JPH0312916A - Electron beam lithography - Google Patents

Electron beam lithography

Info

Publication number
JPH0312916A
JPH0312916A JP15009989A JP15009989A JPH0312916A JP H0312916 A JPH0312916 A JP H0312916A JP 15009989 A JP15009989 A JP 15009989A JP 15009989 A JP15009989 A JP 15009989A JP H0312916 A JPH0312916 A JP H0312916A
Authority
JP
Japan
Prior art keywords
vernier
scribe line
patterns
electron beam
drawn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15009989A
Other languages
Japanese (ja)
Inventor
Hiroyuki Shigemura
茂村 弘之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP15009989A priority Critical patent/JPH0312916A/en
Publication of JPH0312916A publication Critical patent/JPH0312916A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electron Beam Exposure (AREA)

Abstract

PURPOSE:To measure the lithography position accuracy of a circuit pattern quantitatively with a simple method and obtain a semiconductor integrated circuit efficiently by allowing scribe line regions to be formed at a semiconductor substrate and forming vernier patterns at least at parts where the scribe line regions intersect each other. CONSTITUTION:Patterns are drawn on a wafer at which a resist film is formed according to data for lithography in each circuit pattern region 2; besides, vernier patterns 6 are drawn at four corner parts of scribe line regions 3. When the vernier patterns 6 consisting of rough and fine vernier parts 4 and 5 which are formed by sandwiching a center line 1 in each scribe line region are drawn and developed, each vernier pattern 6 is formed so that lithography position accuracy is read in a prescribed length unit at the corner parts of respective chip regions in the scribe line regions 3. The vernier patterns 6 are observed by a microscope. In this way, the position shift of the patterns in each circuit pattern region 2 is measured quantitatively to improve manufacturing yield and the like.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電子ビーム描画方法に関し、特に可変整形型電
子ビーム描画装置を用いた電子ビーム描画方法に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electron beam lithography method, and more particularly to an electron beam lithography method using a variable shaping type electron beam lithography apparatus.

〔従来の技術〕[Conventional technology]

集積回路の微細化、高精度化に伴なって回路パターンの
描画には、描画精度と描画スピードの両面の優位性から
、可変整形型電子ビーム描画装置を用いて、レジスト膜
の形成された半導体基板(以下ウェハーという)に直接
パターンを描画する、電子ビーム直接描画方法が用いら
れるようになってきた。
With the miniaturization and higher precision of integrated circuits, semiconductors with resist films formed using variable shaping electron beam lithography equipment are being used to draw circuit patterns due to their superiority in both drawing precision and drawing speed. Electron beam direct writing methods, which draw patterns directly on substrates (hereinafter referred to as wafers), have come into use.

この可変整形型電子ビーム描画装置においては第4図に
示す様に、ウェハーに照射する電子ビーム14は、2個
の整形スリット1.5.18で矩形整形され、縮小レン
ズ19で縮小された後、ビームの位置決め偏向器20で
照射位置が決定され、ウェハーの回路パターン領域2上
にパターンを描画する機構となっている。
In this variable shaping type electron beam lithography system, as shown in FIG. The irradiation position is determined by a beam positioning deflector 20, and a pattern is drawn on the circuit pattern area 2 of the wafer.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来の電子ビーム描画装置は、電子ビームの偏
向可能な領域、すなわちフィールドサイズが数111m
であるため、集積回路の1チツプのサイズがフィールド
サイズを越えると、1チツプを描画するには複数のフィ
ールドに分割して描画しなければならない。
In the conventional electron beam lithography system described above, the area where the electron beam can be deflected, that is, the field size is several 111 m.
Therefore, if the size of one chip of an integrated circuit exceeds the field size, it is necessary to divide the chip into multiple fields to draw one chip.

一方、電子ビーム描画装置の特性−」二、フィールドの
接続部分においてパターン描画精度か最も悪くなるにも
かかわらず、従来の電子ヒーム直接描画方法ではフィー
ルドの接続部か複雑な回路パターンになるか、パターン
の存在しないスクライブ線領域になっている為、描画精
度か悪化した時の発見が困難である。このため描画精度
の異常に起因する集積回路の性能劣化や不良は、回路製
造工程の最終まで発見てきす、納期や工数に著しく不利
となる欠点がある。
On the other hand, the characteristics of electron beam lithography equipment - 2. Although the pattern writing accuracy is the worst at the field connection part, does the conventional electron beam direct writing method result in a complex circuit pattern at the field connection part? Since the area is a scribe line area where no pattern exists, it is difficult to detect when the drawing accuracy has deteriorated. For this reason, performance deterioration or defects in integrated circuits due to abnormalities in drawing precision cannot be detected until the final stage of the circuit manufacturing process, which has the disadvantage of significantly reducing delivery time and man-hours.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の電子ビーム描画方法は、可変整形型電子ビーム
描画装置を用いてレジスト膜の形成された半導体基板に
パターンを直接描画する電子ヒーム描画方法において、
前記半導体基板のスクライブ線領域の少くとも交差する
部分にバーニアパターンを描画するものである。
The electron beam lithography method of the present invention is an electron beam lithography method in which a pattern is directly drawn on a semiconductor substrate on which a resist film is formed using a variable shaping type electron beam lithography apparatus.
A vernier pattern is drawn at least in a portion where the scribe line regions of the semiconductor substrate intersect.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の第1の実施例を説明するための回路パ
ターン領域2とスクライブ線領域3とからなるチップ領
域を示す図である。
FIG. 1 is a diagram showing a chip area consisting of a circuit pattern area 2 and a scribe line area 3 for explaining a first embodiment of the present invention.

まず第1図に示す様にレジスト膜が形成されたウェハー
上に、描画用データにより回路パターン領域2内にパタ
ーンを描画すると共に、スクライブ線領域3のコーナ一
部分4カ所にバーニアパターン6を描画する。
First, as shown in FIG. 1, on a wafer on which a resist film has been formed, a pattern is drawn in the circuit pattern area 2 using drawing data, and vernier patterns 6 are drawn in four corners of the scribe line area 3. .

このバーニアパターン6は第2図に示すように、スクラ
イブ線領域の中心線1をはさんで形成された疎バーニア
部4と微バーニア部5の対により構成される。5μn1
の疎バーニア部4と49μmの微バーニア部5からなる
バーニアパターン6を描画して現像すると、スクライブ
線領域3内で各チップ領域のコーナ一部に0.05μm
1単位で描画位置精度を読み取れるバーニアパターン6
が形成される。
As shown in FIG. 2, this vernier pattern 6 is composed of a pair of a sparse vernier section 4 and a fine vernier section 5, which are formed on both sides of the center line 1 of the scribe line region. 5μn1
When a vernier pattern 6 consisting of a coarse vernier portion 4 of 49 μm and a fine vernier portion 5 of 49 μm is drawn and developed, a 0.05 μm thick vernier pattern 6 is formed on a part of the corner of each chip area within the scribe line area 3.
Vernier pattern 6 that allows you to read the drawing position accuracy in 1 unit
is formed.

このバーニアパターン6を顕微鏡により観察することに
より、回路パターン領域2中のパターンの位置ずれを定
量的に測定することができる。半導体集積回路の製造歩
留り及び特性劣化に影響を及ぼさないパターンの位置ず
れ量をあらかじめ求めて規格値とすることにより、バー
ニアパターン6による位置ずれ測定結果を照合し、規格
内のものを良品とする。この操作により、製造歩留り等
を向上させることができる。
By observing this vernier pattern 6 with a microscope, the positional deviation of the pattern in the circuit pattern area 2 can be quantitatively measured. By determining in advance the amount of positional deviation of the pattern that does not affect the manufacturing yield and characteristic deterioration of semiconductor integrated circuits and setting it as a standard value, the results of positional deviation measurement using the vernier pattern 6 are compared, and those within the standard are considered non-defective. . This operation can improve manufacturing yield and the like.

第3図は本発明の第2の実施例を説明するためのチップ
領域を示す図である。
FIG. 3 is a diagram showing a chip area for explaining a second embodiment of the present invention.

木簡2の実施例は回路パターン領域2が複数のフィール
ド8により構成される場合であり、スクライブ線領域3
内のフィールド境界線7の交差する部分すべてにバーニ
アパターン6を描画する。
In the embodiment of the wooden tablet 2, the circuit pattern area 2 is composed of a plurality of fields 8, and the scribe line area 3
A vernier pattern 6 is drawn at all intersections of field boundary lines 7 in the field.

この為1チツプ領域を複数のフィールドに分割した時に
、チップ領域がフィールドサイズで割り切れない場合に
発生する微小フィールド8Aが存在しても、見かけの描
画精度が良くなる微小フィールド8Aのコーナ一部より
、隣接するバーニアパターン6でより正確に描画精度を
測定できる利点かある。
For this reason, when one chip area is divided into multiple fields, even if there is a small field 8A that occurs when the chip area is not divisible by the field size, the apparent drawing accuracy is better than the part of the corner of the small field 8A. , there is an advantage that drawing accuracy can be measured more accurately using adjacent vernier patterns 6.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、可変整形型電子ビーム描
画装置を用いた直接描画方法において、半導体基板に形
成するスクライブ線領域の少くとも交差する部分にバー
ニアパターンを形成することにより、簡便な方法で回路
パターンの描画位置精度を定量的に測定できるため、半
導体集積回路の製造を効率的に行なえるという効果があ
る。
As explained above, the present invention provides a simple method in which a vernier pattern is formed at least in the intersection of scribe line regions formed on a semiconductor substrate in a direct writing method using a variable shaping electron beam writing device. Since the accuracy of the drawing position of a circuit pattern can be measured quantitatively, it is effective in efficiently manufacturing semiconductor integrated circuits.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例を説明するためのチップ
領域を示す図、第2図は本発明の実施例におけるバーニ
アパターンを示す図、第3図は本発明の第2の実施例を
説明するためのチップ領域を示す図、第4図は電子ビー
ム描画装置の構成図である。 ]・・・スクライブ線領域の中心線、2・・・回路パタ
ーン領域、3・・・スクライブ線領域、4・・・疎バー
ニア部、5・・・微バーニア部、6・・バーニアパター
ン、7 ・フィールド境界線、13・・・電子銃、14
・・・電子ビーム、15・・・第1整形スリツト、16
・・集束レンズ、 1 7・・ ヒーム整形偏向器、 ・第 2整形スリツト、 9・・・縮小レンズ、 20・・位置 決め偏向器。
FIG. 1 is a diagram showing a chip area for explaining a first embodiment of the present invention, FIG. 2 is a diagram showing a vernier pattern in the embodiment of the present invention, and FIG. 3 is a diagram showing a second embodiment of the present invention. FIG. 4, which is a diagram showing a chip area for explaining an example, is a configuration diagram of an electron beam lithography apparatus. ]...Center line of scribe line area, 2...Circuit pattern area, 3...Scribe line area, 4...Sparse vernier portion, 5...Fine vernier portion, 6...Vernier pattern, 7・Field boundary line, 13... Electron gun, 14
...electron beam, 15...first shaping slit, 16
...Focusing lens, 1 7.. Heam shaping deflector, - 2nd shaping slit, 9.. Reducing lens, 20.. Positioning deflector.

Claims (1)

【特許請求の範囲】[Claims] 可変整形型電子ビーム描画装置を用いてレジスト膜の形
成された半導体基板にパターンを直接描画する電子ビー
ム描画方法において、前記半導体基板のスクライブ線領
域の少くとも交差する部分にバーニアパターンを描画す
ることを特徴とする電子ビーム描画方法。
In an electron beam lithography method in which a pattern is directly drawn on a semiconductor substrate on which a resist film is formed using a variable shaping electron beam lithography device, a vernier pattern is drawn on at least a portion intersecting a scribe line region of the semiconductor substrate. An electron beam writing method characterized by:
JP15009989A 1989-06-12 1989-06-12 Electron beam lithography Pending JPH0312916A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15009989A JPH0312916A (en) 1989-06-12 1989-06-12 Electron beam lithography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15009989A JPH0312916A (en) 1989-06-12 1989-06-12 Electron beam lithography

Publications (1)

Publication Number Publication Date
JPH0312916A true JPH0312916A (en) 1991-01-21

Family

ID=15489489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15009989A Pending JPH0312916A (en) 1989-06-12 1989-06-12 Electron beam lithography

Country Status (1)

Country Link
JP (1) JPH0312916A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5665495A (en) * 1994-03-10 1997-09-09 Hyundai Electronics Industries Co., Ltd. Method for fabricating a semiconductor with a photomask
JP2006070537A (en) * 2004-09-01 2006-03-16 Mitsuo Yamamoto Right-angled v-shaped energy dissipator, cascade work using the same, and stepped-down waterway using them

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5665495A (en) * 1994-03-10 1997-09-09 Hyundai Electronics Industries Co., Ltd. Method for fabricating a semiconductor with a photomask
JP2006070537A (en) * 2004-09-01 2006-03-16 Mitsuo Yamamoto Right-angled v-shaped energy dissipator, cascade work using the same, and stepped-down waterway using them

Similar Documents

Publication Publication Date Title
US5262258A (en) Process of manufacturing semiconductor devices
US7316935B1 (en) Reticle for layout modification of wafer test structure areas
CN111240162B (en) Method for improving alignment of photoetching machine
US5721619A (en) Misregistration detecting marks for pattern formed on semiconductor substrate
US7970485B2 (en) Systems and methods for determining width/space limits for a mask layout
US6757629B2 (en) Calibration plate having accurately defined calibration pattern
JPH0312916A (en) Electron beam lithography
KR20220125338A (en) How to check a multi-step process
JP3712140B2 (en) Electron beam drawing device
JPH1195407A (en) Photomask
JPH10185541A (en) Method for measuring accuracy of arrangement, photomask and semiconductor device
JPS6111461B2 (en)
JP2874261B2 (en) Projection exposure mask
JP2647835B2 (en) Wafer exposure method
JPH0387013A (en) Manufacture of semiconductor device
JPS6152973B2 (en)
JP2587614B2 (en) Semiconductor device
JPH05217845A (en) Pattern for alignment measurement
JPH04587B2 (en)
JP3320298B2 (en) Semiconductor exposure apparatus and semiconductor exposure method using the same
JPS60136326A (en) Semiconductor device
JP3024757B1 (en) Electron beam writing method
JPS6345091B2 (en)
JPS588132B2 (en) Integrated circuit manufacturing method
JPS6360528A (en) Manufacture of semiconductor device