JPH03133006A - Silver-copper alloy group conductive paste and conductor using same - Google Patents

Silver-copper alloy group conductive paste and conductor using same

Info

Publication number
JPH03133006A
JPH03133006A JP1269026A JP26902689A JPH03133006A JP H03133006 A JPH03133006 A JP H03133006A JP 1269026 A JP1269026 A JP 1269026A JP 26902689 A JP26902689 A JP 26902689A JP H03133006 A JPH03133006 A JP H03133006A
Authority
JP
Japan
Prior art keywords
silver
conductive paste
copper alloy
weight
thermosetting resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1269026A
Other languages
Japanese (ja)
Inventor
Akinori Yokoyama
明典 横山
Hitoshi Nakajima
斉 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP1269026A priority Critical patent/JPH03133006A/en
Publication of JPH03133006A publication Critical patent/JPH03133006A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a conductive paste having its excellent conductivity, and also its excellent acid resistance over a long period of time while having no migration of silver by specifying the mutual compounding ratio of silver-copper alloy powder and a thermosetting resin in manufacturing the conductive paste composed of the thermosetting resin and the silver-copper alloy powder. CONSTITUTION:The mutual ratio by weight of silver-copper alloy powder/a thermosetting resin is specified to have a range from 1 to 9, and preferably from 3 to 8. An excess of the ratio by weight over 9 causes lowering of the conductivity and mechanical strength of a conductive paste because there is no quantity of resin sufficient to mutually combine conductive metal powder present in the paint film. Also the ratio by weight less than 1 causes a refusal to obtain sufficient conductivity of the paste because a quantity of conductive metal portion is insufficient. Besides, it is preferable to have 5 to 100 pts.wt. of a solvent of the thermosetting resin against 100 pts. wt. in the total of the silver-copper alloy powder and the thermosetting resin contained in the paste. This results in obtaining the silver-copper alloy group conductive paste having its high conductivity, excellent acid resistance and no migration of silver.

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明は、導電性に優れ、かつ耐酸化性が良く、恨マイ
グレーションに優れた特性を有する銀銅合金糸導電性ペ
ーストに関するものであり、電磁波シールド、ICダイ
ボンディングペースト、コンデンサー用電極、導電性接
着剤、接点材料、導電回路用ペーストとして応用できる
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a silver-copper alloy thread conductive paste that has excellent conductivity, good oxidation resistance, and excellent anti-migration properties. It can be used as electromagnetic shielding, IC die bonding paste, capacitor electrodes, conductive adhesives, contact materials, and conductive circuit pastes.

〔従来の技術〕[Conventional technology]

従来、導電性を有する材料として、カーボン、銅、アル
ミニウムや、銅、パラジウム等の貴金属、銀メツキ複合
粉が用いられており、これら導電性の粉末をエポキシ、
フェノール、メラミン、熱硬化性アクリルメラミン樹脂
等の熱硬化性樹脂と溶剤、必要に応じて添加剤を加え分
散させたペーストが公知である。
Conventionally, carbon, copper, aluminum, precious metals such as copper and palladium, and silver plating composite powder have been used as conductive materials.
A paste prepared by dispersing a thermosetting resin such as phenol, melamine, or thermosetting acrylic melamine resin, a solvent, and additives as necessary is known.

〔発明が解決しようとする課題] 公知導電性ペーストとして用いられているカーボン、銅
、銀及び貴金属粉末、恨メツキ複合粉は以下の欠点があ
る。銅は安価であるが、酸化により塗膜の導電性が低下
しやすい。また、銀は高価であり、電場中、特に高湿度
下で銀がマイグレーションを起こし絶縁不良を起こしや
すい。銀メツキ粉末は、ペーストとする場合、剥がれが
生じやすく、銀のマイグレーションを完全に防止するに
は至っていない。カーボン粉末を用いたペーストは導電
性が劣るという欠点を有している。
[Problems to be Solved by the Invention] Carbon, copper, silver, noble metal powders, and granmetsuki composite powders used as known conductive pastes have the following drawbacks. Copper is inexpensive, but the conductivity of the coating film tends to decrease due to oxidation. Furthermore, silver is expensive and tends to migrate in an electric field, especially under high humidity, resulting in poor insulation. When the silver plating powder is made into a paste, it tends to peel off and cannot completely prevent silver migration. Pastes using carbon powder have the disadvantage of poor electrical conductivity.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、導電性に優れ、かつ長期にわたり耐酸化性に
優れ、恨マイグレーションを起こさない銀銅合金糸導電
性ペーストとその応用に関するものである。
The present invention relates to a silver-copper alloy thread conductive paste that has excellent conductivity, long-term oxidation resistance, and does not cause migration, and its applications.

即ち、本発明は、 1、熱硬化性樹脂と、銀銅合金粉末とからなる導電性ペ
ーストにおいて、銀銅合金粉末9重量部に対して、熱硬
化性樹脂工ないし9重量部を有する銅銀合金系導電性ペ
ースト。
That is, the present invention provides the following features: 1. In a conductive paste consisting of a thermosetting resin and a silver-copper alloy powder, a thermosetting resin or a copper-silver alloy having 9 parts by weight based on 9 parts by weight of a silver-copper alloy powder is provided. Alloy-based conductive paste.

2、熱硬化性樹脂と銀銅合金粉末の合計100重量部に
対して、熱硬化性樹脂の溶剤を5重量部〜100重量部
含有することを特徴とする導電性ペースト。
2. A conductive paste containing 5 to 100 parts by weight of a thermosetting resin solvent based on a total of 100 parts by weight of the thermosetting resin and silver-copper alloy powder.

3、 上記1または2に記載の導電性ペーストに、炭素
数12以上の脂肪酸あるいはその塩、アルキルジカルボ
ン酸、アラルキルジカルボン酸、オキシカルボン酸、キ
レート形成剤、フェノール化合物の1種以上を前期銀銅
合金粉末100重量部にたいして0.1〜25重量部を
含有させたことを特徴とする導電性ペースト。
3. Add one or more of a fatty acid having 12 or more carbon atoms or a salt thereof, an alkyl dicarboxylic acid, an aralkyl dicarboxylic acid, an oxycarboxylic acid, a chelate forming agent, or a phenol compound to the conductive paste described in 1 or 2 above. A conductive paste containing 0.1 to 25 parts by weight per 100 parts by weight of alloy powder.

4、 上記1,2または3に記載の導電性ペーストから
なる導電性接着剤。
4. A conductive adhesive comprising the conductive paste described in 1, 2 or 3 above.

5、上記1.2または3に記載の導電性ペーストを、加
熱硬化したプリント電子回路用導線。
5. A conductive wire for a printed electronic circuit obtained by heating and curing the conductive paste described in 1.2 or 3 above.

6、上記2または3に記載の導電性ペーストからなるス
クリーン印刷用導電性ペースト。
6. A conductive paste for screen printing comprising the conductive paste described in 2 or 3 above.

7、 上記2または3に記載の導電性ペーストを加熱硬
化処理した電磁波シールド膜である。
7. An electromagnetic shielding film obtained by heating and curing the conductive paste described in 2 or 3 above.

本発明に用いる銀銅合金粉末は、少量の銀(該合金1重
量部中の0.01〜0.4重量部)を含み、かつ内部か
ら表面に向かって、銀濃度が増加する領域を有し、かつ
表面の銀濃度が平均の銀濃度の2.1倍以上になってい
ることを特徴とするものであり、高い導電性、耐酸化性
、低銀マイグレーション性を有する。
The silver-copper alloy powder used in the present invention contains a small amount of silver (0.01 to 0.4 parts by weight per 1 part by weight of the alloy) and has a region where the silver concentration increases from the inside toward the surface. It is characterized in that the surface silver concentration is 2.1 times or more the average silver concentration, and has high electrical conductivity, oxidation resistance, and low silver migration.

本発明で用いる銀銅合金粉末の好ましい範囲は、AgX
Cu+−x (ただし、Xは重量単位で0.01〜0.
4)で表され、かつ、内部より表面に向けて恨の濃度が
増加する領域を有し、かつ、表面の銀濃度が平均の銀濃
度の2.1倍以上である銀銅合金粉末(以下、銀銅合金
粉末と略記する)であり、その製造方法は、さきに同一
出願人により出願した特開平1205569号において
詳細に説明されているが、高圧ガスアトマイズ法を用い
るのが好ましい。それによれば、該組成の銀、銅を混合
し、不活性ガス中、るつぼ等で高周波誘導加熱を用いて
融解する。さらに、るつぼ先端より融液を不活性ガス中
へ噴出する。噴出と同時に高圧の不活性ガスを断熱膨張
させて発生した高速気流を融液に向かって噴出してアト
マイズ化し、微粒子を作製する方法等が挙げられる。
The preferred range of the silver-copper alloy powder used in the present invention is AgX
Cu+-x (where X is 0.01 to 0.0 in weight unit)
4), and has a region in which the concentration increases from the inside toward the surface, and the silver concentration on the surface is 2.1 times or more than the average silver concentration (hereinafter referred to as silver-copper alloy powder) , abbreviated as silver-copper alloy powder), and its manufacturing method is described in detail in Japanese Patent Laid-Open No. 1205569 previously filed by the same applicant, but it is preferable to use a high-pressure gas atomization method. According to this, silver and copper having the above composition are mixed and melted in a crucible or the like in an inert gas using high frequency induction heating. Furthermore, the melt is jetted into the inert gas from the tip of the crucible. Examples include a method in which a high-speed airflow generated by adiabatically expanding a high-pressure inert gas at the same time as the ejection is ejected toward the melt to atomize it to produce fine particles.

本発明で用いられる銀銅合金粉末の平均粒径は、1〜1
00μmが好ましく、100μmを越えると印刷適正が
悪く、また、1μm未満では導電性が劣り、1〜30μ
mがさらに好ましく、5〜15μmが最も好ましい。形
状は球状、鱗片状およびそれらの混合物が好ましく、な
かでも、それらの混合物が好ましい。鱗片状粉末の形状
は、径/厚み比が3以上であるのが好ましい。
The average particle size of the silver-copper alloy powder used in the present invention is 1 to 1
00 μm is preferable; if it exceeds 100 μm, printing properties are poor; if it is less than 1 μm, conductivity is poor;
m is more preferable, and 5 to 15 μm is most preferable. Preferably, the shape is spherical, scaly, or a mixture thereof, and a mixture thereof is particularly preferable. It is preferable that the shape of the scaly powder has a diameter/thickness ratio of 3 or more.

本発明に用いる熱硬化性樹脂は、エポキシ樹脂、フェノ
ール樹脂、メラミン樹脂、アルキッド樹脂、ポリウレタ
ン樹脂、ポリエステル樹脂、熱硬化性アクリル樹脂及び
それらの変性樹脂の1種以上の組合せがあげられる。中
でもエポキシ樹脂、フェノール樹脂の1種あるいは2種
以上の組合せが好ましい。エポキシ樹脂としては、分子
量380〜8000のビスフェノールA型エポキシ樹脂
、ノボラック型エポキシ樹脂、ブロム化ビスフェノール
A型エポキシ樹脂、およびそれらの変性樹脂や樹脂酸変
性エポキシ樹脂などが挙げられる。フェノール樹脂とし
ては、ノボラック型、レゾール型フェノール樹脂、ロジ
ン変性フェノール樹脂を単独あるいはエポキシ樹脂の架
橋剤として用いるのが好ましい。メラミン樹脂としては
、例えばメチロール化メラミンあるいはアルキル化メチ
ロールメラミン樹脂等をエポキシ樹脂の架橋剤して混ぜ
合わせて用いるのが好ましい。エポキシ樹脂の熱硬化剤
としては、上述の樹脂、有機ポリアミン、酸無水物、ジ
シアンジアミド、三弗化はう素などの公知の硬化剤など
が用いられる。
The thermosetting resin used in the present invention includes one or more combinations of epoxy resin, phenol resin, melamine resin, alkyd resin, polyurethane resin, polyester resin, thermosetting acrylic resin, and modified resins thereof. Among these, one type or a combination of two or more of epoxy resins and phenol resins are preferred. Examples of the epoxy resin include bisphenol A type epoxy resins, novolak type epoxy resins, brominated bisphenol A type epoxy resins, modified resins thereof, and acid-modified epoxy resins having a molecular weight of 380 to 8000. As the phenol resin, it is preferable to use a novolac type phenol resin, a resol type phenol resin, or a rosin-modified phenol resin alone or as a crosslinking agent for an epoxy resin. As the melamine resin, it is preferable to use, for example, methylolated melamine or alkylated methylolmelamine resin as a crosslinking agent for the epoxy resin. As the thermosetting agent for the epoxy resin, the above-mentioned resins, organic polyamines, acid anhydrides, dicyandiamide, fluorine trifluoride, and other known curing agents are used.

本発明の銀銅合金系導電性ペーストは、銀銅合金粉末/
熱硬化性樹脂の重量比が1〜9であり、好ましくは3〜
8である。9を越える場合は塗膜中の導電性金属粉末を
結合させておくに充分な樹脂量がなく、導電性、機械的
強度を低下させる。
The silver-copper alloy-based conductive paste of the present invention comprises silver-copper alloy powder/
The weight ratio of the thermosetting resin is 1 to 9, preferably 3 to 9.
It is 8. If it exceeds 9, there is not enough resin to bind the conductive metal powder in the coating, resulting in a decrease in conductivity and mechanical strength.

また、1未満では、導電性金属分の量が足りず充分な導
電性が得られない。さらに、熱硬化性樹脂の溶剤を銀銅
合金粉末と熱硬化性樹脂の合計100重量部に対して5
〜100重量部を含有することが好ましい。
Further, if it is less than 1, the amount of conductive metal is insufficient and sufficient conductivity cannot be obtained. Furthermore, add 5 parts by weight of the thermosetting resin solvent to 100 parts by weight of the silver-copper alloy powder and the thermosetting resin.
It is preferable to contain up to 100 parts by weight.

本発明で用いる熱硬化性樹脂の溶剤は、公知の溶剤で構
わない。例えばトルエン、キシレンなどの芳香族溶剤、
メチルエチルケトン、メチルイソブチルケトン、酢酸ブ
チル、ブチルセロソルブ、エチルセロソルブ、ブチルカ
ルピトール、ブチルカルピトールアセテート、α−テル
ベノール、イソプロパツール等を1種以上含むものなど
が好ましり、vA銅合金粉末と熱硬化性樹脂合計100
重量部に対して5〜100重量部を含有させる。含有量
が100重量部を超える場合は印刷ににじみ等が生じ導
電性を損ね、また、5重量部未満の場合には粘度が高す
ぎて印刷適性を向上する効果が少ない。10〜30重量
部が好ましい。
The solvent for the thermosetting resin used in the present invention may be any known solvent. For example, aromatic solvents such as toluene and xylene,
Preferably, those containing one or more of methyl ethyl ketone, methyl isobutyl ketone, butyl acetate, butyl cellosolve, ethyl cellosolve, butyl carpitol, butyl carpitol acetate, α-terbenol, isopropanol, etc., and vA copper alloy powder and thermosetting. Total resin: 100
It is contained in an amount of 5 to 100 parts by weight. When the content exceeds 100 parts by weight, bleeding occurs in printing and impairs conductivity, and when the content is less than 5 parts by weight, the viscosity is too high and there is little effect in improving printability. 10 to 30 parts by weight is preferred.

本発明の導電性ペースト中の銀銅合金粉末の分散性を向
上させるため、粉末表面の銅酸化物を除去あるいは還元
するなどのため添加剤を加えても良い。
In order to improve the dispersibility of the silver-copper alloy powder in the conductive paste of the present invention, additives may be added to remove or reduce copper oxides on the powder surface.

本発明に用いる添加剤としては、銅酸化物の還元剤、溶
解剤など銅粉末の公知な添加剤が用いられる。特に炭素
数10以上、好ましくは炭素数16〜18の飽和あるい
は不飽和脂肪酸及びそれらの金属塩、オキシカルボン酸
(例えばりんご酸、グルコース酸、グリセリン酸、乳酸
、酒石酸、クエン酸、マンデル酸、サリチル酸)、銅金
属キレート形成剤、或はハイドロキノン、ピロカテコー
ル、フェノール及びその誘導体などのフェノール化合物
が好ましい。添加量としては、銀銅合金粉末100重量
部に対して0.1〜25重量部が必要である。添加量が
25重量部を超える場合には導電体の特性に悪影響がで
き、また、0.1重量部未満では、効果が充分でない。
As the additives used in the present invention, known additives for copper powder such as copper oxide reducing agents and dissolving agents are used. In particular, saturated or unsaturated fatty acids having 10 or more carbon atoms, preferably 16 to 18 carbon atoms, and their metal salts, oxycarboxylic acids (e.g. malic acid, glucose acid, glyceric acid, lactic acid, tartaric acid, citric acid, mandelic acid, salicylic acid) ), copper metal chelating agents, or phenolic compounds such as hydroquinone, pyrocatechol, phenol and its derivatives are preferred. The amount added is 0.1 to 25 parts by weight per 100 parts by weight of silver-copper alloy powder. If the amount added exceeds 25 parts by weight, the properties of the conductor may be adversely affected, and if it is less than 0.1 part by weight, the effect is not sufficient.

好ましくは2〜10重量部であり、さらに2〜5重量部
が好ましい。
Preferably it is 2 to 10 parts by weight, and more preferably 2 to 5 parts by weight.

本発明の導電性ペーストに用いる銀銅合金粉末は、粉体
表面に銀が多量に濃縮されているため高い導電性を有す
ると考えているが、前述の添加剤を加えることで分散性
さらには導電性を向上できる効果がある。
It is believed that the silver-copper alloy powder used in the conductive paste of the present invention has high conductivity because a large amount of silver is concentrated on the powder surface, but by adding the above-mentioned additives, the dispersibility and It has the effect of improving conductivity.

本発明の導電性ペーストは、電子回路用等の導電性材料
として有用である。例えば、電子回路素子へのあるいは
素子間の導線、ICダイポンディング、抵抗体、コンデ
ンサー等の素子の電極、導電性接着剤、電磁波シールド
膜等が好適な用途例である。
The conductive paste of the present invention is useful as a conductive material for electronic circuits and the like. For example, suitable applications include conductive wires to or between electronic circuit elements, IC die bonding, electrodes of elements such as resistors and capacitors, conductive adhesives, and electromagnetic shielding films.

本発明の導電性ペーストを電子回路、電子機器などに適
用する方法としては、スクリーン印刷、スプレー法、刷
毛、バーコード法などの印刷、塗布法などの公知な方法
でよい。さらに、加熱して、熱硬化性樹脂を硬化させる
のが好ましい。加熱温度は熱硬化性樹脂の公知の加熱硬
化温度を適用できる。熱硬化性樹脂の硬化剤はあらかじ
め熱硬化性樹脂に混合しておいても良いしく−液性熱硬
化性樹脂)、熱硬化のさいに加えても良い(二液性熱硬
化性樹脂)。
As a method for applying the conductive paste of the present invention to electronic circuits, electronic devices, etc., known methods such as screen printing, spraying, brushing, barcode printing, coating, and other methods may be used. Furthermore, it is preferable to heat the thermosetting resin to harden it. As the heating temperature, a known heating curing temperature for thermosetting resins can be applied. The curing agent for the thermosetting resin may be mixed with the thermosetting resin in advance (liquid thermosetting resin), or may be added during thermosetting (two-component thermosetting resin).

(実施例) 以下に実施例を示す。(Example) Examples are shown below.

実施例1 銀粉(高純度化学製、純度:99.9%以上)5gと銅
粉(高純度化学製、純度: 99.9%以上)63gと
を黒鉛るつぼにいれ、高周波誘導加熱でヘリウム雰囲気
中1,300°Cで溶解した。融解後、ヘリウム雰囲気
中にるつぼ先端に取り付けたノズルより融液を噴出した
。この時、融液に対してヘリウムガス100 K/Gを
ガスノズルより断熱膨張させ発生した高速ガス(ガス線
速度200m/秒)を噴出し、急冷凝固した(ガス質量
速度/融液質量速度=45)。
Example 1 5 g of silver powder (manufactured by Kojundo Kagaku, purity: 99.9% or more) and 63 g of copper powder (manufactured by Kojundo Kagaku, purity: 99.9% or more) were placed in a graphite crucible, and heated in a helium atmosphere by high-frequency induction heating. It was dissolved at 1,300°C. After melting, the melt was spouted into a helium atmosphere from a nozzle attached to the tip of the crucible. At this time, high-speed gas (gas linear velocity 200 m/s) generated by adiabatically expanding helium gas 100 K/G from a gas nozzle was ejected against the melt, and the melt was rapidly solidified (gas mass velocity/melt mass velocity = 45 ).

生成した粉末は、走査型電子顕微鏡で100個の粒子の
平均径より求めると、平均径は30μmの球状粉であっ
た。そのうち10μm以下の球状粉を分級し、ボールミ
ル中10戒のミネラルスピリットを加えて、ステンレス
球(10mm)100個とともに粉砕した。得られた粉
末を同様に走査型電子顕微鏡で観測したところ、平均長
径30μm、平均厚さ1.5μmの鱗片状銀銅合金粉末
であった。
The produced powder was found to be a spherical powder with an average diameter of 30 μm, as determined from the average diameter of 100 particles using a scanning electron microscope. Among them, spherical powder with a diameter of 10 μm or less was classified, and mineral spirit of 10 precepts was added in a ball mill, and the powder was ground together with 100 stainless steel balls (10 mm). When the obtained powder was similarly observed with a scanning electron microscope, it was found to be a scaly silver-copper alloy powder with an average major axis of 30 μm and an average thickness of 1.5 μm.

粉末の表面の銀、銅の組成比をXPS  (X線光電子
分析装置、XSAM800、クラトス社製)を用いて下
記要領で測定した。
The composition ratio of silver and copper on the surface of the powder was measured using XPS (X-ray photoelectron spectrometer, XSAM800, manufactured by Kratos) in the following manner.

試料:試料台に両面接着テープをはりつけ、試料粉末を
両面接着テープ上を完全に覆うようにイ」着させた。
Sample: A double-sided adhesive tape was attached to the sample stand, and the sample powder was applied so as to completely cover the double-sided adhesive tape.

エツチング条件:アルゴンイオンガンを加速電圧3 k
eVで用い、アルゴンイオンビームの試料面に対する入
射各45度、室内圧力10−’torrで毎回10分間
行った。
Etching conditions: Acceleration voltage of argon ion gun 3K
eV, the argon ion beam was incident at 45 degrees on the sample surface, and the chamber pressure was 10-'torr for 10 minutes each time.

銀濃度の測定条件:マグネシウムのにα線(電圧12k
v、電流10mA)を入射させ、光電子の取り出し角は
試料面に対し90度、室内圧力10−8Lorrで行っ
た。銀濃度の測定はエンチング、ついで411定を5回
繰り返し、最初の2回の測定の平均値を表面の銀濃度と
した。
Measurement conditions for silver concentration: alpha rays of magnesium (voltage 12k)
(V, current 10 mA), the photoelectron extraction angle was 90 degrees with respect to the sample surface, and the room pressure was 10 −8 Lorr. The silver concentration was measured by enching and then by repeating 411 constant five times, and the average value of the first two measurements was taken as the surface silver concentration.

平均の銀濃度の測定は、試料を濃硝酸中で溶解し、IC
P  (高周波誘導型プラズマ発光分析計)を用いて測
定した。
To measure the average silver concentration, the sample was dissolved in concentrated nitric acid and the IC
Measured using P (high frequency induction type plasma emission spectrometer).

XPSを用いた測定の結果、測定値へg/ (Ag +
 Cu)(原子比)は表面より内部に向かって0.4.
0.34゜0.31.0.27.0.22であり、表面
の銀濃度は定義により最初のふたつの測定値の平均値0
.37であった。
As a result of measurement using XPS, the measured value is g/ (Ag +
Cu) (atomic ratio) is 0.4 from the surface toward the inside.
0.34°0.31.0.27.0.22, and the surface silver concentration is, by definition, the average value of the first two measurements, 0.
.. It was 37.

ICPで測定した平均の銀濃度は0.048であり、表
面の銀濃度は平均銀濃度の8.3倍であった。
The average silver concentration measured by ICP was 0.048, and the surface silver concentration was 8.3 times the average silver concentration.

上記で得られた鱗片状銀銅合金粉末5g、レヅール型フ
ェノール樹脂2g及びブチルカルピトールアセテート2
gを良く練り合わせペースト状とした。得られたペース
トをガラス・エポキシ樹脂基板上へ幅10鵬、長さ30
mmの塗膜を作製し、160°C,1時間加熱硬化した
(膜厚20μm)。硬化膜の抵抗率は、4X10−’Ω
・cmであった。また、温度40°C5湿度95%中に
、t 、 ooo時間放置後の抵抗率は、殆ど変化がな
っかた。また、銀のマイグレーションを測定するために
、膜間1 +nmの2本の塗膜(幅lO胴、長さ30世
)を作製した。塗膜間に0.2 mlの純水を滴下し、
電位差3■を印可し、電流計で銀の移行現象を測定した
。1時間経過後の電流値は2g八未満と殆ど認められな
かった。
5 g of scaly silver-copper alloy powder obtained above, 2 g of rezul type phenol resin and 2 g of butyl carpitol acetate
g was well kneaded to form a paste. The resulting paste was spread onto a glass/epoxy resin substrate with a width of 10 mm and a length of 30 mm.
A coating film of mm thickness was prepared and cured by heating at 160°C for 1 hour (film thickness: 20 μm). The resistivity of the cured film is 4X10-'Ω
・It was cm. Further, the resistivity after being left for t,ooo hours at a temperature of 40° C. and a humidity of 95% hardly changed. In addition, in order to measure the migration of silver, two coating films (width 10 mm, length 30 cm) with a film spacing of 1 + nm were prepared. Drop 0.2 ml of pure water between the coatings,
A potential difference of 3 cm was applied, and the silver migration phenomenon was measured with an ammeter. The current value after 1 hour was less than 2g8, which was hardly noticeable.

実施例2 実施例1で得られた鱗片状銀銅合金15〕末5g、エポ
キシ樹脂1g、メラミン樹脂1.2g、メチルエチルケ
トンIg及びブチルカルピトールアセテート1gを混合
した後、リルン酸0.2gを添加し、よく練り合わせペ
ースト化した。作製したペーストを実施例1と同様に、
ガラス・エポキシ樹脂基板上へ幅10mm、長さ30m
mの膜を作製し、160°C11時間空気中で加熱硬化
した(膜厚18μm)。硬化膜の抵抗率は、3X10−
’Ω・cmであり、温度40°C,湿度95%中に1 
、000時間放置しても抵抗率変化は殆どなかった。実
施例1と同様に銀のマイグレーションを測定するために
膜間10の2木の塗膜を作製した。0.21成の純水を
塗膜間に滴下し、電位差3Vを印可し、電流計で銀のマ
イグレーションを測定したところ1時間後の電流値は2
g八未満であった。
Example 2 After mixing 5 g of flaky silver-copper alloy 15 obtained in Example 1, 1 g of epoxy resin, 1.2 g of melamine resin, 1 g of methyl ethyl ketone Ig and 1 g of butyl carpitol acetate, 0.2 g of lylunic acid was added. Then, knead it well to make a paste. The prepared paste was prepared in the same manner as in Example 1,
Width 10mm, length 30m onto glass/epoxy resin substrate
A film of m was prepared and cured by heating in air at 160° C. for 11 hours (film thickness: 18 μm). The resistivity of the cured film is 3X10-
'Ω・cm, and 1 at a temperature of 40°C and a humidity of 95%.
There was almost no change in resistivity even after being left for ,000 hours. In the same manner as in Example 1, two wood coatings with a film gap of 10 were prepared in order to measure silver migration. 0.21 pure water was dropped between the coating films, a potential difference of 3V was applied, and silver migration was measured with an ammeter.The current value after 1 hour was 2.
It was less than g8.

実施例3 実施例1で得られた鱗片状銀銅合金粉末5g、ノボラッ
ク型フェノール樹脂1g、エポキシ樹脂1g1ブチルセ
ロソルブ2g及びリンゴ酸0.15gを良く練り合わせ
ペースト化した。得られたペーストをガラス・エポキシ
樹脂基板上へ実施例1と同様に塗布し、150“C12
時間加熱硬化した(硬化膜厚25μm)。硬化膜の抵抗
率は2X10−’Ω・cmであった。また、温度40°
C1湿度95%中に1 、000時間放置後の抵抗率は
殆ど変化がなかった。
Example 3 5 g of the flaky silver-copper alloy powder obtained in Example 1, 1 g of novolac type phenol resin, 1 g of epoxy resin, 2 g of butyl cellosolve, and 0.15 g of malic acid were thoroughly kneaded to form a paste. The obtained paste was applied onto a glass epoxy resin substrate in the same manner as in Example 1, and a 150"C12
It was cured by heating for hours (cured film thickness: 25 μm). The resistivity of the cured film was 2×10 −′Ω·cm. Also, the temperature is 40°
There was almost no change in resistivity after being left in C1 humidity of 95% for 1,000 hours.

さらに、実施例1と同様に銀のマイグレーションを測定
したところ、1時間後の電流値は2μA未満と殆ど観測
されなかった。
Furthermore, when silver migration was measured in the same manner as in Example 1, the current value after 1 hour was less than 2 μA, which was hardly observed.

実施例4 実施例1で得られた鱗片状銀銅合金粉末5g、エポキシ
樹脂2g1ジシアンジアミド0.2g、ブチルカルピト
ールアセテート2g及びオレイン酸0.3gをよく練り
合わせペースト化し、実施例1と同様に塗膜を作製し、
140°C130分間加熱硬化した(膜厚20μm)o
硬化膜の抵抗率は、6 X 10−’Ω・cmであった
。また、温度40°C1湿度95%中に1.000時間
放置後の抵抗率は殆ど変化がなかった。さらに、恨のマ
イグレーション試験を同様の方法でおこなったところ、
1時間後の電流値は2g八未満であった。
Example 4 5 g of the flaky silver-copper alloy powder obtained in Example 1, 2 g of epoxy resin, 0.2 g of dicyandiamide, 2 g of butylcarpitol acetate, and 0.3 g of oleic acid were thoroughly kneaded to form a paste, and coated in the same manner as in Example 1. Create a membrane,
Cured by heating at 140°C for 130 minutes (film thickness 20 μm) o
The resistivity of the cured film was 6 x 10-'Ω·cm. Moreover, there was almost no change in resistivity after being left at a temperature of 40° C. and a humidity of 95% for 1,000 hours. Furthermore, when we conducted a grudge migration test using the same method, we found that
The current value after 1 hour was less than 2g8.

実施例5 実施例1で得られた鱗片状銀銅合金粉末5g、ノボラッ
ク型フェノール樹脂2g、ブチルカルピトール2g及び
ヘキサメチレンテトラミン0.5gをよく練り合わせペ
ースト化した。実施例1と同様に塗膜を作製し、150
°C11時間加熱硬化した(膜厚23μm)。硬化膜の
抵抗率は4.5 Xl0−’Ω・印であり、また温度4
0°C1湿度95%中に1 、000時間放置後の抵抗
率は殆ど変化がなかった。
Example 5 5 g of the flaky silver-copper alloy powder obtained in Example 1, 2 g of novolac type phenol resin, 2 g of butylcarpitol, and 0.5 g of hexamethylenetetramine were thoroughly kneaded to form a paste. A coating film was prepared in the same manner as in Example 1, and 150
The film was cured by heating at °C for 11 hours (film thickness: 23 μm). The resistivity of the cured film is 4.5
After being left at 0°C and 95% humidity for 1,000 hours, there was almost no change in resistivity.

さらに、銀のマイグレーション試験を実施例1と同様に
しておこなったところ電流値は2g八未満であった。
Furthermore, when a silver migration test was conducted in the same manner as in Example 1, the current value was less than 2g8.

比較例1 市販の電解銅粉末(〜15μm、樹木状)5g、レゾー
ル型フェノール樹脂2g及びブチルカルピトールアセテ
ート2gをよく練り合わせペースト化した。得られたペ
ーストをガラス・エポキシ樹脂基板上べ幅10離、長さ
30唾の塗膜を作製し、160°C11時間加熱硬化し
た(膜厚20μm)。硬化膜の抵抗率は5XIO−3Ω
・cmであった。また、温度40°C,湿度95%中に
1,000時間放置後の抵抗率は8X10−’Ω・cm
と60%近く抵抗率が増加していた。
Comparative Example 1 5 g of commercially available electrolytic copper powder (~15 μm, tree-like), 2 g of resol type phenol resin, and 2 g of butyl carpitol acetate were thoroughly kneaded to form a paste. A coating film with a width of 10 cm and a length of 30 cm was prepared from the obtained paste on a glass epoxy resin substrate, and the film was cured by heating at 160° C. for 11 hours (film thickness: 20 μm). The resistivity of the cured film is 5XIO-3Ω
・It was cm. In addition, the resistivity after being left for 1,000 hours at a temperature of 40°C and a humidity of 95% is 8X10-'Ω・cm.
The resistivity increased by nearly 60%.

比較例2 市販の銀粉末(平均5μm)5g、レゾール型フェノー
ル樹脂2g及びブチルカルピトールアセテート2gをよ
く練り合わせペースト化した。得られたペーストをガラ
ス・エポキシ樹脂基板上八幡10mm、長さ3010m
の塗膜を作製し、160°C11時間加熱硬化した(膜
厚25μm)。硬化膜の抵抗率はlXl0−’Ω・cm
であった。また、銀のマイグレーシン試験をしたところ
、薬5分間で電流値が100mAを越え、恨のマイグレ
ーションが観測された。
Comparative Example 2 5 g of commercially available silver powder (5 μm on average), 2 g of resol type phenol resin, and 2 g of butylcarpitol acetate were thoroughly kneaded to form a paste. The resulting paste was placed on a glass epoxy resin substrate with a thickness of 10 mm and a length of 3010 m.
A coating film was prepared and cured by heating at 160°C for 11 hours (film thickness: 25 μm). The resistivity of the cured film is lXl0-'Ω・cm
Met. In addition, when a silver migracin test was conducted, the current value exceeded 100 mA in 5 minutes, and significant migration was observed.

比較例3 実施例1で得られた鱗片状銀銅合金粉末5g、エポキシ
樹脂0.2g、ジシアンジアミl”0.02g及びプチ
ルカルビトールアテテート0.2gを良く練り合わせペ
ースト化した。実施例1と同様に塗膜化し、160 ”
C11時間加熱硬化した。硬化膜は表面が粗く、簡単に
膜が剥がれてしまった。
Comparative Example 3 5 g of the scaly silver-copper alloy powder obtained in Example 1, 0.2 g of epoxy resin, 0.02 g of dicyandiamyl and 0.2 g of butylcarbitol atetate were well kneaded to form a paste. Similarly, it was made into a coating film and 160"
C. Heat curing was performed for 11 hours. The cured film had a rough surface and peeled off easily.

比較例4 実施例1で得られた鱗片状銀銅合金粉末5g、エポキシ
樹脂2g及びブチルカルピトールアセテートLogを練
り合わせペースト化した。実施例1と同様に塗膜を作製
し、160°Cで1時間加熱硬化した。硬化時にペース
トのにしめが生し、また、導電性も4 X 10−”Ω
・Cl11と高かった。
Comparative Example 4 5 g of the flaky silver-copper alloy powder obtained in Example 1, 2 g of epoxy resin, and butylcarpitol acetate Log were kneaded to form a paste. A coating film was prepared in the same manner as in Example 1 and cured by heating at 160°C for 1 hour. The paste wrinkles when hardened, and the conductivity is 4 x 10-”Ω.
・Cl was as high as 11.

比較例5 実施例1で得られた鱗片状銀銅合金粉末5g、エポキシ
樹脂10g及びブチルカルピトールアセテート2gを練
り合わせペースト化化した。実施例1と同様に塗膜化し
、160°C,1時間加熱硬化した(膜厚25μm)。
Comparative Example 5 5 g of the flaky silver-copper alloy powder obtained in Example 1, 10 g of epoxy resin, and 2 g of butylcarpitol acetate were kneaded together to form a paste. A film was formed in the same manner as in Example 1, and cured by heating at 160°C for 1 hour (film thickness: 25 μm).

硬化膜の抵抗率はlXl0−1Ω・印と高かった。The resistivity of the cured film was as high as lXl0-1Ω.

[発明の効果] 本発明は、導電性が高く、耐酸化性に優れ、根のマイグ
レーションがない銀銅合金系導電性ペーストを提供する
ものであり、電磁波シールド、ICグイボンディング、
コンデンサー電極、導電性接着剤、接点材料、導電回路
用ペースト等として応用できる。
[Effects of the Invention] The present invention provides a silver-copper alloy-based conductive paste that has high conductivity, excellent oxidation resistance, and no root migration, and is useful for electromagnetic shielding, IC Gui bonding,
It can be used as capacitor electrodes, conductive adhesives, contact materials, pastes for conductive circuits, etc.

Claims (7)

【特許請求の範囲】[Claims] 1.熱硬化性樹脂と、銀銅合金粉末とからなる導電性ペ
ーストにおいて、銀銅合金粉末9重量部に対して、熱硬
化性樹脂1ないし9重量部を有する銅銀合金系導電性ペ
ースト。
1. A conductive paste comprising a thermosetting resin and a silver-copper alloy powder, wherein the copper-silver alloy-based conductive paste contains 1 to 9 parts by weight of the thermosetting resin to 9 parts by weight of the silver-copper alloy powder.
2.熱硬化性樹脂と銀銅合金粉末の合計100重量部に
対して、熱硬化性樹脂の溶剤5重量部〜100重量部を
含有することを特徴とする導電性ペースト。
2. A conductive paste characterized by containing 5 to 100 parts by weight of a thermosetting resin solvent to a total of 100 parts by weight of the thermosetting resin and silver-copper alloy powder.
3.特許請求の範囲第1項または第2項記載の導電性ペ
ーストに、炭素数12以上の脂肪酸あるいはその塩、ア
ルキルジカルボン酸、アラルキルジカルボン酸、オキシ
カルボン酸、キレート形成剤、フェノール化合物の1種
以上を銀銅合金粉末100重量部にたいして0.1〜2
5重量部を含有させたことを特徴とする導電性ペースト
3. The conductive paste according to claim 1 or 2 contains one or more of a fatty acid having 12 or more carbon atoms or a salt thereof, an alkyl dicarboxylic acid, an aralkyl dicarboxylic acid, an oxycarboxylic acid, a chelate forming agent, and a phenol compound. 0.1 to 2 parts by weight per 100 parts by weight of silver-copper alloy powder
A conductive paste characterized by containing 5 parts by weight.
4.特許請求の範囲第1,2または3項記載の導電性ペ
ーストからなる導電性接着剤。
4. A conductive adhesive comprising the conductive paste according to claim 1, 2 or 3.
5.特許請求の範囲第1,2または3項記載の導電性ペ
ーストを、加熱硬化したプリント電子回路用導線。
5. A conductive wire for a printed electronic circuit obtained by heating and curing the conductive paste according to claim 1, 2 or 3.
6.特許請求の範囲の第2または3項記載の導電性ペー
ストからなるスクリーン印刷用導電性ペースト。
6. A conductive paste for screen printing comprising the conductive paste according to claim 2 or 3.
7.特許請求の範囲第2または第3項記載の導電性ペー
ストを加熱硬化処理した電磁波シールド膜。
7. An electromagnetic shielding film obtained by heating and curing the conductive paste according to claim 2 or 3.
JP1269026A 1989-10-18 1989-10-18 Silver-copper alloy group conductive paste and conductor using same Pending JPH03133006A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1269026A JPH03133006A (en) 1989-10-18 1989-10-18 Silver-copper alloy group conductive paste and conductor using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1269026A JPH03133006A (en) 1989-10-18 1989-10-18 Silver-copper alloy group conductive paste and conductor using same

Publications (1)

Publication Number Publication Date
JPH03133006A true JPH03133006A (en) 1991-06-06

Family

ID=17466643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1269026A Pending JPH03133006A (en) 1989-10-18 1989-10-18 Silver-copper alloy group conductive paste and conductor using same

Country Status (1)

Country Link
JP (1) JPH03133006A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0762274A (en) * 1993-08-25 1995-03-07 Tatsuta Electric Wire & Cable Co Ltd Electrically conductive coating having high adhesivity to formed metal oxide
WO2007040195A1 (en) * 2005-10-03 2007-04-12 Mitsui Mining & Smelting Co., Ltd. Silver-copper composite powder having silver microparticule attached thereto, and method of production of the silver-copper composite powder

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0762274A (en) * 1993-08-25 1995-03-07 Tatsuta Electric Wire & Cable Co Ltd Electrically conductive coating having high adhesivity to formed metal oxide
WO2007040195A1 (en) * 2005-10-03 2007-04-12 Mitsui Mining & Smelting Co., Ltd. Silver-copper composite powder having silver microparticule attached thereto, and method of production of the silver-copper composite powder
JP2007100155A (en) * 2005-10-03 2007-04-19 Mitsui Mining & Smelting Co Ltd Silver nanoparticle-adhered silver-copper composite powder and method for producing the silver nanoparticle-adhered silver-copper composite powder

Similar Documents

Publication Publication Date Title
JP2702796B2 (en) Silver alloy conductive paste
JP4660701B2 (en) Silver-coated copper powder, method for producing the same, and conductive paste
US4888135A (en) Electrically conductive powder and electrically conductive composition using the same
US8557146B1 (en) Polymer thick film solder alloy/metal conductor compositions
EP0455019A1 (en) Conductive paste composition
JPH10312712A (en) Solderable conductive paste
EP3806111B1 (en) Electrically conductive paste and sintered body
US20140018482A1 (en) Polymer thick film solder alloy/metal conductor compositions
JP2013149618A (en) Polymer thick film solder alloy conductor composition
JPH0216172A (en) Solderable conductive paint
JP3955805B2 (en) Conductive paste composition
JP5453598B2 (en) Silver-coated copper powder and conductive paste
KR920008674B1 (en) Conductive metal powders and process for preparation thereof and use thereof
EP4279265A2 (en) Conductive paste, laminate body, method of bonding copper laminate/copper electrode and conductor
JPH03133006A (en) Silver-copper alloy group conductive paste and conductor using same
WO2015008628A1 (en) Silver-coated copper alloy powder and process for producing same
JPH03152177A (en) Acrylic conductive paste and electric conductor using same paste
JPH1031912A (en) Solderable electroconductive paste
JPH10162647A (en) Conductive paste
JPH06136299A (en) Conductive paste enabling strong soldering
JPH0931402A (en) Production of carbon-based conductive paste
JPH02282401A (en) Electrically conductive metal powder, manufacture and use thereof
JPH04345701A (en) Solderable copper group conductive paste
JPS62230869A (en) Electrically conductive coating compound to be soldered
JPH0982133A (en) Manufacture of conductive powder