JPH03129783A - Substrate having infrared ray reflective property - Google Patents

Substrate having infrared ray reflective property

Info

Publication number
JPH03129783A
JPH03129783A JP1246875A JP24687589A JPH03129783A JP H03129783 A JPH03129783 A JP H03129783A JP 1246875 A JP1246875 A JP 1246875A JP 24687589 A JP24687589 A JP 24687589A JP H03129783 A JPH03129783 A JP H03129783A
Authority
JP
Japan
Prior art keywords
thin film
superconductor
substrate
film
crystal structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1246875A
Other languages
Japanese (ja)
Inventor
Akio Makimura
榎村 昭男
Hidemi Nakai
中井 日出美
Shuhei Tanaka
修平 田中
Takeshi Koizumi
健 小泉
Ken Kumada
熊田 虔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Publication of JPH03129783A publication Critical patent/JPH03129783A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a window material, which shields solar energy and radiation energy from a relatively low temperature object, by coating a transparent substrate with a thin superconductor film having superconducting energy gap in the range of 0.02-1.6eV. CONSTITUTION:A transparent substrate 2 is coated with a thin film 1 of superconductor having superconducting energy gap in the range of 0.02-1.6eV in order to provide infrared ray reflective property. The thin film of superconductor includes an oxide film having K2NiF4 crystal structure shown by general formula (A1-XBX)2Cu2O4-Y (where, A is a lanthanum element, B is group Ia, IIa or IIIa element, and 0<X<1, 0<Y<4), an oxide film having oxygen missing perovskite structure shown by general formula LnBa2Cu3OX (where, Ln is a lanthanum element, and X>=6.5), or an oxide film having laminar crystal structure shown by a chemical formula Bi2Sr2CaX-1CuXO2X+4 (where, 1<=X<=4), Tl2Ba2 CaX-1CuXO2X+4 (0<=X<=4), or Tl2SrZCaX-1CuXO2X+4 (1<=X<=4).

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、赤外線反射性能を有し、かつ、可視光線の一
部を透過する基板に関し、とりわけ1〜100μ園の広
い波長範囲にわたって反射性能を有する窓材に適した基
板に関するものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a substrate that has infrared reflective performance and transmits part of visible light, and in particular has reflective performance over a wide wavelength range of 1 to 100 μm. The present invention relates to a substrate suitable for a window material.

〔従来の技術〕[Conventional technology]

従来、2.5〜100μ鴎の赤外線波長域の輻射エネル
ギに対して反射性能を有する基板としては、酸化錫膜の
如き半導体膜を基板に被覆したものがある。
Conventionally, as a substrate having a reflective performance for radiant energy in the infrared wavelength range of 2.5 to 100 μm, there is a substrate coated with a semiconductor film such as a tin oxide film.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら従来の技術では、波長が2.5μ園より大
きい輻射エネルギに対しては高い反射性能が得られるが
、2.5μ園より短い波長の輻射エネルギに対しては高
い反射性能が得られないという問題があった0本発明は
、前記した問題点を改善する、すなわち近赤外の波長域
である1〜2.5μmの波長の輻射エネルギをもよく反
射し、かつ、可視光線の一部を透過する赤外線反射性能
を有する基板を提供することにある。
However, with conventional technology, high reflection performance can be obtained for radiant energy with a wavelength larger than 2.5 μm, but high reflection performance cannot be obtained for radiant energy with a wavelength shorter than 2.5 μm. The present invention improves the above-mentioned problems, that is, it reflects well even radiant energy in the wavelength range of 1 to 2.5 μm, which is the near-infrared wavelength range, and also reflects part of visible light. An object of the present invention is to provide a substrate having transmitting infrared reflective performance.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、透明な基板に超電導エネルギギャップが0.
02〜1.6eシ超電導体からなる薄膜が被覆された赤
外線反射性能を有する基板である0本発明にかかる超電
導体の薄膜の超電導エネルギギャップは、0.02eV
以上であることが必要である。
The present invention provides a transparent substrate with a superconducting energy gap of 0.
02-1.6e A substrate having infrared reflective performance coated with a thin film made of a superconductor. The superconducting energy gap of the superconductor thin film according to the present invention is 0.02 eV.
It is necessary that it is above.

超電導エネルギギャップが0.02eVである超電導体
の薄膜は、その超電導状態においては、100μ階より
長い波長の入射光をほぼ100%反射する。
A thin film of a superconductor with a superconducting energy gap of 0.02 eV, in its superconducting state, reflects almost 100% of incident light having a wavelength longer than 100 microns.

そして、波長が100μmから1μ−に減少するについ
て、反射率は漸次減少するが、l〜100μ−の広い波
長域で高い反射率を呈する。超電導のエネルギギャップ
が0.02eVより小さいと、1〜2.5μmの近赤外
域はもちろん2.5μ一以上の長波長の赤外線に対して
も反射性能が低下するので好ましくない、また超電導体
の薄膜のエネルギギャップが大きい程、反射率がほぼ1
となる光の波長は短波長側にシフトし、赤外域の広い波
長範囲にわたって高い反射性能が得られる。しかし、超
電導エネルギギャップが1.6eVより大きくなると、
0.7μ−以下の可視域の光に、対しても反射率が大き
くなり、その結果可視域の光の透過率が低下し、窓材と
して暗くなる。したがって、可視光線を通し窓材として
明るくするためには超電導体の薄膜の超電導エネルギギ
ャップは1.6 eVより小さいことが必要である。
The reflectance gradually decreases as the wavelength decreases from 100 μm to 1 μ−, but exhibits a high reflectance over a wide wavelength range of 1 to 100 μ−. If the energy gap of the superconductor is smaller than 0.02 eV, the reflection performance will deteriorate not only in the near-infrared region of 1 to 2.5 μm but also in the long wavelength infrared rays of 2.5 μm or more, which is undesirable. The larger the energy gap of the thin film, the more the reflectance is approximately 1.
The wavelength of the light is shifted to the shorter wavelength side, and high reflection performance can be obtained over a wide wavelength range in the infrared region. However, when the superconducting energy gap becomes larger than 1.6 eV,
The reflectance also increases for light in the visible range of 0.7μ or less, resulting in a decrease in the transmittance of light in the visible range, resulting in a dark window material. Therefore, in order to make the window material bright through visible light, the superconducting energy gap of the superconductor thin film must be smaller than 1.6 eV.

本発明にかかる好ましい超電導体の薄膜としては、一般
式が(At−xBx)tcu*on−y  (Aはラン
タン系列元素、Bは化学周期律表1a、naまたはma
族元素、Q<X<1.0<Y<4)で表わされるLNt
Fa型結晶構造の酸化物の薄膜、あるいは一般式LnB
alCuaOx  (Lnはランタン系列元素、xa6
.5)で表わされる酸素欠損型ペロプスカイト型結晶構
造の酸化物の薄膜、あるいは化学式 8式%) ) ) れる層状の結晶構造の酸化物の薄膜が用いられる。
A preferable superconductor thin film according to the present invention has the general formula (At-xBx)tcu*on-y (A is a lanthanum series element, B is an element of the chemical periodic table 1a, na or ma).
Group element, LNt represented by Q<X<1.0<Y<4)
Thin film of oxide with Fa type crystal structure or general formula LnB
alCuaOx (Ln is a lanthanum series element, xa6
.. A thin film of an oxide having an oxygen-deficient perovskite crystal structure represented by 5) or a thin film of an oxide having a layered crystal structure represented by the chemical formula 8) is used.

また、上記した酸化物超電導体の薄膜の被覆方法として
は、スパッタリング法、真空蒸着法、イオンブレーティ
ング法などの物理的な被覆方法を用いることができる。
Further, as a method for coating the thin film of the oxide superconductor described above, a physical coating method such as a sputtering method, a vacuum evaporation method, an ion blating method, etc. can be used.

さらに、本発明にかかる透明な基板としては、可視域で
透明な基板であれば、とくに限定されない0通常、石英
ガラス板やMgO,^l gosの如き単結晶基板の如
き耐熱性の基板が超電導膜の被覆に際して受ける熱的条
件から好んで用いられる。
Further, the transparent substrate according to the present invention is not particularly limited as long as it is transparent in the visible range.Usually, a heat-resistant substrate such as a quartz glass plate or a single crystal substrate such as MgO or Gos is used as a superconducting substrate. It is preferably used because of the thermal conditions it is subjected to when coating the membrane.

〔作 用〕[For production]

超電導状態における超電導体の薄膜の超電導エネルギギ
ャップと光の反射率との関係については、超電導体表面
に入射する光子のエネルギが超電導体の薄膜の超電導エ
ネルギギャップより小さいと、超電導体の薄膜の表面に
おいて入射光は弾性散乱し、はぼ反射率が1となる。逆
に入射光のエネルギが超電導体薄膜のエネルギギャップ
より大きいと、入射光は完全な弾性散乱を示さなくなり
、超電導体中の薄膜中にその一部が吸収され、薄膜が薄
いと透過する。
Regarding the relationship between the superconducting energy gap of a superconductor thin film and the light reflectance in the superconducting state, if the energy of photons incident on the superconductor surface is smaller than the superconducting energy gap of the superconductor thin film, the superconductor thin film surface The incident light is elastically scattered, and the reflectance becomes 1. Conversely, if the energy of the incident light is greater than the energy gap of the superconductor thin film, the incident light will no longer exhibit complete elastic scattering, and a portion of it will be absorbed by the thin film in the superconductor, and if the thin film is thin, it will be transmitted.

さらに、超電導体の超電導エネルギギャップは、その超
電導体の超電導を示す臨界温度の値に比例し、0.02
eVの超電導エネルギギャップを有する超電導体は、は
ぼ80にの臨界温度をもつ。
Furthermore, the superconducting energy gap of a superconductor is proportional to the value of the critical temperature indicating superconductivity of the superconductor, and is 0.02
A superconductor with a superconducting energy gap of eV has a critical temperature of approximately 80°C.

本発明にかかる超電導体の薄膜は、入射光が薄膜表面で
弾性散乱し、反射率がほぼ1になる光の波長は、100
μ−より短かく、かつ、1μ麹より長いため、赤外域の
広い範囲にわたって高い反射率を示し、かつ、可視域で
光を透過する。
In the superconductor thin film according to the present invention, incident light is elastically scattered on the thin film surface, and the wavelength of the light at which the reflectance is approximately 1 is 100
Because it is shorter than μ- and longer than 1μ koji, it exhibits high reflectance over a wide range of infrared regions and transmits light in the visible region.

実施例 以下に実施例に基いて説明する。第1図は本発明の赤外
線反射性能を有する基板の部分断面図で、1は超電導体
か°らなる薄膜、2は可視域で透明な基板である。第2
図、第3図、第4図、第5図は実施例において得られた
サンプルの反射率、透過率を示す図である。
EXAMPLES The following is an explanation based on examples. FIG. 1 is a partial cross-sectional view of a substrate having infrared reflective performance according to the present invention, where 1 is a thin film made of a superconductor, and 2 is a substrate transparent in the visible range. Second
3, 4, and 5 are diagrams showing the reflectance and transmittance of samples obtained in Examples.

実施例1 YオOs+ Bad、 CuOの微粉末を所定形状に加
圧成形し、大気中で焼成してスパッタリング法による被
膜形成用のターゲットとした。このターゲットを通常用
いられるスパッタリング装置のカソードに取りつけた。
Example 1 Fine powder of YOOs+Bad and CuO was press-molded into a predetermined shape and fired in the atmosphere to provide a target for forming a film by sputtering. This target was attached to the cathode of a commonly used sputtering device.

ターゲットに対向する位置に石英ガラス板を取りつけ、
約600℃に加熱した。スパッタリング装置の真空槽内
の圧力を8 X 10”’Paに排気ポンプにより減圧
した。アルゴンガスをガスバルブから真空槽内に導入し
て、0.40Paに制御し、高周波電源からターゲット
に100Wの電力を投入し、約Iμmの厚みの酸化物か
らなる膜を被覆した。石英ガラス板の加熱、導入ガスお
よび電力の供給を停止、真空槽を大気圧に戻してサンプ
ルを取り出した。その後、このサンプルを大気中で80
0℃で3時間加熱処理をした。このサンプルを蛍光x′
flIA分析法で調べたところ膜の組成はYBatCu
30b、 9で示される組成であった。またこのサンプ
ルの導電率を測定したところ、臨界温度が80に以下で
超電導性があることが認められた。
Attach a quartz glass plate to a position facing the target,
It was heated to about 600°C. The pressure in the vacuum chamber of the sputtering apparatus was reduced to 8 x 10''Pa by an exhaust pump.Argon gas was introduced into the vacuum chamber from the gas valve and controlled at 0.40Pa, and 100W of power was applied to the target from a high frequency power source. The sample was taken out after heating the quartz glass plate, stopping the supply of introduced gas and electricity, returning the vacuum chamber to atmospheric pressure, and taking out the sample. 80 in the atmosphere
Heat treatment was performed at 0°C for 3 hours. Fluorescence x′ of this sample
According to flIA analysis, the composition of the film was YBatCu.
The composition was as shown in 30b, 9. When the electrical conductivity of this sample was measured, it was found that it had superconductivity at a critical temperature of 80°C or less.

液体窒素温度における反射率、透過率を測定したところ
第2図を得た。第2図中1および2はそれぞれ反射率、
透過率曲線である。波長が約60μNで反射率はほぼ1
を示し、かつ、1μ−以上の波長で反射性能を有してい
た。
Figure 2 was obtained by measuring the reflectance and transmittance at liquid nitrogen temperature. In Figure 2, 1 and 2 are reflectances, respectively.
This is a transmittance curve. The wavelength is approximately 60 μN and the reflectance is approximately 1.
, and had reflection performance at wavelengths of 1 μm or more.

実施例2 st、o、、 SrO,(:aO,CLIQの微粉末を
所定形状に加圧成形し、大気中で焼成して、スパッタリ
ング法による被膜形成用のターゲットとした。このター
ゲットを実施例1と同じスパッタリング装置のカソード
に取りつけた。ターゲットに対向する位置にMgO単結
晶基板を取りつけ、約600℃に加熱した。スパッタリ
ング装置の真空槽内を5xio−’Paの圧力まで減圧
後、アルゴンガスをガスバルブから真空槽内に導入して
0.40Paに制御し、高周波電源からターゲットに1
00Wの電力を投入し、約1.crmの厚みの酸化物か
らなる膜をMgO単結晶の(100)面上に被覆した。
Example 2 A fine powder of st, o, SrO, (:aO, CLIQ) was pressure-molded into a predetermined shape and fired in the atmosphere to make a target for film formation by sputtering method. This target was used as a target for film formation by sputtering method. It was attached to the cathode of the same sputtering equipment as in 1.A MgO single crystal substrate was attached to a position facing the target and heated to about 600°C.After reducing the pressure inside the vacuum chamber of the sputtering equipment to a pressure of 5xio-'Pa, argon gas was added. is introduced into the vacuum chamber through the gas valve and controlled at 0.40 Pa, and the high frequency power supply is applied to the target.
00W of power, about 1. A film made of oxide with a thickness of crm was coated on the (100) plane of an MgO single crystal.

基板の加熱、導入ガスおよび電力の供給を停止し、真空
槽を大気圧に戻しサンプルを得た。その後このサンプル
を大気中800℃で3時間熱処理をおこなった。このサ
ンプルの酸化物からなる被膜を実施例1と同様に調べた
ところ、膜の組成はB115rlCalCusO++で
示される組成であった。また、このサンプルの導電率を
測定して、塵界温度が80にの超電導性があることが認
められた。さらに液体窒素温度における反射率、透過率
を測定したものを第3図に示す。第3図中3,4はそれ
ぞれ反射率、透過率曲線である。波長が約65μ−で反
射率はほぼ1であった。また1μ勧以上の波長で反射性
能を有していた。
The heating of the substrate and the supply of introduced gas and electricity were stopped, and the vacuum chamber was returned to atmospheric pressure to obtain a sample. Thereafter, this sample was heat treated at 800° C. for 3 hours in the air. When the oxide film of this sample was examined in the same manner as in Example 1, the composition of the film was found to be B115rlCalCusO++. Furthermore, the conductivity of this sample was measured, and it was found that it had superconductivity at a dust boundary temperature of 80°C. Furthermore, the reflectance and transmittance measured at liquid nitrogen temperature are shown in FIG. 3 and 4 in FIG. 3 are reflectance and transmittance curves, respectively. The wavelength was approximately 65 μ- and the reflectance was approximately 1. It also had reflective performance at wavelengths of 1 μm or more.

実施例3 T 1 zo、+ SrO,Cab、 CuOの微粉末
を所定形状に加圧成形し、大気中で焼成して、スパッタ
リング法による被膜形成用のターゲットとした。このタ
ーゲットを実施例1と同じスパッタリング装置のカソー
ドに取りつけた。ターゲットに対向する位置にMgO単
結晶の板を取りつけ、約300℃に加熱した。スパッタ
リング装置の真空槽内の圧力を8 Xl0−’Paまで
ポンプにより減圧し、その後アルゴンガスをガスバルブ
から真空槽内に導入して0.40Paに制御し、高周波
電源からターゲットにIQQWの電力を投入して、約1
μ−の厚みの酸化物からなる膜をMgO単結晶の(10
0)面上に被覆した。基板の加熱、ガスの導入、電力の
供給を停止し、真空槽を大気圧に戻し、サンプルを得た
。その後このサンプルをTl蒸気の雰囲気中で800℃
に3時間加熱処理した。このサンプルの被膜を蛍光X線
分析法で調べたところ、膜の組成は、T II @5r
zCusO0で示される組成であった。またこのサンプ
ルの導電率を測定して、80に以下で超電導性が確認さ
れた。さらにIOKにおける反射率、透過率を測定して
第4図を得た。第4図中5.6はそれぞれ反射率、透過
率曲線である。
Example 3 Fine powders of T 1 zo, + SrO, Cab, and CuO were press-molded into a predetermined shape and fired in the atmosphere to provide a target for forming a film by sputtering. This target was attached to the cathode of the same sputtering apparatus as in Example 1. A MgO single crystal plate was attached to a position facing the target and heated to about 300°C. The pressure in the vacuum chamber of the sputtering device was reduced to 8 Xl0-'Pa by a pump, then argon gas was introduced into the vacuum chamber from the gas valve to control it to 0.40Pa, and IQQW power was applied to the target from the high-frequency power source. Then, about 1
A film made of oxide with a thickness of μ- is coated with a MgO single crystal (10
0) Coated on the surface. The heating of the substrate, the introduction of gas, and the supply of electricity were stopped, and the vacuum chamber was returned to atmospheric pressure to obtain a sample. This sample was then heated to 800°C in an atmosphere of Tl vapor.
The mixture was heat-treated for 3 hours. When the film of this sample was examined by fluorescent X-ray analysis, the composition of the film was found to be T II @5r.
It had a composition indicated by zCusO0. The conductivity of this sample was also measured, and superconductivity was confirmed at 80 or less. Furthermore, the reflectance and transmittance at IOK were measured and FIG. 4 was obtained. 5.6 in FIG. 4 are reflectance and transmittance curves, respectively.

波長70μm以上で反射率がほぼ1であることが認めら
れた。また1μm以上の波長で高い反射性能を示してい
ることが分る。
It was observed that the reflectance was approximately 1 at wavelengths of 70 μm or more. It can also be seen that it exhibits high reflection performance at wavelengths of 1 μm or more.

実施例4 T l z(h+ Bad、 Cab、 CuOの*粉
末を所定形状に加圧成形し、タリウム蒸気雰囲気中で8
85℃、2時間焼成して、スパッタリング法による被膜
形成用のターゲットとした。このターゲットを実施例1
と同じスパッタリング装置のカソードに取りつけた。タ
ーゲットに対向する装置に?IgO単結晶の仮を取りつ
け、約300℃に加熱した。スパツタリング装置の真空
槽内の圧力を8 X 10−’Paまでポンプにより減
圧し、その後アルゴンガスをガスバルブから真空槽内に
導入して0.40Paに制御し、高周波電源からターゲ
ットに70Wの電力を投入して、約1μ園の厚みの酸化
物からなる膜をYSz基ll1(部分安定化ジルコニア
基板)上に被膜した。
Example 4 T l z (h+ *Powder of Bad, Cab, CuO was pressure-molded into a predetermined shape, and heated in a thallium vapor atmosphere.
It was fired at 85° C. for 2 hours and used as a target for film formation by sputtering. Example 1
It was attached to the cathode of the same sputtering equipment. To the device facing the target? A temporary IgO single crystal was attached and heated to about 300°C. The pressure in the vacuum chamber of the sputtering device was reduced to 8 × 10-'Pa by a pump, and then argon gas was introduced into the vacuum chamber from the gas valve to control it to 0.40Pa, and 70W of power was applied to the target from a high-frequency power source. A film made of an oxide having a thickness of about 1 μm was coated on the YSz-based 111 (partially stabilized zirconia substrate).

基板の加熱、ガスの導入、電力の供給を停止し、真空槽
を大気圧に戻し、サンプルを得た。その後このサンプル
を大気中で880℃に3時間加熱処理し、た、このサン
プルの被膜を蛍光X線分析法で調べたところ、膜の組成
はT l =BaCatCusOtoで示される&1l
tcであった。またこのサンプルの導電率を測定して、
80に以下で超電導性が確認された。
The heating of the substrate, the introduction of gas, and the supply of electricity were stopped, and the vacuum chamber was returned to atmospheric pressure to obtain a sample. After that, this sample was heat-treated at 880°C for 3 hours in the air, and the film of this sample was examined by fluorescent X-ray analysis, and the composition of the film was shown as T l =BaCatCusOto&1l
It was tc. We also measured the conductivity of this sample,
Superconductivity was confirmed below 80%.

さらに液体窒素温度における反射率、透過率を測定して
第5図を得た。第5図中7.8はそれぞれ反射率、透過
率曲線である。波長70μ諺以上で反射率がほぼ1であ
ることが認められた。また!μ−以上の波長で高い反射
性能を示していることが分る。
Furthermore, the reflectance and transmittance at liquid nitrogen temperature were measured and FIG. 5 was obtained. 7.8 in FIG. 5 are reflectance and transmittance curves, respectively. It was observed that the reflectance was approximately 1 at wavelengths of 70 μm or more. Also! It can be seen that it exhibits high reflection performance at wavelengths of μ− or more.

〔発明の効果〕〔Effect of the invention〕

本発明にかかる赤外線反射性能を有する基板は、1μ〜
100μ難の広い波長範囲にわたり高い反射率を有して
いるので、太陽光のエネルギを遮へいする窓材として、
また比較的低温の物体から放射される輻射エネルギを遮
へいする窓材とすることができる。
The substrate having infrared reflective performance according to the present invention has a
It has a high reflectance over a wide wavelength range of about 100 μm, so it can be used as a window material to shield sunlight energy.
Further, it can be used as a window material that shields radiant energy emitted from relatively low-temperature objects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明にかかる赤外線反射性能を有する基板の
部分断面図で、第2図、第3図、第4図、第5図は本発
明の実施例の反射および透過特性を示す図である。 1・・・超電導体からなる薄膜、2・・・透明基板11 図 第 図 第3因 第 図
FIG. 1 is a partial cross-sectional view of a substrate having infrared reflective performance according to the present invention, and FIGS. 2, 3, 4, and 5 are diagrams showing reflection and transmission characteristics of embodiments of the present invention. be. 1... Thin film made of superconductor, 2... Transparent substrate 11 Figure Figure 3 Factor Figure

Claims (1)

【特許請求の範囲】 1)透明な基板上に超電導エネルギギャップが0.02
〜1.6eVの超電導体の薄膜が被覆された赤外線反射
性能を有する基板 2)前記超電導体の薄膜が一般式 (A_1_−_XB_X)_ZCu_ZO_4_−_Y
(Aはランタン系列元素、Bは化学周期律表 I a、II
aまたはIIIa族元素、0<X<1、0<Y<4)で表
わされるK_2NiF_4型結晶構造の酸化物の薄膜あ
るいは、一般式 LnBa_ZCu_3O_X(Lnはランタン系列元素
、X≧6.5)で表わされる酸素欠損型ペロブスカイト
型結晶構造の酸化物の薄膜、あるいは化学式 Bi_2Sr_2Ca_2_−_1Cu_XO_2_X
_+_4(1≦X≦4)、Tl_2、Ba_2Ca_X
_−_1Cu_XO_2_X_+_4(1≦X≦4)、
またはTl_2、Sr_2Ca_X_−_1Cu_XO
_2_X_+_4(1≦X≦4)で表わされる層状の結
晶構造の酸化物の薄膜である特許請求範囲第1項記載の
赤外線反射性能を有する基板
[Claims] 1) Superconducting energy gap of 0.02 on a transparent substrate
Substrate having infrared reflective performance coated with a thin film of ~1.6 eV superconductor 2) The thin film of superconductor has the general formula (A_1_-_XB_X)_ZCu_ZO_4_-_Y
(A is a lanthanum series element, B is a chemical periodic table I a, II
a or IIIa group element, 0<X<1, 0<Y<4), or a thin film of oxide of K_2NiF_4 type crystal structure represented by the general formula LnBa_ZCu_3O_X (Ln is a lanthanum series element, X≧6.5). A thin film of an oxide with an oxygen-deficient perovskite crystal structure, or with the chemical formula Bi_2Sr_2Ca_2_-_1Cu_XO_2_X
_+_4(1≦X≦4), Tl_2, Ba_2Ca_X
____1Cu_XO_2_X_+_4 (1≦X≦4),
or Tl_2, Sr_2Ca_X_-_1Cu_XO
_2_X_+_4 (1≦X≦4) A substrate having infrared reflective performance according to claim 1, which is a thin film of an oxide with a layered crystal structure represented by _2_X_+_4 (1≦X≦4)
JP1246875A 1989-07-04 1989-09-22 Substrate having infrared ray reflective property Pending JPH03129783A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP1-172551 1989-07-04
JP17255189 1989-07-04

Publications (1)

Publication Number Publication Date
JPH03129783A true JPH03129783A (en) 1991-06-03

Family

ID=15943964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1246875A Pending JPH03129783A (en) 1989-07-04 1989-09-22 Substrate having infrared ray reflective property

Country Status (1)

Country Link
JP (1) JPH03129783A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7431984B2 (en) * 2004-10-01 2008-10-07 Murata Manufacturing Co., Ltd. Hybrid lens using translucent ceramic
CN108414444A (en) * 2018-03-09 2018-08-17 山东大学 A kind of non-contact type superconducting thin-film material superconduction phase transformation and Photoinduced Electron local effect test device and its working method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7431984B2 (en) * 2004-10-01 2008-10-07 Murata Manufacturing Co., Ltd. Hybrid lens using translucent ceramic
CN108414444A (en) * 2018-03-09 2018-08-17 山东大学 A kind of non-contact type superconducting thin-film material superconduction phase transformation and Photoinduced Electron local effect test device and its working method

Similar Documents

Publication Publication Date Title
Haacke Transparent electrode properties of cadmium stannate
US4349425A (en) Transparent conductive films and methods of producing same
Fan Sputtered films for wavelength-selective applications
CN104032278A (en) Method for preparing vanadium dioxide film
JP3644647B2 (en) Conductive oxide and electrode using the same
CN111293181B (en) MSM type alpha-Ga2O3Basic solar blind ultraviolet detector
Farahamndjou The study of electro-optical properties of nanocomposite ITO thin films prepared by e-beam evaporation
Sabhapathi et al. Optical absorption studies in molybdenum trioxide thin films
Boyer et al. Enhanced transparency through second phase crystallization in BaAl4O7 scintillating ceramics
JPH03151231A (en) Multilayer strain lattice copper oxide perovskite structure
JPH03129783A (en) Substrate having infrared ray reflective property
Martin et al. Properties of indium tin oxide films prepared by ion-assisted deposition
CN110335914B (en) MSM type (GaMe)2O3Ternary alloy solar blind ultraviolet detector and preparation method thereof
US5652062A (en) Devices using transparent conductive GaInO3 films
Shih et al. Indium‐doped zinc oxide thin films prepared by rf magnetron sputtering
Mohammad et al. Optical properties of cadmium stannate thin film prepared by pyrolytic process
RU2054212C1 (en) Process of manufacture of thin superconductive films
JP2000090745A (en) Transparent conductive membrane
Shao et al. Effect of O 2/Ar ratio and sputtering power on the photoelectric properties of antimony doped tin oxide films on ZnO layer
Chen et al. Infrared absorption of Ir and IrSi thin films on Si substrates
Bordbari et al. Investigation of structural and optical properties of oblique angle sputter deposited barium strontium titanate nanostructures
Kim et al. Investigation of VO2 directly deposited on a glass substrate using RF sputtering for a smart window
Jiang et al. Sputtered In2O3: Sn films: Preparation and optical properties
Mohamed Sintering process and annealing effect on some physical properties of V2O5 thin films
Chromik et al. Hg-cuprate thin films prepared using Re and fluorides based precursor thin films