JPH03123626A - Driving method of metal vapor generating apparatus - Google Patents

Driving method of metal vapor generating apparatus

Info

Publication number
JPH03123626A
JPH03123626A JP25891689A JP25891689A JPH03123626A JP H03123626 A JPH03123626 A JP H03123626A JP 25891689 A JP25891689 A JP 25891689A JP 25891689 A JP25891689 A JP 25891689A JP H03123626 A JPH03123626 A JP H03123626A
Authority
JP
Japan
Prior art keywords
metal
isotope separation
convection
replenishment
vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25891689A
Other languages
Japanese (ja)
Inventor
Hiroaki Ueda
博章 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP25891689A priority Critical patent/JPH03123626A/en
Publication of JPH03123626A publication Critical patent/JPH03123626A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To efficiently use thermal energy given for generating metal vapor by supplying a raw material of a metal for convection prevention as well to a replenishment container in which a replenishment raw material of a metal for isotope separation is stored. CONSTITUTION:A metal 6 for isotope separation and a metal 5 for convection prevention are put in an evaporation crucible 4. The metal 6 is heated to be molten and evaporated by an electron beam 8 radiated by an electron gun. The metal vapor vaporized by radiation of the electron gun 8 is guided in a vapor sealed container. A raw material 16 for replenishment of the metal 6 for isotope separation is put in a replenishment container 17. At the time of operation of a metal vapor generating apparatus consisting of those evaporation crucible 4, electron gun, vapor sealed container, and replenishment container 17, a raw material 20 of the metal 5 for convection prevention is supplied as well to the replenishment container 7. As a result, quantitative balance of a molten layer of the metal 6 and a molten layer of the metal 5 is kept properly and thermal energy for metal vapor generation is used efficiently.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、電子銃を用いて金属蒸気を発生させ、レーザ
法によって同位体金属を分離させる金属蒸気発生装置の
運転方法に係り、特に熱効率よく同位体分離用金属を蒸
発させることのできる金属蒸気発生装置の運転方法に関
する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention provides a method for operating a metal vapor generator that generates metal vapor using an electron gun and separates isotopic metals using a laser method. In particular, the present invention relates to a method of operating a metal vapor generator that can evaporate metals for isotope separation with high thermal efficiency.

(従来の技術) レーザを利用した同位体金属の分離濃縮技術は、従来の
ガス拡散法、ノズル法、化学交換法、遠心分離法などと
比較すると分離効率が非常に大きく、多段の分離用カス
ケードを組む必要がないので設備の簡素化が図られる。
(Conventional technology) Isotope metal separation and concentration technology using lasers has a much higher separation efficiency than conventional gas diffusion methods, nozzle methods, chemical exchange methods, centrifugation methods, etc., and requires a multi-stage separation cascade. Since there is no need to assemble the equipment, the equipment can be simplified.

第2図はレーザ法による同位体分離装置を概略的に示し
た模式図である。この同位体分離装置1は、真空容器2
内に蒸気封入容器3を収容し、この蒸気封入容器3の下
方に通常銅製の蒸発用るっぽ4が設置される。蒸発用る
っぽ4は、上方に開口する収納凹部内に、同位体分離用
金属6の例えば粒を対流防止用多孔質金属塊5に載置し
て収容する。
FIG. 2 is a schematic diagram schematically showing an isotope separation apparatus using a laser method. This isotope separation device 1 includes a vacuum container 2
A steam enclosure 3 is housed therein, and an evaporation roof 4, usually made of copper, is installed below the vapor enclosure 3. The evaporation lupus 4 accommodates, for example, grains of the isotope separation metal 6 on a convection-preventing porous metal block 5 in a storage recess that opens upward.

一方電子銃7から射出される電子ビーム8は、偏向磁場
9によって偏向され、上記粒状の同位体分離用金属6に
照射される。すると同位体分離用金属6は加熱されて溶
融し多孔質金属塊5に含浸するが、さらに加熱されると
蒸発して同位体金属の蒸気流10を発生する。
On the other hand, the electron beam 8 emitted from the electron gun 7 is deflected by a deflecting magnetic field 9 and irradiated onto the granular metal for isotope separation 6 . The metal for isotope separation 6 is then heated and melted and impregnated into the porous metal mass 5, but when heated further, it evaporates and generates a vapor stream 10 of isotope metal.

同位体分離を目的とする金属6を一旦多孔質金属塊5に
含浸させるのは、電子ビーム8の照射によって溶融した
金属原料6が対流を起こして熱を蒸発用るつぼ4に奪わ
れ、電子ビーム8の熱効率を低下させないようにするた
めである。
Once the metal 6 for the purpose of isotope separation is impregnated into the porous metal mass 5, the metal raw material 6 melted by irradiation with the electron beam 8 causes convection, heat is taken away by the evaporation crucible 4, and the electron beam This is to prevent the thermal efficiency of No. 8 from decreasing.

こうして発生した金属蒸気流10は、蒸気封入容器3内
を上昇するが、その間この金属上記流10には、図示し
ないレーザ装置から選択励起レーザ光11が照射される
。このレーザ光11は、特定同位体の共鳴吸収線に相当
する周波数を有するため、レーザ光11が照射された金
属蒸気流10は、その特定同位体だけが励起されてイオ
ン化し、正電荷を有するイオン同位体12となる。した
がってこのイオン同位体12は、蒸気封入容器3の上部
にある陽電極13と陰電極14を交互に配置した電極間
の電界空間を通過する際、陰電極14側に引寄せられて
、その表面に吸着し、回収される。
The metal vapor flow 10 thus generated rises within the vapor enclosure 3, and during this time the metal vapor flow 10 is irradiated with a selective excitation laser beam 11 from a laser device (not shown). Since this laser beam 11 has a frequency corresponding to the resonance absorption line of a specific isotope, only the specific isotope in the metal vapor flow 10 irradiated with the laser beam 11 is excited and ionized, and has a positive charge. It becomes ion isotope 12. Therefore, when this ion isotope 12 passes through the electric field space between the electrodes in which the positive electrode 13 and the negative electrode 14 are arranged alternately in the upper part of the steam enclosure 3, it is attracted to the negative electrode 14 side, and the surface thereof is is adsorbed and recovered.

一方、イオン化されない同位体、すなわちその共鳴吸収
線の周波数がレーザ光の周波数と一致しない同位体の蒸
気流は、電界の影響を受けず、電極13と14の間を素
通りして蒸気封入容器3の上端に配設した蒸気流捕集板
15に捕集される。
On the other hand, the vapor flow of an isotope that is not ionized, that is, an isotope whose resonance absorption line frequency does not match the frequency of the laser beam, is not affected by the electric field and passes directly between the electrodes 13 and 14 into the vapor enclosure container 3. The vapor is collected by a vapor flow collecting plate 15 disposed at the upper end of the vapor flow collecting plate 15.

ところで、蒸気封入容器3の外側には、蒸発する同位体
分離用金属6を補給するため、例えばペレット状の金属
原料16を収容する補給容器17に付設される。この補
給容器17の下部にはヒタ18が取付けられるが、この
部分は先細りとなっており、さらにその下端は蒸発用る
つぼ4の上方で開口する。
Incidentally, in order to replenish the vaporized metal 6 for isotope separation, a replenishment container 17 containing, for example, a pellet-shaped metal raw material 16 is attached to the outside of the steam enclosure 3. A lid 18 is attached to the lower part of the supply container 17, and this part is tapered, and its lower end opens above the evaporation crucible 4.

したがって電子ビーム7の照射によって金属蒸気流10
の発生が続き、蒸発用るつぼ4内の同位体分離用金属原
料6が少なくなったときは、補給容器17に設置された
ヒータ18を稼働させる。
Therefore, by irradiation with the electron beam 7, the metal vapor flow 10
When the generation of metal raw material 6 for isotope separation in the evaporation crucible 4 decreases, the heater 18 installed in the supply container 17 is activated.

すると、補給容器17に収容されていたペレット状の補
給用金属原料16が加熱されて溶融し、補給容器17の
下端から蒸発用るつぼ4内に滴下する。その結果、蒸発
用るつぼ4内の同位体分離用金属原料6は補給される。
Then, the pellet-shaped replenishment metal raw material 16 contained in the replenishment container 17 is heated and melted, and drips into the evaporation crucible 4 from the lower end of the replenishment container 17. As a result, the metal raw material 6 for isotope separation in the evaporation crucible 4 is replenished.

(発明が解決しようとする課題) ところで蒸発する金属原料6の対流を防止して電子ビー
ム8の熱効率を高める多孔質金属塊5も、電子ビーム8
の照射が続くと、やがて含浸した金属原料6との相互作
用等によって溶融する。
(Problem to be Solved by the Invention) By the way, the porous metal mass 5 that prevents the convection of the evaporating metal raw material 6 and increases the thermal efficiency of the electron beam 8 also
As the irradiation continues, it eventually melts due to interaction with the impregnated metal raw material 6.

すると蒸発用るつぼ4内は同位体分離用金属の溶融層6
と対流防止用多孔質金属塊の溶融層5に分離される。こ
のような状態になったときは、電子ビーム8の熱効率向
上の観点からは、同位体分離用金属の溶融層6と対流防
止用金属塊の溶融層5の量的比率が重要になる。すなわ
ち、対流防止用金属塊の溶融層5が十分な量存在して適
切な量的比率で同位体分離用金属の溶融層6を取囲めば
、同位体分離用金属の溶融層6内における対流を小幅な
ものに留めて、電子ビーム8の熱効率を高めることがで
きる。
Then, inside the evaporation crucible 4 is a molten layer 6 of metal for isotope separation.
and a molten layer 5 of a porous metal mass for preventing convection. In such a state, from the viewpoint of improving the thermal efficiency of the electron beam 8, the quantitative ratio of the molten layer 6 of the isotope separation metal to the molten layer 5 of the convection prevention metal lump becomes important. That is, if a sufficient amount of the molten layer 5 of the metal lump for preventing convection exists and surrounds the molten layer 6 of the metal for isotope separation in an appropriate quantitative ratio, convection within the molten layer 6 of the metal for isotope separation is prevented. It is possible to increase the thermal efficiency of the electron beam 8 by keeping it small.

しかし多孔質の金属塊5は、気孔率を正確に把握するこ
とが困難なことなどから、蒸発用るつぼ4に最初に収納
するときは不十分な量になることがある。また後に同位
体分離用金属を補給すると、この金属の溶融層6だけが
一方的に増え、上述の適切な量的比率が崩れることもあ
る。
However, since it is difficult to accurately determine the porosity of the porous metal mass 5, the amount of the porous metal mass 5 may be insufficient when initially stored in the evaporation crucible 4. Moreover, if the metal for isotope separation is later replenished, the molten layer 6 of this metal increases unilaterally, and the above-mentioned appropriate quantitative ratio may be disrupted.

本発明は上記事情に鑑みてなされたものであって、連続
的に同位体分離用の金属原料を補給できる同位体分離装
置(金属蒸気発生装置)において、同位体分離用の金属
原料層と対流防止用金属の溶融層との量的比率を適切に
保ち、金属蒸気発生のために与える熱エネルギーを効率
よく利用できる金属蒸気発生装置の運転方法を提供する
ことを目的とする。
The present invention has been made in view of the above circumstances, and is an isotope separation device (metal vapor generator) that can continuously supply metal raw materials for isotope separation. It is an object of the present invention to provide a method of operating a metal steam generator that can maintain an appropriate quantitative ratio of a prevention metal to a molten layer and efficiently utilize thermal energy provided for metal steam generation.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明は上記課題を解決するために、同位体分離用金属
と対流防止用金属を収容する蒸発用るつぼと、前記同位
体分離用金属を加熱して溶融・蒸発させる電子ビームを
射出する電子銃と、上記電子ビームの照射により蒸発し
た金属蒸気を案内する蒸気封入容器と、前記同位体分離
用金属の補給用原料を収容する補給容器とを真空容器内
に備えた金属蒸気発生発生装置を運転する際、上記補給
容器内に対流防止用金属の原料をも供給する金属蒸気発
生装置の運転方法を提供する。
(Means for Solving the Problems) In order to solve the above-mentioned problems, the present invention provides an evaporation crucible that accommodates a metal for isotope separation and a metal for preventing convection, and an evaporation crucible that heats and melts the metal for isotope separation. An electron gun that emits an electron beam to be evaporated, a vapor enclosure container that guides metal vapor vaporized by irradiation with the electron beam, and a supply container that contains a supply raw material for the metal for isotope separation are placed in a vacuum container. The present invention provides a method for operating a metal vapor generator, which also supplies a convection-preventing metal raw material into the supply container when operating the metal vapor generator equipped with the metal vapor generator.

(作用) 本発明においては、同位体分離用金属と対流防止用金属
を収容する蒸発用るつぼと、前記同位体分離用金属を加
熱して溶融・蒸発させる電子ビームを射出する電子銃と
、上記電子ビームの照射により蒸発した金属蒸気を案内
する蒸気封入容器と、前記同位体分離用金属の補給用原
料を収容する補給容器とを真空容器内に備えた金属蒸気
発生発生装置を運転する際、補給容器内に対流防止用金
属の原料をも供給する。したがって本発明によれば、最
初蒸発用るつぼ内に収容する対流防止用金属の量が少な
くても、同位体分離用金属とともに対流防止用金属も補
給して、同位体分離用金属の溶融層と対流防止用金属の
溶融層との量的比率を同位体分離用金属の対流を防止で
きる程度に高め、維持することができ、電子ビームが与
える熱エネルギーの有効利用が可能になる。
(Function) In the present invention, an evaporation crucible that accommodates a metal for isotope separation and a metal for preventing convection, an electron gun that emits an electron beam that heats and melts and evaporates the metal for isotope separation, and the above-mentioned When operating a metal vapor generation device including a vapor enclosure container for guiding metal vapor evaporated by electron beam irradiation, and a replenishment container for accommodating replenishment raw materials for the metal for isotope separation in a vacuum container, Also supplies raw materials for convection prevention metal into the supply container. Therefore, according to the present invention, even if the amount of the convection prevention metal initially accommodated in the evaporation crucible is small, the convection prevention metal is replenished together with the isotope separation metal to form a molten layer of the isotope separation metal. The quantitative ratio of the convection-preventing metal to the molten layer can be increased and maintained to such an extent that convection of the isotope-separating metal can be prevented, making it possible to effectively utilize the thermal energy provided by the electron beam.

(実施例) 以下第1図を参照して本発明の詳細な説明する。(Example) The present invention will be described in detail below with reference to FIG.

第1図は本発明の方法を実施する金属蒸気発生装置に設
置される補給容器と蒸発用るつぼの部分拡大図である。
FIG. 1 is a partially enlarged view of a supply container and an evaporation crucible installed in a metal vapor generator for carrying out the method of the present invention.

この金属蒸気発生装置の基本的構成は第2図に示したも
のと実質的に異ならないので、対応する箇所には同一の
符号を付して説明を省略する。
Since the basic configuration of this metal vapor generator is not substantially different from that shown in FIG. 2, corresponding parts are given the same reference numerals and a description thereof will be omitted.

この実施例において蒸発用るつぼ4に収容される対流防
止用多孔質金属塊5は、上述の技術的課題のため同位体
分離用金属の対流を十分防止できるものではない。そし
て本実施例においては、補給容器17の中に同位体分離
用金属の補給用ペレット17だけでなく、対流防止用金
属のペレット20をも適当な数量だけ供給する。
In this embodiment, the convection-preventing porous metal mass 5 housed in the evaporation crucible 4 cannot sufficiently prevent convection of the metal for isotope separation due to the above-mentioned technical problem. In this embodiment, not only isotope separation metal replenishment pellets 17 but also convection prevention metal pellets 20 are supplied in appropriate quantities into the replenishment container 17.

さて電子ビーム8の照射によって同位体分離金属の加熱
が続くと、同位体分離用金属の溶融層6と対流防止用金
属の溶融層5が分離し、同位体分離用金属の溶融層6は
、対流防止用金属の溶融層5に取囲まれる。そしてこの
間に同位体分離用金属6は、蒸発によってその量が少な
くなっている。
Now, as the isotope separation metal continues to be heated by irradiation with the electron beam 8, the isotope separation metal molten layer 6 and the convection prevention metal molten layer 5 are separated, and the isotope separation metal molten layer 6 becomes It is surrounded by a molten layer 5 of anti-convection metal. During this time, the amount of the metal for isotope separation 6 decreases due to evaporation.

ここで本実施例においては、ヒータ18を稼働させて補
給容器1.7の下部を加熱する。すると補給容器17内
に収容した同位体分離用金属の補給用ペレット16がこ
の熱で溶融し補給容器17下端の開口から蒸発用るつぼ
4内に滴下する。すると、蒸発用るつぼ4内の同位体分
離用金属6は補給され、蒸気流10の発生は継続する。
In this embodiment, the heater 18 is operated to heat the lower part of the supply container 1.7. Then, the replenishment pellets 16 of metal for isotope separation stored in the replenishment container 17 are melted by this heat and dripped into the evaporation crucible 4 from the opening at the lower end of the replenishment container 17. Then, the metal for isotope separation 6 in the evaporation crucible 4 is replenished, and the generation of the vapor flow 10 continues.

このとき本実施例においては、補給容器1−7内に対流
防止用金属のペレット20も同時に溶融して蒸発用るつ
ぼ4内に注入される。
At this time, in this embodiment, the convection preventing metal pellets 20 are simultaneously melted in the supply container 1-7 and poured into the evaporation crucible 4.

したがって本実施例によれば、対流防止用の金属を適宜
補給することによって対流防止用金属の溶融層5を増量
させ、同位体分離用金属の溶融層6と対流防止用金属の
溶融層5の量的比率を、同位体分離用金属6の対流を有
効に防止できる程度に保つことができる。
Therefore, according to this embodiment, the amount of the molten layer 5 of the convection preventing metal is increased by appropriately replenishing the convection preventing metal, and the molten layer 6 of the isotope separation metal and the molten layer 5 of the convection preventing metal are increased. The quantitative ratio can be maintained to such an extent that convection of the metal 6 for isotope separation can be effectively prevented.

なお本実施例においては、対流防止用金属の供給には、
対流防止用金属単独でできたペレットを用いたが、対流
防止用金属と同位体分離用金属を混合したペレットその
他の形で供給してもよい。
In this example, the convection prevention metal is supplied by:
Although pellets made of a convection-preventing metal alone were used, pellets containing a mixture of a convection-preventing metal and an isotope separation metal may be supplied in the form of pellets or other forms.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明においては、同位体分離用
金属と対流防止用金属を収容する蒸発用るつぼと、前記
同位体分離用金属を加熱して溶融・蒸発させる電子ビー
ムを射出する電子銃と、上記電子ビームの照射により蒸
発した金属蒸気を案内する蒸気封入容器と、前記同位体
分離用金属の補給用原料を収容する補給容器とを真空容
器内に備えた金属蒸気発生発生装置を運転する際、補給
容器内に対流防止用金属の原料をも供給する。
As explained above, the present invention includes an evaporation crucible that accommodates a metal for isotope separation and a metal for preventing convection, and an electron gun that emits an electron beam that heats and melts and evaporates the metal for isotope separation. and operating a metal vapor generation device comprising a vapor enclosure container for guiding the metal vapor evaporated by the electron beam irradiation, and a replenishment container for accommodating the replenishment raw material of the metal for isotope separation in a vacuum container. At the same time, raw materials for convection prevention metal are also supplied into the supply container.

したがって本発明によれば、最初蒸発用るつぼ内に収容
する対流防止用金属の量が少なくても、同位体分離用金
属とともに対流防止用金属も補給して、同位体分離用金
属の溶融層と対流防止用金属の溶融層との量的比率を同
位体分離用金属の対流を防止できる程度に高め、維持す
ることができ、電子ビームが与える熱エネルギーの有効
利用が可能になる。
Therefore, according to the present invention, even if the amount of the convection prevention metal initially accommodated in the evaporation crucible is small, the convection prevention metal is replenished together with the isotope separation metal to form a molten layer of the isotope separation metal. The quantitative ratio of the convection-preventing metal to the molten layer can be increased and maintained to such an extent that convection of the isotope-separating metal can be prevented, making it possible to effectively utilize the thermal energy provided by the electron beam.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法を実施する金属蒸気発生装置の主
要部分拡大図、第2図は従来の金属蒸気発生装置を示す
図である。 5・・・同位体分離用金属の溶融層、6・・・対流防止
雌用金属の溶融層、16・・・同位体分離用金属の補給
ペレット、17・・・補給容器、20・・・対流防止雌
用金属のペレット。
FIG. 1 is an enlarged view of the main parts of a metal vapor generator for carrying out the method of the present invention, and FIG. 2 is a diagram showing a conventional metal vapor generator. 5... Melted layer of metal for isotope separation, 6... Melted layer of convection preventing female metal, 16... Supply pellet of metal for isotope separation, 17... Supply container, 20... Anti-convection female metal pellets.

Claims (1)

【特許請求の範囲】[Claims] 同位体分離用金属と対流防止用金属を収容する蒸発用る
つぼと、前記同位体分離用金属を加熱して溶融・蒸発さ
せる電子ビームを射出する電子銃と、上記電子ビームの
照射により蒸発した金属蒸気を案内する蒸気封入容器と
、前記同位体分離用金属の補給用原料を収容する補給容
器とを真空容器内に備えた金属蒸気発生発生装置を運転
する際、上記補給容器内に対流防止用金属の原料をも供
給する金属蒸気発生装置の運転方法。
an evaporation crucible containing a metal for isotope separation and a metal for preventing convection; an electron gun for emitting an electron beam that heats, melts and vaporizes the metal for isotope separation; and a metal evaporated by irradiation with the electron beam. When operating a metal vapor generation device that is equipped with a steam-enclosed container for guiding steam and a replenishment container for accommodating replenishment raw materials for the metal for isotope separation in a vacuum container, a convection prevention device is installed in the replenishment container. A method of operating a metal steam generator that also supplies metal raw materials.
JP25891689A 1989-10-05 1989-10-05 Driving method of metal vapor generating apparatus Pending JPH03123626A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25891689A JPH03123626A (en) 1989-10-05 1989-10-05 Driving method of metal vapor generating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25891689A JPH03123626A (en) 1989-10-05 1989-10-05 Driving method of metal vapor generating apparatus

Publications (1)

Publication Number Publication Date
JPH03123626A true JPH03123626A (en) 1991-05-27

Family

ID=17326815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25891689A Pending JPH03123626A (en) 1989-10-05 1989-10-05 Driving method of metal vapor generating apparatus

Country Status (1)

Country Link
JP (1) JPH03123626A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100616018B1 (en) * 2001-03-10 2006-08-25 닙코 인크. Method and apparatus for marking items of varied shapes
KR100694906B1 (en) * 2005-05-17 2007-03-14 박종현 Apparatus for printing information on the superficies of medicines

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100616018B1 (en) * 2001-03-10 2006-08-25 닙코 인크. Method and apparatus for marking items of varied shapes
KR100694906B1 (en) * 2005-05-17 2007-03-14 박종현 Apparatus for printing information on the superficies of medicines

Similar Documents

Publication Publication Date Title
US2694763A (en) Electric arc welding
JPH03123626A (en) Driving method of metal vapor generating apparatus
US4035574A (en) Mixed phase evaporation source
US3996469A (en) Floating convection barrier for evaporation source
US4262160A (en) Evaporator feed
JPH10513108A (en) Isotope separation
JPH0372918A (en) Metal vapor generator
US4952294A (en) Apparatus and method for in-situ generation of dangerous polyatomic gases, including polyatomic radicals
CN115380629A (en) Plasma reaction method and plasma reaction apparatus
JPH03123627A (en) Operation method of metal vapor generating apparatus
JP2672152B2 (en) Method and apparatus for producing metal vapor
JPH03262520A (en) Metal vapor generator
JP3595442B2 (en) Ion generation method using SF6 plasma
JPS62180068A (en) Device for heating and evaporating electron beam
JPH07187679A (en) Uranium enriching device and method thereof
JPS5842149A (en) Cesium ion source
JPH03232961A (en) Method for generating metallic vapor
JPH0386215A (en) Metal vapor generator
JPH02122813A (en) Device for generating metallic vapor
JPH0386216A (en) Metal vapor generator
JPS63178832A (en) Isotope separation device
JPH0445208B2 (en)
JPH0568291B2 (en)
JPH0394819A (en) Metal vapor generator
JP2003130997A (en) Neutron generator