conventional example already explained with reference to FIG. 4, so detailed explanation will be omitted here.

本発明の運転制御方法は、脱水槽(3)で洗い運転を行
った後、これに続けて該脱水槽(3)で排水、脱水運転
を行う場合、例えば右回転スイッチ(16)をオンして
脱水モーター(7)に時間t1だけ通電して脱水槽(3
)を右方向へ回転させる。
In the operation control method of the present invention, when a washing operation is performed in the dehydration tank (3) and then a draining and dehydration operation is performed in the dehydration tank (3), for example, the clockwise rotation switch (16) is turned on. energize the dehydration motor (7) for a time t1 to remove water from the dehydration tank (3).
) to the right.

この初期通電時間1+は、脱水槽(3)の角速度がその
固有振動数W1に達しないような短時間のものに設定し
ておく。
This initial energization time 1+ is set to a short time such that the angular velocity of the dehydration tank (3) does not reach its natural frequency W1.

そして、この初期通電時間tlの間に、脱水槽(3)内
の水も回転するが、この水の動きは脱水槽(3)の加速
度が水の粘性を上回っているため、脱水槽(3)の周面
と接する部分は速い速度で回転し、中心に向かうにした
がい回転速度が遅くなる。そして、脱水槽(3)の回転
による遠心力で槽内の水は該脱水槽(3)の周壁に対し
滑りながら徐々に加速し、これにそって立上げられ、脱
水孔(12)を通って槽外に排出される。
During this initial energization time tl, the water in the dehydration tank (3) also rotates, but the movement of this water is caused by the acceleration of the dehydration tank (3) exceeding the viscosity of the water. ) rotates at a high speed in contact with the circumferential surface, and the rotation speed slows down toward the center. Then, due to the centrifugal force caused by the rotation of the dehydration tank (3), the water in the tank is gradually accelerated while sliding against the peripheral wall of the dehydration tank (3), and is raised along this and passes through the dehydration hole (12). It is discharged outside the tank.

ここで、脱水モーター(7)への通電が一旦停止し、非
通電時間t2経過後に、今度は左回転スイッチ(17)
がオンし、脱水モーター(7)は左回転方向に時間t3
だけ通電される。この時、脱水槽(3)は慣性により右
回転しているので、脱水モーター(7)への左回転方向
への通電により、脱水槽(3)にはこれを停止させるよ
うなトルク、すなわち制動力が加えられる。
Here, the power supply to the dehydration motor (7) is temporarily stopped, and after the de-energization time t2 has elapsed, the counterclockwise rotation switch (17) is turned on.
is turned on, and the dehydration motor (7) rotates counterclockwise for time t3.
Only the current is energized. At this time, the dehydration tank (3) is rotating clockwise due to inertia, so by energizing the dehydration motor (7) in the counterclockwise rotation direction, a torque is applied to the dehydration tank (3) to stop it. Power is added.

従って、脱水槽(3)は急速にかつ安全に停止させられ
、脱水槽(3)内の残水は脱水槽(3)の停止に追従し
きれず、水だけが右方向への回転を続ける。
Therefore, the dehydration tank (3) is quickly and safely stopped, and the remaining water in the dehydration tank (3) cannot follow the stoppage of the dehydration tank (3), and only the water continues to rotate in the right direction.

そして、停止時間t4を経て、再び右回転スイッチ(1
6)がオンし所定時間だけ脱水モーター(7)に通電さ
れた後、停止して、次に再び左回転スイッチ(17)が
オンし、所定時間通電される。
Then, after the stop time t4, the clockwise rotation switch (1
6) is turned on and the dewatering motor (7) is energized for a predetermined time, then stopped, and then the counterclockwise rotation switch (17) is turned on again and the dehydration motor (7) is energized for a predetermined time.

かかる右回転と左回転とによる正逆転を繰返すことによ
り、脱水槽(3)内の残水が徐々に排水されていくが、
この間、電源電圧検出部(15a)では脱水モーター(
7)に印加される電源(15)の電圧を検出し、この電
圧値に基づいて前記正逆転の回転のサイクル回数を決定
する。
By repeating this forward and reverse rotation by clockwise rotation and counterclockwise rotation, the remaining water in the dehydration tank (3) is gradually drained.
During this time, the power supply voltage detection unit (15a) detects the dehydration motor (
7) detect the voltage of the power supply (15) applied to the motor, and determine the number of cycles of the forward and reverse rotations based on this voltage value.

すなわち、例えば電源電圧が基準値より低ければ第1図
に示したサイクル回数よりも多い回数が設定され、これ
とは反対に電源電圧が高ければ少ない回数に設定される
That is, for example, if the power supply voltage is lower than the reference value, a greater number of cycles than shown in FIG. 1 is set; on the other hand, if the power supply voltage is high, a smaller number of cycles is set.

このようにして残水が確実に排水され、脱水槽(3)が
加速された時の回転数も徐々に高いものとなり、次第に
固有振動数付近に近づく。しかし、残水は脱水槽(3)
の加速に追いつかず滑っている状態であるから、大きな
振動が生じることはない。
In this way, the remaining water is reliably drained, and the rotational speed when the dehydration tank (3) is accelerated gradually increases, gradually approaching the natural frequency. However, the remaining water is in the dehydration tank (3)
Since it cannot keep up with the acceleration of

以上のようにして脱水槽(3)の右回転による加速と逆
の左回転による制動とを繰返して脱水運転の初期の段階
において固有振動数以下の回転数で脱水槽(3)内の水
を徐々に排出し、残水が少な(なったところで、脱水モ
ーター(7)に再び右回転方向に通電し、次いで停止す
る。この停止時間中に、今度は残水が脱水槽(3)の回
転速度に追いつき、大きな偏芯荷重が生じるが、次に直
ちに左回転方向に脱水モーター(7)に時間L3だけ通
電することで、脱水槽(3)の回転に急速に制動が加え
られ、その結果、残水は脱水槽(3)の回転に再び追従
できなくなり滑るようになる。
As described above, the acceleration by rotating the dehydration tank (3) to the right and the braking by rotating the dehydration tank (3) to the left are repeated, and the water in the dehydration tank (3) is removed at a rotational speed below the natural frequency in the initial stage of dehydration operation. It is gradually drained, and when the remaining water becomes small, the dehydrating motor (7) is energized again in the clockwise rotation direction and then stopped. During this stop time, the remaining water is transferred to the rotation of the dehydrating tank (3). The speed catches up and a large eccentric load is generated, but then the rotation of the dehydration tank (3) is rapidly braked by immediately energizing the dehydration motor (7) in the counterclockwise rotation direction for a period of time L3. , the remaining water will no longer be able to follow the rotation of the dehydration tank (3) and will begin to slip.

このようにして−気に脱水槽(3)の回転数を下げて固
有振動数を通過するので大きな偏芯荷重が生じることが
なく脱水槽(3)が大きく振動することはない。
In this way, the rotation speed of the dehydration tank (3) is lowered to allow the vibration to pass through the natural frequency, so that no large eccentric load is generated and the dehydration tank (3) does not vibrate greatly.

そして、脱水槽(3)に加えられる左回転の力により脱
水槽(3)は急速かつ安全に停止するので、次に右回転
方向の力が加えられたときには安定した状態でスムーズ
に立上がることができる。
Since the dehydration tank (3) stops quickly and safely due to the counterclockwise rotational force applied to the dehydration tank (3), the next time a clockwise rotational force is applied, the dehydration tank (3) will stand up smoothly and stably. Can be done.

図中、破線で示した曲線は脱水槽(3)を停止すべ(左
回転方向側に通電しなかった場合の脱水槽(3)の回転
力の変化を示す。
In the figure, the curve indicated by a broken line indicates the change in the rotational force of the dehydration tank (3) when the dehydration tank (3) is stopped (no electricity is applied in the counterclockwise rotation direction).

かかる間欠脱水を行った後、通電オフ時間を経て最後に
モーター(7)に連続通電して全速脱水に移行する。こ
の時点での脱水槽(3)内の水の量は前記間欠脱水によ
り排水されているので少な(なっており、脱水槽(3)
全体の重量が小さくなっているために全速脱水時の加速
角度は間欠脱水時の加速度よりも大きく、固有振動数付
近を短時間で通過でき、また、槽内には大量の水はない
ので、偏芯荷重が生じてこれが脱水槽(3)に作用する
こともない。
After performing such intermittent dehydration, after a period of energization off, the motor (7) is finally continuously energized to shift to full speed dehydration. At this point, the amount of water in the dehydration tank (3) is small because it has been drained by the intermittent dehydration, and the amount of water in the dehydration tank (3) is small.
Because the overall weight is smaller, the acceleration angle during full-speed dehydration is larger than that during intermittent dehydration, and the natural frequency can be passed in a short time.Also, since there is not a large amount of water in the tank, There is no possibility that an eccentric load will occur and act on the dehydration tank (3).

なお、前記実施例において、右回転通電後に、通電オフ
時間を設けたが、これは左右同時通電を防止するためで
あるので、例えばマイコン制御による高速スイッチング
が可能な場合や、機械タイマーを使用する場合でも左右
同時通電を防止する機能を有する接点を採用する場合に
は、通電オフ時間は必ずしも設ける必要はなく、右回転
通電停止後、直ちに左回転に通電することができる。
In the above embodiment, a energization off time was provided after clockwise energization, but this is to prevent simultaneous energization of the left and right sides.For example, if high-speed switching by microcomputer control is possible, or if a mechanical timer is used. Even in this case, if a contact point having a function of preventing simultaneous energization of the left and right sides is used, it is not necessarily necessary to provide an energization off time, and it is possible to energize the left rotation immediately after the right rotation energization is stopped.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明の脱水機の運転制御方法は、二
槽式洗濯機の脱水槽で洗い運転とこれに続く脱水運転を
行う場合に、脱水運転時においてその初期の段階で、脱
水モーターへの通電と逆回転方向への通電との繰返しに
より、脱水槽の回転に対して加速と電気的ブレーキによ
る停止とを繰返し与えるようにして槽内の水を間欠的に
徐々に排出するようにしたので、脱水槽と水との回転が
同期して脱水槽に大きな偏芯荷重が作用するおそれがな
く、また脱水槽の固有振動数付近を大きな振動を発生さ
せることなく短時間で通過出来る。
As described above, the method for controlling the operation of a dehydrator according to the present invention is such that when a washing operation and a subsequent dehydration operation are performed in the dehydration tank of a two-tub washing machine, the dehydration motor is By repeating energization to and energization in the reverse rotation direction, the rotation of the dehydration tank is repeatedly accelerated and stopped by an electric brake, so that the water in the tank is intermittently and gradually drained. Therefore, the rotation of the dehydration tank and the water are synchronized, so there is no risk of a large eccentric load acting on the dehydration tank, and the dehydration tank can pass through the vicinity of its natural frequency in a short time without generating large vibrations.

しかも、間欠的に行う正逆転の回数を電源電圧に応じて
決定したので、電源電圧のばらつきによって、仮に水が
排出し切れないので偏芯荷重となり得る量のまま脱水の
全速回転工程に移行することを防止できるので、これが
原因で脱水槽が大きく揺れて脱水受槽にぶつかるおそれ
がなく、その結果スムーズに排水し、かつ全速度回転に
達することができるものである。
Moreover, since the number of intermittent forward and reverse rotations is determined according to the power supply voltage, if the water cannot be completely discharged due to variations in the power supply voltage, the dewatering process can proceed to the full speed rotation process with an amount that could cause an eccentric load. Since this prevents the dehydration tank from shaking greatly and hitting the dehydration receiving tank, the water can be drained smoothly and the rotation speed can be reached at full speed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の脱水機の運転制御方法の実施例を示す
通電時間と脱水槽の回転数との関係を示す特性曲線図、
第2図は脱水モーターの電気回路図、第3図は二槽式洗
濯機の全体斜視図、第4図は同上要部である脱水機の縦
断側面図、第5図は従来の脱水制御回路図、第6図は同
上通電時間と脱水槽の回転数との関係を示す特性曲線図
、第7図は脱水槽の角速度と振動量との関係を示す特性
曲線図である。 (1)・・・外箱     (2)・・・洗濯槽(3)
・・・脱水槽    (4)・・・脱水受槽(5)・・
・底枠     (6)・・・防振バネ(7)・・・脱
水モーター (8)・・・回転軸(9)・・・脱水軸 
   (10)・・・カップリング(11)・・・ネジ
     (12)・・・脱水孔(13a)(13b)
・・・gミコイル(14・・・起動用コンデンサ (15・・・電源     (15a)・・・電源電圧
検出部(16・・・右回転スイッチ (17・・・左回転スイッチ(18)・・・誘電コイル
(19・・・起動用コンデンサ (20・・・タイムスイッチ (21)・・・時限接点 (23)・・・カム (22)・・・時限接点 (24)・・・切換スイッチ
FIG. 1 is a characteristic curve diagram showing the relationship between the energization time and the rotation speed of the dehydrating tank, showing an embodiment of the dehydrator operation control method of the present invention;
Figure 2 is an electric circuit diagram of the dewatering motor, Figure 3 is an overall perspective view of a two-tub washing machine, Figure 4 is a longitudinal cross-sectional side view of the dehydrator, which is the main part of the same, and Figure 5 is a conventional dehydrating control circuit. 6 is a characteristic curve diagram showing the relationship between the energization time and the rotation speed of the dehydration tank, and FIG. 7 is a characteristic curve diagram showing the relationship between the angular velocity of the dehydration tank and the amount of vibration. (1)...Outer box (2)...Washing tub (3)
... Dehydration tank (4) ... Dehydration tank (5) ...
・Bottom frame (6)...Vibration proof spring (7)...Dehydration motor (8)...Rotation shaft (9)...Dehydration shaft
(10) Coupling (11) Screw (12) Dehydration hole (13a) (13b)
...Gmi coil (14...Starting capacitor (15...Power source (15a)...Power supply voltage detection section (16...Right rotation switch (17...Left rotation switch (18)...・Induction coil (19... Starting capacitor (20)... Time switch (21)... Time contact (23)... Cam (22)... Time contact (24)... Changeover switch

Claims (1)

【特許請求の範囲】[Claims] 洗濯槽と脱水槽とを備え、脱水槽で洗い運転と脱水運転
とを行う二槽式洗濯機において、脱水運転時に初期の段
階で脱水モーターへの短時間の通電と脱水モーターが停
止するよう前記通電時の回転方向とは逆方向への短時間
の通電とを1サイクルとしてこれを数サイクル行った後
に脱水モーターに連続通電するようにし、かつ、前記正
逆転のサイクル数は脱水モーターへの印加電圧に応じて
これを決定することを特徴とした脱水機の運転制御方法
In a two-tub washing machine that is equipped with a washing tub and a spin-drying tank, and in which the spin-drying tank performs washing and spin-drying operations, the above-mentioned method is adopted so that the spin-dry motor is energized for a short time and the spin-dry motor is stopped at an early stage during the spin-dry operation. One cycle is a short-time energization in the opposite direction to the rotation direction when energizing, and after several cycles of this, the dehydration motor is continuously energized, and the number of forward and reverse cycles is equal to the number of cycles applied to the dehydration motor. A method for controlling the operation of a dehydrator, characterized in that the voltage is determined according to the voltage.
JP1276445A 1989-10-24 1989-10-24 Operation control method for dehydrator Pending JPH03136697A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1276445A JPH03136697A (en) 1989-10-24 1989-10-24 Operation control method for dehydrator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1276445A JPH03136697A (en) 1989-10-24 1989-10-24 Operation control method for dehydrator

Publications (1)

Publication Number Publication Date
JPH03136697A true JPH03136697A (en) 1991-06-11

Family

ID=17569529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1276445A Pending JPH03136697A (en) 1989-10-24 1989-10-24 Operation control method for dehydrator

Country Status (1)

Country Link
JP (1) JPH03136697A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5470654A (en) * 1977-11-16 1979-06-06 Sanyo Electric Co Ltd Dewatering machine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5470654A (en) * 1977-11-16 1979-06-06 Sanyo Electric Co Ltd Dewatering machine

Similar Documents

Publication Publication Date Title
JP3205000B2 (en) Drum type washer / dryer
JP2001062189A (en) Washing machine, and washing machine vibration detection device
JPH03136697A (en) Operation control method for dehydrator
JPH0271797A (en) Operation control method for dewaterer
KR0161900B1 (en) Dehydration method of drum type washing machine
KR960005803B1 (en) Dehydrator
TW201237228A (en) Washing machine
JPH02209196A (en) Operation control method for dehydrating machine
JP3937630B2 (en) Washing and drying machine
JPH01314598A (en) Method for controlling running of hydroextractor
JPH01314599A (en) Method for controlling running of hydroextractor
JP3423231B2 (en) Drum type washing machine
JPH1155977A (en) Control circuit for capacitor motor and dewatering device provided with the control circuit
JPH0277297A (en) Operation control method for dewatering machine
JP4206865B2 (en) Washing machine
JP3026654B2 (en) Centrifugal dehydrator
JP3071042B2 (en) Dehydration equipment
JP2753377B2 (en) Fully automatic washing machine
JPH0497777A (en) Electric washing machine
JPH11244593A (en) Drum type centrifugal dehydrating device
JPS63164994A (en) Dehydration operation control method of washing machine
JPS61154598A (en) Controller of dehydrator
JPH0515686A (en) Washing machine
JP3108952B2 (en) Fully automatic washing machine
JPS59136154A (en) Dehydrater