JPH03129833A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH03129833A
JPH03129833A JP26878789A JP26878789A JPH03129833A JP H03129833 A JPH03129833 A JP H03129833A JP 26878789 A JP26878789 A JP 26878789A JP 26878789 A JP26878789 A JP 26878789A JP H03129833 A JPH03129833 A JP H03129833A
Authority
JP
Japan
Prior art keywords
thin film
layer
etching
film
resist film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26878789A
Other languages
Japanese (ja)
Inventor
Hisao Kawasaki
久夫 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP26878789A priority Critical patent/JPH03129833A/en
Publication of JPH03129833A publication Critical patent/JPH03129833A/en
Pending legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To enable a highly integrated IC to be formed in excellent reproducibility by a method wherein a sectionally stepwise mesa pattern is formed in a simple manufacturing process. CONSTITUTION:The first thin film 11, the second thin film 21 and a resist film 12 are successively laminated on semiconductor substrates 101-105 so as to form the resist film 12 after a specific pattern, the second thin film 21 is etched away using the specific pattern as a mask; the first thin film 11 is further side-etched away using the second thin film 21 as a mask. Next, after etching away the semiconductor substrates 101-105 in the specific depth using the first thin film 11 as a mask, the whole surface is coated with another resist film 22 to leave the parts 22a of a new resist film 22 on the side-etched parts of the first thin film 11 beneath the second thin film 21. Then, the semiconductor substrate 101-105 are further etched away in the specific depth using the resist film 22 as a mask. Through these procedures, a highly integrated IC after fine mesa pattern can be formed easily in excellent reproducibility.

Description

【発明の詳細な説明】 【発明の目的〕 (産業上の利用分野) 本発明は、半導体装置の製造方法に係り、詳しくは、エ
ツチングレートの異なった半導体層が積層された半導体
装置のメサエッチングの方法に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a method for manufacturing a semiconductor device, and more specifically, to a method for manufacturing a semiconductor device, and more specifically, for mesa etching of a semiconductor device in which semiconductor layers having different etching rates are stacked. Regarding the method.

(従来の技術) GaAs等の化合物半導体基板上に形成された変調ドー
プド電界効果型トランジスタ (以下MODFETと略
す)は、ヘテロ接合界面に生じる高移動度の2次元電子
ガスをキャリアとして用いているため、高い遮断周波数
が実現できマイクロ波素子及びICへの研究、開発が進
められている。
(Prior art) A modulation doped field effect transistor (hereinafter abbreviated as MODFET) formed on a compound semiconductor substrate such as GaAs uses a high-mobility two-dimensional electron gas generated at a heterojunction interface as a carrier. Research and development into microwave devices and ICs that can achieve high cutoff frequencies is progressing.

MODFETはAlGaAs/GaAs、 AlInA
s/InGaAs、 InGaP/GaAsあるいはI
nGaAIP/GaAs等バンドギャップの異なる半導
体層を接合したウェーハを使用して形成される。 MO
DFETは、製造過程においてウェーへ上の各素子を分
離する必要があり、ウェーハ上の素子間分離は一般にメ
サエッチングによって行なわれている、しかしながら、
 MOOFETでは構成元素の異なった半導体層が積層
された構造になっているため、各半導体層のメサエッチ
ングに際して同一エッチャントでほぼ同じエツチングレ
ートが得られるとは限らない。
MODFET is AlGaAs/GaAs, AlInA
s/InGaAs, InGaP/GaAs or I
It is formed using a wafer in which semiconductor layers having different band gaps such as nGaAIP/GaAs are bonded together. M.O.
DFET requires separation of each element on the wafer during the manufacturing process, and isolation between elements on the wafer is generally performed by mesa etching.
Since a MOOFET has a structure in which semiconductor layers with different constituent elements are stacked, it is not always possible to obtain approximately the same etching rate with the same etchant when mesa etching each semiconductor layer.

以下InGaAIP/GaAsを例にとって説明する。The following explanation will be given using InGaAIP/GaAs as an example.

第3図は、InGaAIP/GaAsihGaAs1h
に用いられるウェーハ構造め一例である。半絶縁性Ga
As基板101上にアンドープの高純度GaAsバッフ
ァ層102、 n型の導電性を持った電子供給層InG
aAIP層103及びオーミックコンタクト形成用の高
電子濃度のGaAs層104をエピタキシャル成長した
半導体層で構成され、バッファ層102と電子供給層1
03とで形成されたヘテロ接合界面のバッファ層側に2
次元電子ガス105が生じチャンネルが形成される。
Figure 3 shows InGaAIP/GaAsihGaAs1h
This is an example of a wafer structure used for. Semi-insulating Ga
An undoped high-purity GaAs buffer layer 102 on an As substrate 101, and an electron supply layer InG with n-type conductivity.
The semiconductor layer is composed of an aAIP layer 103 and a high electron concentration GaAs layer 104 for forming an ohmic contact that are epitaxially grown, and includes a buffer layer 102 and an electron supply layer 1.
2 on the buffer layer side of the heterojunction interface formed with 03.
Dimensional electron gas 105 is generated and a channel is formed.

第4図(a)〜(c)は、従来のInGaAIP/Ga
As系MODFETの製造工程を示す断面図である。第
4図(a)に示すように高電子濃度のGaAs層104
上に所定のパターン形状を持ったレジスト膜106を形
成する0次に、レジスト膜106をマスクとしてメサエ
ッチングを施し、高電子濃度のGaAs層104、電子
供給層103InGaAIP及び高純度GaAsバッフ
ァ層102の一部を例えば燐酸:過酸化水素:水=1=
1=30.50℃のエツチング液で除去する(第4図(
b))、ここで、電子供給層103InGaAIP層を
エツチング除去すれば、2次元電子ガス105は消滅す
るが、一般に素子間の電気的な分離をより確実なものに
するため、高純度GaAsバッファ層102の表層をエ
ツチング除去する。この、メサエッチングの際InGa
AIPとGaAsとのエツチングレートの差でInGa
AIP層がGaAs層よりも張り出した形状になってし
まう0例えばInGaAIPにおいてGaとAlの混成
比が1=1の場合、上記エツチング液でのエツチングレ
ートは毎分約0.03.であるのに対して、GaAsで
は毎分約0.6−になる、このようにInGaAIPと
GaAsではエツチングレートに20倍もの差があるた
め、メサエッチングで電子供給層103InGaAIP
のエツチングが進行中に高電子濃度104のGaAs層
がサイドエツチングを受け、更に電子供給層103In
GaAIPのエツチングが終了し高純度GaAsバッフ
ァ層102のエツチング中、電子供給層103InGa
AIPはわずかじかエツチングされないため第4図(b
)で示される形状となる0次に第4図(c)に示すよう
に、高電子濃度のGaAs)11104上にオーム性接
触からなるソース電極1075、ドレイン電極107D
を形成し、更にソース電極107Sドレイン電極107
0間の高電子濃度のGaAs層104をリセスエッチン
グしゲート電極107Gリセス内に形成してMODPI
ETが完成する。
FIGS. 4(a) to (c) show conventional InGaAIP/Ga
FIG. 3 is a cross-sectional view showing the manufacturing process of an As-based MODFET. As shown in FIG. 4(a), a GaAs layer 104 with high electron concentration
A resist film 106 having a predetermined pattern shape is formed thereon.Next, mesa etching is performed using the resist film 106 as a mask to form the high electron concentration GaAs layer 104, the electron supply layer 103InGaAIP, and the high purity GaAs buffer layer 102. For example, phosphoric acid: hydrogen peroxide: water = 1 =
1 = 30.Remove with an etching solution of 50℃ (Figure 4 (
b)) Here, if the electron supply layer 103 InGaAIP layer is etched away, the two-dimensional electron gas 105 disappears, but in order to ensure more reliable electrical isolation between elements, a high purity GaAs buffer layer is generally used. The surface layer of 102 is removed by etching. During this mesa etching, InGa
Due to the difference in etching rate between AIP and GaAs, InGa
For example, when the mixture ratio of Ga and Al in InGaAIP is 1=1, the etching rate with the above etching solution is about 0.03 per minute. On the other hand, for GaAs, the etching rate is about 0.6 - per minute.As shown above, there is a 20 times difference in the etching rate between InGaAIP and GaAs, so mesa etching is used to remove the electron supply layer 103 from InGaAIP.
While the etching progresses, the GaAs layer with high electron concentration 104 undergoes side etching, and the electron supply layer 103In
After the etching of GaAIP is completed and while etching the high purity GaAs buffer layer 102, the electron supply layer 103 is
AIP is etched only slightly, so it is not etched in Figure 4 (b).
) As shown in FIG. 4(c), a source electrode 1075 and a drain electrode 107D made of ohmic contact are formed on GaAs (11104) with a high electron concentration.
, and further a source electrode 107S and a drain electrode 107.
A GaAs layer 104 with a high electron concentration between
ET is completed.

(発明が解決しようとする課題) 叙上の従来の製造方法では、メサエッチング後InGa
AIP層103がGaAs層104.104よりも張り
出した形状になってしまうため以下に記す問題が生ずる
。まず、MOOFETでは各電極に電気信号を給電する
ための金属膜が高純度GaAsバッファ層上に配線され
る必要があり、この配線用の金属膜は、メサ上の各電極
からメサ端部を介して高純度GaAsバッファ層上に形
成する。あるいは各電極を形成する際、それぞれの電極
の金属膜そのものをバッファ層上に形成して配線用の金
属膜とすることもある。
(Problem to be solved by the invention) In the conventional manufacturing method described above, InGa
Since the AIP layer 103 protrudes more than the GaAs layers 104 and 104, the following problem occurs. First, in a MOOFET, a metal film for feeding electrical signals to each electrode must be wired on a high-purity GaAs buffer layer, and this metal film for wiring is connected from each electrode on the mesa through the mesa end. and is formed on a high-purity GaAs buffer layer. Alternatively, when forming each electrode, the metal film of each electrode itself may be formed on the buffer layer to serve as a metal film for wiring.

この様な配線金属膜を従来のMOOFETに形成した場
合、第5図に示すように、InGaAIP層103端面
層下03端 ているため、この部分で配線用金属膜109が薄膜化し
てしまい信頼性上問題がある.特に、ゲート電極107
Gについてはゲート電極の金属膜をそのまま高純度Ga
Asバッファ層102上に引き出すことが多く、ゲート
長が0.254以下の微細なゲート電極ではInGaA
IP層103端面層下03端層102の空洞部108で
断線し,給電されなくなってしまう。
When such a wiring metal film is formed in a conventional MOOFET, as shown in FIG. 5, since the InGaAIP layer 103 is located at the lower end of the end face layer, the wiring metal film 109 becomes thinner in this area, resulting in reliability problems. There is a problem above. In particular, the gate electrode 107
Regarding G, the metal film of the gate electrode is directly made of high-purity Ga.
InGaA is often used for fine gate electrodes with a gate length of 0.254 or less, which are often drawn out on the As buffer layer 102.
The wire breaks in the cavity 108 of the lower end layer 102 of the IP layer 103, and power is no longer supplied.

また、InGaAIP層103の張層比03防止する目
的で,第6図に示すように、高電子濃度のGaAs層1
04を前記エツチング液でエツチング後、InGaAI
P層103を塩層比03し,更に高純度GaAsバッフ
ァ層102を前記エツチング液でエツチングする方法も
考えられる.しかしこの方法では、InGaAIP層1
03のサ層比03チングで高電子濃度のGaAs層10
4のメサ端面のInGaAIP層103と高層比03A
sバッファ層102とに空洞部118が形成され,この
部分で前記同様の問題が生じてしまう、半導体層のサイ
ドエツチングが原因で生じる空洞の形成を防ぐ手段とし
ては、GaAs層、InGaAIP層をそれぞれ個別に
パターンニング、エツチングする方法がある0例えば、
高置−子濃度のGaAs層上に所定のパターン形状に従
ってレジスト膜を形成し、このレジスト膜をマスクにし
てメサエッチングを施した後、高電子濃度のGaAs層
を覆うように新たなレジスト膜のパータン形成を行い、
InGaAIP層をメサエッチングする。更に、高電子
濃度のGaAs層、InGaAIP層を覆うように新た
なレジスト膜のパターン形成を行い、高純度GaAsバ
ッファ層のメサエッチングを行い、第7図に示すような
断面形状を持ったメサパターンが形成される。上記メサ
パターン形成方法によれば、各半導体層のメサパターン
が個別にパターン形成、エツチングされしかも断面形状
が階段状に形成できるため、メサ端部で配線用の金属膜
が薄膜化あるいは断線する問題を解決できる。
In addition, in order to prevent the tensile ratio of the InGaAIP layer 103 from 03, as shown in FIG.
After etching 04 with the above etching solution, InGaAI
It is also possible to consider a method in which the P layer 103 has a salt layer ratio of 03, and the high purity GaAs buffer layer 102 is further etched with the above etching solution. However, in this method, the InGaAIP layer 1
High electron concentration GaAs layer 10 with a layer ratio of 03
InGaAIP layer 103 on mesa end face of No. 4 and high-rise ratio 03A
A cavity 118 is formed in the s-buffer layer 102, and as a means to prevent the formation of a cavity caused by side etching of the semiconductor layer, in which the same problem as described above occurs, a GaAs layer and an InGaAIP layer are respectively formed. There are methods for individual patterning and etching. For example,
A resist film is formed according to a predetermined pattern shape on the GaAs layer with high electron concentration, and after mesa etching is performed using this resist film as a mask, a new resist film is formed to cover the GaAs layer with high electron concentration. Perform pattern formation,
Mesa etch the InGaAIP layer. Furthermore, a new resist film pattern is formed to cover the high electron concentration GaAs layer and the InGaAIP layer, and the high purity GaAs buffer layer is mesa etched to form a mesa pattern with a cross-sectional shape as shown in FIG. is formed. According to the above mesa pattern forming method, the mesa pattern of each semiconductor layer is individually patterned and etched, and the cross-sectional shape can be formed in a step-like shape, so there is a problem that the metal film for wiring becomes thin or disconnected at the mesa end. can be solved.

しかしながら、上記メサパターン形成方法では。However, in the above mesa pattern forming method.

メサエッチングの回数分だけガラスマスクを準備し、マ
スク合わせ、霧光、現像、エツチング処理を繰り返さな
ければならないため、組成の異なった半導体層が複雑に
組み合わされたMOOFETにおいては、非常に繁雑な
製造工程となってしまう。
Glass masks must be prepared as many times as the mesa etching process is performed, and the mask alignment, fog light, development, and etching processes must be repeated, making the manufacturing process extremely complicated for MOOFETs that have complex combinations of semiconductor layers with different compositions. It becomes a process.

加えて、各パターンの重ね合わせ誤差を考慮すると微細
なメサパターン形成、集積度の高いICの製造に対して
は再現性良く形成できないという欠点がある。
In addition, when the overlay error of each pattern is taken into account, there is a drawback that it is impossible to form fine mesa patterns or to manufacture highly integrated ICs with good reproducibility.

本発明は上記従来の問題点に鑑みてなされたもので、エ
ツチングレートの相違する半導体層が積層された半導体
装置の改良されたメサエッチング法を提供することを目
的とする。
The present invention has been made in view of the above-mentioned conventional problems, and an object of the present invention is to provide an improved mesa etching method for a semiconductor device in which semiconductor layers having different etching rates are stacked.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明にかかる半導体装置の製造方法は、半導体基板上
に第1の薄膜、第2の薄膜及びレジスト膜を順次積層す
る工程と、該レジスト膜を所定のパターンに形成する工
程と、該レジスト膜をマスクとして前記第2の薄膜をエ
ツチング除去する工程と、更に該第2の薄膜をマスクと
して前記第1の薄膜をサイドエツチングを有するサイド
エツチング法でエツチング除去する工程と、前記第1の
薄膜をマスクとして前記半導体基板を所定の深さまでエ
ツチングした後、全面に新たなレジスト膜を塗布する工
程と、前記第1の薄膜のエツチングで生じた前記第2の
薄膜の下の前記第1の薄膜のサイドエツチングされた部
分に、前記新たなレジスト膜の一部を残す工程と、該レ
ジスト膜をマスクとして前記半導体基板を更に所定の深
さまでエツチングする工程とを含むことを特徴とする。
(Means for Solving the Problems) A method for manufacturing a semiconductor device according to the present invention includes a step of sequentially laminating a first thin film, a second thin film, and a resist film on a semiconductor substrate, and forming the resist film in a predetermined pattern. a step of etching away the second thin film using the resist film as a mask, and further etching and removing the first thin film using the second thin film as a mask by a side etching method including side etching. a step of etching the semiconductor substrate to a predetermined depth using the first thin film as a mask, and then applying a new resist film to the entire surface; and etching the second thin film produced by etching the first thin film. a step of leaving a part of the new resist film on the side-etched portion of the first thin film under the etching process, and a step of further etching the semiconductor substrate to a predetermined depth using the resist film as a mask. It is characterized by

(作 用) この発明は、簡単な製造工程で断面形状が階段状のメサ
パターンを形成することができ、メサ端部で配線用の金
属膜が薄膜化、あるいは断線の問題を解決できるもので
ある。また、各メサパターンはセルフアライメントで形
成できるため、組成の異なった半導体層が複雑に組み合
わされたMODFETの微細なメサパターン形成、集積
度の高いICの製造に対して、容易にしかも再現性良く
形成できる。
(Function) This invention can form a mesa pattern with a stepped cross-sectional shape through a simple manufacturing process, and can solve the problem of thinning of the metal film for wiring or disconnection at the mesa end. be. In addition, since each mesa pattern can be formed by self-alignment, it is easy to form fine mesa patterns for MODFETs in which semiconductor layers with different compositions are combined in a complex manner, and to manufacture highly integrated ICs with ease and good reproducibility. Can be formed.

(実施例) 以下、本発明にかかる半導体装置の製造方法の実施例に
つき図面を参照して説明する。
(Example) Hereinafter, an example of the method for manufacturing a semiconductor device according to the present invention will be described with reference to the drawings.

第1実施例 第1図(a)〜(g)に第1実施例の半導体装置の製造
方法を工程順に各断面図で示す、まず、半絶縁性GaA
s基板101上にアンドープの高純度GaAsバッファ
層102を例えば膜厚IIaに、n型の導電性を持った
電子供給層103InGaAIP層を例えばドーピング
濃度I X 10”ell−”、膜厚0.057aに、
さらにオーミツシコンタクト形成用の高電子濃度のGa
As層104を例えばドーピング濃度3 X 10”c
m−” 、膜厚0.17mでエピタキシャル成長した半
導体層上に、第1の薄膜11として例えばSin、膜を
0.5p、第2の薄膜21として例えばSi、N4膜を
0.03.、レジスト膜12として例えばAZ1350
(商品名、シブレイ社)を0.5声厚さに順次積層する
(第1図(a))、次に第1図(b)に示すように、レ
ジスト膜12に霧光、現像処理を施し所定のパターンを
形成した後、第2の薄膜21を例えばケミカルドライエ
ツチングで除去し、第1の薄膜11を例えば弗化アンモ
ニューム水溶液を用いてエツチング除去する。第1の薄
膜11のエツチングの際、弗化アンモニューム水溶液に
対して第2の薄膜21. Si、N4膜及び、GaAs
層104はほとんど影響を受けない、従って、第1の薄
膜11のサイドエツチング量は時間で精度良く制御でき
る0次に、高電子濃度のGaAs層104を例えば燐酸
:過酸化水素:水=1 : l :30.50℃のエツ
チング液でエツチング除去した後、レジスト膜12を除
去する(第1図(C))。続いて、新たなレジスト膜2
2を全面に塗布した(第1図(d))後、例えば0□ガ
スを用いた反応性イオンエツチングで第2の薄膜21の
下の第1の薄膜11のサイドエツチングされた部分に、
レジスト膜22aを残し、InGaAIP層103を例
えば塩酸を用いたエツチング液でエツチング除去する。
First Embodiment FIGS. 1(a) to 1(g) show cross-sectional views of the manufacturing method of the semiconductor device of the first embodiment in the order of steps. First, semi-insulating GaA
On the s-substrate 101, an undoped high-purity GaAs buffer layer 102 is formed, for example, with a film thickness of IIa, and an electron supply layer 103 with n-type conductivity, an InGaAIP layer, is formed with a doping concentration of, for example, I x 10"ell-" and a film thickness of 0.057a. To,
In addition, high electron concentration Ga for forming contact contacts
For example, the As layer 104 has a doping concentration of 3×10”c.
m-", on a semiconductor layer epitaxially grown to a film thickness of 0.17 m, the first thin film 11 is made of, for example, a Sin film of 0.5p, the second thin film 21 is made of, for example, Si, a N4 film of 0.03m, and a resist is formed. For example, AZ1350 is used as the membrane 12.
(trade name, Sibley Co., Ltd.) is sequentially laminated to a thickness of 0.5 mm (Fig. 1 (a)). Next, as shown in Fig. 1 (b), the resist film 12 is subjected to fog light and development treatment. After forming a predetermined pattern, the second thin film 21 is removed by, for example, chemical dry etching, and the first thin film 11 is removed by etching using, for example, an ammonium fluoride aqueous solution. During etching of the first thin film 11, the second thin film 21. Si, N4 film and GaAs
The layer 104 is almost unaffected, so the amount of side etching of the first thin film 11 can be controlled with high precision over time.The GaAs layer 104 with a high electron concentration is etched in the 0th order by, for example, phosphoric acid:hydrogen peroxide:water=1: 1: After etching with an etching solution at 30.50° C., the resist film 12 is removed (FIG. 1(C)). Next, a new resist film 2
2 on the entire surface (FIG. 1(d)), the side-etched portion of the first thin film 11 under the second thin film 21 is etched by reactive ion etching using, for example, 0□ gas.
The InGaAIP layer 103 is etched away with an etching solution using, for example, hydrochloric acid, leaving the resist film 22a.

この時、InGaAIP層103のサイドエツチングは
高電子濃度のGaAsN1104に達する前に止める(
第1図(e))、また、 GaAs層は塩酸に対して耐
性があるため高純度GaAsバッファ層102がエツチ
ングされることはない、再び、新たなレジスト膜(図示
省略)を全面に塗布した後、第2の薄膜21の下の第1
の薄膜11のサイドエツチングされた部分及び、InG
aAs層104のサイドエツチングを受けた部分に、レ
ジスト膜を残し、高純度Gapsバッファ層102を所
定の深さまでエツチング除去した後。
At this time, side etching of the InGaAIP layer 103 is stopped before it reaches GaAsN 1104 with high electron concentration (
In addition, since the GaAs layer is resistant to hydrochloric acid, the high-purity GaAs buffer layer 102 will not be etched.A new resist film (not shown) was applied over the entire surface again. After that, the first layer under the second thin film 21
The side-etched portion of the thin film 11 and the InG
After the resist film is left in the side etched portion of the aAs layer 104, the high purity Gaps buffer layer 102 is removed by etching to a predetermined depth.

このレジスト膜、第2の薄膜21、第1の薄膜11を除
去し断面形状が階段状のメサパターンが形成される(第
1図(f))、引き続き、第1図(g)に示すように、
高電子濃度のGaAs層104上にオーム性接触からな
るソース電極107sドレイン電極107Dを形成し、
更にソース電極107Sとドレイン電極107D間の高
電子濃度のGaAs層104をリセスエッチングを施し
てリセスを設けたのち、このりセス内にゲート電極10
7Gを形成してMOOFETが完成し、最終に配線用の
金属l1109を形成する。
This resist film, the second thin film 21, and the first thin film 11 are removed to form a mesa pattern with a stepped cross-sectional shape (FIG. 1(f)).Subsequently, as shown in FIG. 1(g), To,
A source electrode 107S and a drain electrode 107D made of ohmic contact are formed on the GaAs layer 104 with high electron concentration,
Furthermore, after performing recess etching on the high electron concentration GaAs layer 104 between the source electrode 107S and the drain electrode 107D to form a recess, the gate electrode 10 is formed in the recess.
7G is formed to complete the MOOFET, and finally a metal 1109 for wiring is formed.

なお、上記実施例ではInGaAIP/GaAs系MO
DFETの場合について述べたが、InP基板上に結晶
成長したAlInAs/InGaAs系MODFETで
は、燐酸、過酸化水素、水で構成されたエツチング液を
使用すれば、AlInAs層とInGaAs層とのエツ
チングレートがほぼ同じ事から以下の手順で実施できる
。これについて次に第2実施例として第2図(a)ない
しくd)を参照して説明する。
In the above embodiment, InGaAIP/GaAs MO
As mentioned above in the case of a DFET, in an AlInAs/InGaAs MODFET crystal-grown on an InP substrate, the etching rate of the AlInAs layer and InGaAs layer can be reduced by using an etching solution composed of phosphoric acid, hydrogen peroxide, and water. Almost the same thing can be done by following the steps below. This will be explained next as a second embodiment with reference to FIGS. 2(a) to 2d).

第2実施例 半絶縁性InP基板101上にアンドープInPバッフ
ァ層102を例えば膜厚0.5Is、高移動度の2次元
電子ガス105が形成されるアンドープ層InGajk
s層112を例えば膜厚O,OS、、電子供給層103
InAIAs層を例えばドーピング濃度I XIO”c
m−”、膜厚0.054及びオーミックコンタクト形成
用の高電子濃度のInGaAs層104を例えばドーピ
ング濃度3X10”cat−’、膜厚o、i7aでエピ
タキシャル成長した半導体層上に第1の実施例と同様に
、第1の薄膜11、第2の薄膜21、レジスト膜12を
順次積層し、このレジスト膜12及び各薄膜を第2図(
a)の如く形成する。
Second Embodiment An undoped InP buffer layer 102 is formed on a semi-insulating InP substrate 101 with a film thickness of 0.5Is, for example, as an undoped layer InGajk in which a two-dimensional electron gas 105 with high mobility is formed.
For example, the s layer 112 has a film thickness of O, OS, and the electron supply layer 103.
For example, the InAIAs layer has a doping concentration of I
In the first embodiment, an InGaAs layer 104 with a high electron concentration for forming an ohmic contact is epitaxially grown with a doping concentration of 3 x 10''cat-', a film thickness of o, and i7a. Similarly, the first thin film 11, the second thin film 21, and the resist film 12 are sequentially laminated, and the resist film 12 and each thin film are stacked as shown in FIG.
Form as in a).

次ぎに、高電子濃度のInGaAs層104.電子供給
層InAlAs層103、アンドープ層InGaAs層
112を例えば燐酸、過酸化水素、水で構成されたエツ
チング液で除去し、続いて、新たなレジスト膜22を全
面に塗布した後、例えば02ガスを用いた反応性イオン
エツチングで第2の薄膜21の下の第1の薄膜11のサ
イドエツチングされた部分に、レジスト膜22aを残し
く第2図(b))、アンドープInPバッファ層102
を例えば塩酸、燐酸で構成されたエツチング液でエツチ
ング除去した後、 レジスト膜22a、第2の薄膜21
.第1の薄1111を除去し断面形状が階段状のメサパ
ターンが形成される(第2図(C))。
Next, a high electron concentration InGaAs layer 104. The electron supply layer InAlAs layer 103 and the undoped InGaAs layer 112 are removed using an etching solution composed of, for example, phosphoric acid, hydrogen peroxide, and water, and then a new resist film 22 is applied over the entire surface, and then, for example, 02 gas is applied. A resist film 22a is left in the side-etched portion of the first thin film 11 under the second thin film 21 by the reactive ion etching process used (FIG. 2(b)), and the undoped InP buffer layer 102 is left behind.
After removing the resist film 22a and the second thin film 21 by etching with an etching solution composed of, for example, hydrochloric acid and phosphoric acid.
.. The first thin layer 1111 is removed to form a mesa pattern with a stepped cross-sectional shape (FIG. 2(C)).

引き続き、第2図(d)に示すように、高電子濃度のI
nGaAs層104上にオーム性接触からなるソース電
極107s、ドレイン電極1070を形成し、更にソー
ス電極107s、ドレイン電極1070間の高電子濃度
のInGaAs層104をリセスエッチングしゲート電
極107Gをリセス内に形成してAlInAs/InG
aAs系MOOFETが完成し、最後に配線用の金属膜
109を形成する。
Subsequently, as shown in FIG. 2(d), I
A source electrode 107s and a drain electrode 1070 made of ohmic contact are formed on the nGaAs layer 104, and the InGaAs layer 104 with a high electron concentration between the source electrode 107s and the drain electrode 1070 is recess-etched to form a gate electrode 107G in the recess. AlInAs/InG
After the aAs-based MOOFET is completed, a metal film 109 for wiring is finally formed.

叙上の第1、第2の実施例から明らかなように、本発明
の方法で形成したメサパターンは、断面形状が階段状に
なっていることから、配線用の金属膜がメサ端部で薄膜
化あるいは断線する事がない。
As is clear from the first and second embodiments described above, the mesa pattern formed by the method of the present invention has a stepped cross-sectional shape, so that the metal film for wiring is not formed at the ends of the mesa. There will be no thinning or disconnection.

また、各メサパターンはセルフアライメントで形成でき
るため、組成の異なった半導体層が複雑に組み合わされ
たMODFETにおいても、容易に、しかも再現性良く
形成できる。
Further, since each mesa pattern can be formed by self-alignment, even a MODFET in which semiconductor layers having different compositions are combined in a complex manner can be formed easily and with good reproducibility.

なお1本実施例で使用した薄膜Sin、、SL、 N4
の形成順序はどちらが先でもよく、他の薄膜例えばA1
□03、AINあるいはTi、 A1等であっても構わ
なく、3層以上の薄膜で構成しても良いことは、容易に
類推できる。また、サイドエツチング部にレジスト膜を
残す方法は全面露光後、現像処理を行なっても構わない
、更に、本発明はMOOFETのみならずショットキ障
壁型電界効果トランジスタ等の多段メサの形成において
も有効である。
Note that the thin film Sin, SL, N4 used in this example
The order of formation of the other thin films, for example A1, may be in any order.
It can be easily inferred that it may be made of □03, AIN, Ti, A1, etc., and may be composed of three or more thin films. Furthermore, the method of leaving a resist film in the side etched area may be carried out by performing a development process after the entire surface is exposed.Furthermore, the present invention is effective not only in the formation of MOOFETs but also in the formation of multi-stage mesas such as Schottky barrier field effect transistors. be.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明で形成した半導体装置は、簡単
な製造工程で断面形状が階段状のメサパターンを形成す
ることができ、メサ端部で配線用の金属膜が薄層化、あ
るいは断線する問題を解決できる。更に、各メサパター
ンはセルフアライメントで形成できるため、組成の異な
った半導体層が複雑に組み合わされたMODFETの微
細なメサパターン形成、集積度の高いICの製造に対し
て、容易にしかも再現性良く形成できる顕著な効果があ
る。
As described above, the semiconductor device formed according to the present invention can form a mesa pattern with a stepped cross-sectional shape through a simple manufacturing process, and the metal film for wiring becomes thinner or disconnected at the mesa end. can solve problems. Furthermore, since each mesa pattern can be formed by self-alignment, it is easy and reproducible to form fine mesa patterns for MODFETs that have complex combinations of semiconductor layers with different compositions, and to manufacture highly integrated ICs. There are noticeable effects that can be formed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)ないしくg)は本発明の第1実施例のMO
DFETの製造方法を工程順に示すいずれも断面図、第
2図(a)ないしくd)は本発明の第2実施例のMOD
FETの製造方法を工程順に示すいずれも断面図、第3
図はMODFETの製造に用いる半導体基板の断面図、
第4図(a)ないしくc)は従来例のMOOFETの製
造方法を工程順に示すいずれも断面図、第5図ないし第
7図はいずれも夫々が従来例のMODFETの構造を示
す断面図である。 11・・・第1の薄膜、21・・・第2の薄膜、12、
22・・・レジスト膜。
FIG. 1(a) to g) shows the MO of the first embodiment of the present invention.
All are cross-sectional views showing the manufacturing method of DFET in the order of steps, and FIGS. 2(a) to 2d) are MODs of the second embodiment of the present invention.
The third figure is a cross-sectional view showing the FET manufacturing method in the order of steps.
The figure is a cross-sectional view of a semiconductor substrate used for manufacturing MODFET,
4(a) to 4(c) are cross-sectional views showing the manufacturing method of a conventional MOOFET in order of process, and FIGS. 5 to 7 are cross-sectional views showing the structure of a conventional MODFET, respectively. be. 11... first thin film, 21... second thin film, 12,
22...Resist film.

Claims (1)

【特許請求の範囲】[Claims]  半導体基板上に第1の薄膜、第2の薄膜及びレジスト
膜を順次積層する工程と、該レジスト膜を所定のパター
ンに形成する工程と、該レジスト膜をマスクとして前記
第2の薄膜をエッチング除去する工程と、更に該第2の
薄膜をマスクとして前記第1の薄膜をサイドエッチング
を有するサイドエッチング法でエッチング除去する工程
と、前記第1の薄膜をマスクとして前記半導体基板を所
定の深さまでエッチングした後、全面に新たなレジスト
膜を塗布する工程と、前記第1の薄膜のエッチングで生
じた前記第2の薄膜の下の前記第1の薄膜のサイドエッ
チングされた部分に、前記新たなレジスト膜の一部を残
す工程と、該レジスト膜をマスクとして前記半導体基板
を更に所定の深さまでエッチングする工程とを含むこと
を特徴とする半導体装置の製造方法。
A step of sequentially laminating a first thin film, a second thin film, and a resist film on a semiconductor substrate, a step of forming the resist film into a predetermined pattern, and etching away the second thin film using the resist film as a mask. a step of etching away the first thin film by a side etching method using the second thin film as a mask; and etching the semiconductor substrate to a predetermined depth using the first thin film as a mask. After that, a step of applying a new resist film to the entire surface, and applying the new resist to the side-etched part of the first thin film under the second thin film generated by etching the first thin film. A method for manufacturing a semiconductor device, comprising the steps of leaving a portion of the film, and etching the semiconductor substrate further to a predetermined depth using the resist film as a mask.
JP26878789A 1989-10-16 1989-10-16 Manufacture of semiconductor device Pending JPH03129833A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26878789A JPH03129833A (en) 1989-10-16 1989-10-16 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26878789A JPH03129833A (en) 1989-10-16 1989-10-16 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH03129833A true JPH03129833A (en) 1991-06-03

Family

ID=17463274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26878789A Pending JPH03129833A (en) 1989-10-16 1989-10-16 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH03129833A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003074909A (en) * 2001-09-05 2003-03-12 Chofu Seisakusho Co Ltd Outdoor air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003074909A (en) * 2001-09-05 2003-03-12 Chofu Seisakusho Co Ltd Outdoor air conditioner

Similar Documents

Publication Publication Date Title
US5264382A (en) Method of producing semiconductor device using dummy gate structure
EP0551110B1 (en) Compound semiconductor devices
EP1131849B1 (en) Pseudomorphic high electron mobility transistors
JPH0766959B2 (en) Method of manufacturing integrated circuit
JPH03194931A (en) Manufacture of semiconductor device
JP3128601B2 (en) High electron mobility transistor
JPH03129833A (en) Manufacture of semiconductor device
EP0591607A2 (en) Isolated semiconductor device and production method thereof
JPH03129834A (en) Manufacture of semiconductor device
JPS61199666A (en) Field-effect transistor
JP2000223504A (en) Field-effect semiconductor device and its manufacture
JP2787589B2 (en) Semiconductor device
JP3129510B2 (en) InGaP etching method and semiconductor device manufacturing method using the etching method
JPH0969611A (en) Semiconductor device and its manufacturing method
JPS62190772A (en) Field-effect transistor and manufacture thereof
JPS60244075A (en) Manufacture of e/d structure integrated circuit
JPS62204578A (en) Manufacture of field-effect transistor
JPS62113479A (en) Manufacture of field-effect semiconductor device
JPH07263645A (en) Heterojunction semiconductor device and its manufacturing method
JPH0864774A (en) Manufacture of semiconductor integrated circuit device
JPH01107577A (en) Manufacture of field effect transistor
JPH0951093A (en) Manufacture of field effect transistor
JPH07263643A (en) Semiconductor device and its manufacturing method
JPH0797634B2 (en) Field effect transistor and manufacturing method thereof
JPS60245187A (en) Manufacture of semiconductor device