JPH03121223A - Fuel injection controller of internal combustion engine - Google Patents

Fuel injection controller of internal combustion engine

Info

Publication number
JPH03121223A
JPH03121223A JP1258717A JP25871789A JPH03121223A JP H03121223 A JPH03121223 A JP H03121223A JP 1258717 A JP1258717 A JP 1258717A JP 25871789 A JP25871789 A JP 25871789A JP H03121223 A JPH03121223 A JP H03121223A
Authority
JP
Japan
Prior art keywords
fuel injection
guard value
internal combustion
combustion engine
injection time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1258717A
Other languages
Japanese (ja)
Inventor
Toshio Yoshitome
吉留 敏雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP1258717A priority Critical patent/JPH03121223A/en
Publication of JPH03121223A publication Critical patent/JPH03121223A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/76Sealings of ball or roller bearings
    • F16C33/762Sealings of ball or roller bearings by means of a fluid
    • F16C33/763Sealings of ball or roller bearings by means of a fluid retained in the sealing gap
    • F16C33/765Sealings of ball or roller bearings by means of a fluid retained in the sealing gap by a magnetic field
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/06Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To control variation of fuel injection when even in the driving time at a high place and the like, and prevent rough idling caused by overrich condition so as to improve drivability and the like by varying a lowermost guard value of a fuel injection time according to atmospheric pressure. CONSTITUTION:To an intake passage 17 of an internal combustion engine 11, fuel form a fuel injection valve 16 is injected. The atmospheric pressure around the engine 11 is detected by a means 12, and a lowermost guard value of a fuel injection time is varied by a means 13 according to the detected pressure. The basic fuel injection time and the lowermost guard value are respectively calculated by a means 14. A fuel injection valve 16 is controlled only for the calculated final fuel injection time based on the calculated fuel injection time and the lowermost guard value. The lowermost guard value of the fuel injection is varied according to the pressure so as to improve drivability and the like even in the driving time at a high place.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は内燃機関の燃料噴射制御装置に係り、特に燃料
基本噴射時間に、内燃機関の運転状態に応じて補正を加
えると共に、補正に下限ガード値を設けて燃料噴射を行
なう燃料噴射制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a fuel injection control device for an internal combustion engine, and in particular, it corrects the basic fuel injection time according to the operating state of the internal combustion engine, and also sets a lower limit to the correction. The present invention relates to a fuel injection control device that performs fuel injection by setting a guard value.

〔従来の技術〕[Conventional technology]

電子制御式燃料噴射装置を備えた内燃機関においては、
吸入空気邑又は吸気管圧力と機関回転数とに応じて、燃
料噴射弁の基本噴射時間をコンピュータで粋出し、更に
運転状態(走行状態)を各種センサからの検出信号に基
づいて検出して上記基本噴射時間に補正を加えることに
より、運転状態に応じた最適な時間、燃料噴射弁により
燃料噴射を行なうようにしている。
In internal combustion engines equipped with electronically controlled fuel injection devices,
A computer calculates the basic injection time of the fuel injector according to the intake air pressure or intake pipe pressure and engine speed, and further detects the operating state (driving state) based on detection signals from various sensors. By correcting the basic injection time, the fuel injection valve injects fuel for an optimal time depending on the operating condition.

ところが、かかる内燃機関において、減速走行時やアイ
ドル走行時には駆動系のねじり振動等の影響により機関
回転数が大幅に変動し、これに伴つて燃料噴射時間も大
幅に変動し、車両性後方向の加速度の変動による車両の
前後方向のがくがくする振動が繰り返される現4:A(
所謂しゃくりやサージング)が発生する。
However, in such an internal combustion engine, during deceleration or idling, the engine speed fluctuates significantly due to the effects of torsional vibration of the drive system, etc., and the fuel injection time also fluctuates significantly, causing the vehicle's characteristics to deteriorate in the rearward direction. Current situation 4:A(
So-called shakuri or surging) occurs.

そこで、従来は減速走行時及びアイドル走行時の夫々に
おいて最適な別個の燃料噴射時間下限ガード値を設定し
、燃料噴射時間の大幅な変動を抑える内燃機関の燃料噴
射制御方法が知られている(特開昭58−155226
号公報)。
Therefore, conventionally, there has been known a fuel injection control method for an internal combustion engine that suppresses large fluctuations in fuel injection time by setting separate optimum fuel injection time lower limit guard values for each of deceleration driving and idling driving ( Japanese Patent Publication No. 58-155226
Publication No.).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記の従来の燃料噴射制御方法は、平地での使用に最適
な上限ガード値に設定されている。しかし、平地よりも
空気密度が薄い高地での走行時においては、空気密度の
薄さから同じ燃料量に対して空燃比がリッチ側となり、
内燃機関が高地走行時に要求する下限ガード値は平地走
行時より小さくなる。
The conventional fuel injection control method described above is set to an upper limit guard value that is optimal for use on flat ground. However, when driving at high altitudes where the air density is thinner than on flatlands, the air-fuel ratio becomes richer for the same amount of fuel due to the thinner air density.
The lower limit guard value required by the internal combustion engine when driving at high altitudes is smaller than when driving on flatlands.

このため、従来は高地走行時には下限ガード値によって
最小噴射燃料量がガードされてしまうために、オーバリ
ッチとなり、特にアイドル走行時にアイドル回転数が不
安定となり、甚しい場合は機関ストールに到るという問
題がある。
For this reason, conventionally, when driving at high altitudes, the minimum injected fuel amount was guarded by the lower limit guard value, resulting in over-richness, making the idle speed unstable especially when driving at idle, and in severe cases, leading to engine stall. There's a problem.

なお、従来、高地走行時に平地走行時と区別した燃料噴
射量の補正を行なう燃料噴射制御装置も知られているが
(例えば、特開昭61−142341号。
Heretofore, there has been known a fuel injection control device that corrects the fuel injection amount when traveling at high altitudes and when traveling on flatlands (see, for example, Japanese Patent Laid-Open No. 142341/1983).

特開昭63−5124号各公報など)、いずれも前記下
限ガード値に関するものではなく、高地でのアイドル回
転数の不安定性や機関ストールを防止することができな
い。
(Japanese Unexamined Patent Publication No. 63-5124, etc.) are not related to the lower limit guard value, and cannot prevent instability of the idle rotation speed or engine stall at high altitudes.

本発明は以上の点に鑑みてなされたもので、燃料噴射時
間の下限ガード値を大気圧に応じて変更することにより
、高地走行時でもドライバ11月アイ等を向上すること
ができる内燃機関の燃料噴射制御装置を提供することを
目的とする、。
The present invention has been made in view of the above points, and is an internal combustion engine that can improve the driver's eye even when driving at high altitudes by changing the lower limit guard value of the fuel injection time according to atmospheric pressure. The purpose of this invention is to provide a fuel injection control device.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的達成のため、本発明は第1図に示す如き構成と
したものである。同図中、11は内燃機関、12は大気
圧検出手段、13は下限ガード値可変手段、14は燃料
噴射時間算出手段、15は燃料噴射制御手段、16は燃
料噴射弁、17は吸気通路である3□大気圧検出手段1
2は内燃機関11の周囲の大気圧を直接又は間接に検出
する。
In order to achieve the above object, the present invention has a configuration as shown in FIG. In the figure, 11 is an internal combustion engine, 12 is an atmospheric pressure detection means, 13 is a lower limit guard value variable means, 14 is a fuel injection time calculation means, 15 is a fuel injection control means, 16 is a fuel injection valve, and 17 is an intake passage. Yes 3□ Atmospheric pressure detection means 1
2 detects atmospheric pressure around the internal combustion engine 11 directly or indirectly.

下限ガード値可変手段13は大気圧検出手段12により
検出された大気圧に応じて燃料噴射時間算出手段14に
おける下限ガード値を可変制御する。
The lower limit guard value variable means 13 variably controls the lower limit guard value in the fuel injection time calculation means 14 in accordance with the atmospheric pressure detected by the atmospheric pressure detection means 12.

燃料噴射時間算出手段14は内燃機関11の吸入空気量
又は吸気管圧力と機関回転数とにより基本噴射時間を算
出すると共に、内燃機関11の特定の運転状態のときに
燃料噴射時間の下限ガード値を算出する。
The fuel injection time calculation means 14 calculates the basic injection time based on the intake air amount or intake pipe pressure of the internal combustion engine 11 and the engine speed, and also calculates a lower limit guard value of the fuel injection time when the internal combustion engine 11 is in a specific operating state. Calculate.

燃料噴射制別手段15は下限ガード値と前記基本噴射時
間とに基づいて点出した最終燃料噴射時間、前記内燃機
関11の吸気通路17への燃料噴射弁16による燃料噴
射を制御する。
The fuel injection control means 15 controls the final fuel injection time determined based on the lower limit guard value and the basic injection time, and the fuel injection by the fuel injection valve 16 into the intake passage 17 of the internal combustion engine 11.

(作用〕 大気圧検出手段12により検出された大気圧に応じて、
下限ガード値可変手段13が燃料噴射時間の下限ガード
値を可変する。
(Function) Depending on the atmospheric pressure detected by the atmospheric pressure detection means 12,
The lower limit guard value variable means 13 varies the lower limit guard value of the fuel injection time.

従って、本発明では燃料噴射制御手段15により燃料噴
射弁16が燃料噴射を行なう時間は、同じ運転状態では
、平地に比べて高地の方が下限ガード値が小さくできる
ことから、短時間にでき、よって最終燃料噴射量に基づ
く空燃比が高地でオーバリッチとなることを防止するこ
とができる。
Therefore, in the present invention, the time period during which the fuel injection valve 16 injects fuel by the fuel injection control means 15 can be shortened because the lower limit guard value can be smaller in the highlands than in the flatlands under the same operating condition. It is possible to prevent the air-fuel ratio based on the final fuel injection amount from becoming overrich at high altitudes.

〔実施例〕〔Example〕

第2図は本発明の一実施例の構成図を示す。同図中、第
1図と同一構成部分には同一符号を伺しである。本実施
例は内燃機関11として自動中周1ンジンに適用した例
で、第1図に示した下限ガード値可変手段13.燃料噴
射時間算出手段14及び燃料噴射制御手段15をマイク
ロコンピュータ21で実現し、大気圧検出手段12を大
気圧センサ22で実現する構成としたものである。
FIG. 2 shows a configuration diagram of an embodiment of the present invention. In the figure, the same components as in FIG. 1 are designated by the same reference numerals. This embodiment is an example in which the internal combustion engine 11 is applied to an automatic mid-range 1 engine, and the lower limit guard value variable means 13. shown in FIG. The fuel injection time calculation means 14 and the fuel injection control means 15 are realized by a microcomputer 21, and the atmospheric pressure detection means 12 is realized by an atmospheric pressure sensor 22.

第2図において、23はエアクリーナで、これによって
V’遇された空気はエアフローメータ24及びスロット
ルボデー内のスロットルバルブ25を通り、スロットル
バルブ25の開度とエンジン回転数に応じた量だけサー
ジタンク26内に流れ込む。エアフローメータ24は、
吸入される空気量に応じメジャリングプレートが開き、
吸入空気気量を検出する。スロットルボデーにはスロッ
トルポジションセンサ27が取付けられており、このス
ロットルポジションセンサ28はアクセルペダル28の
踏み込み量に応じて開くスロットルバルブ25の開度を
検出する。
In Fig. 2, reference numeral 23 is an air cleaner, and the air generated by the air cleaner passes through an air flow meter 24 and a throttle valve 25 in the throttle body, and is sent to a surge tank by an amount corresponding to the opening degree of the throttle valve 25 and the engine speed. It flows into 26. The air flow meter 24 is
The measuring plate opens according to the amount of air inhaled.
Detects intake air volume. A throttle position sensor 27 is attached to the throttle body, and this throttle position sensor 28 detects the opening degree of the throttle valve 25, which opens according to the amount of depression of the accelerator pedal 28.

また、スロットルバルブ25を迂lし、エアフローメー
タ24の下流側とサージタンク26の上流側とを連通す
るバイパス路29が設けられ、更にバイパス路29には
このバイパス路29を流れる空気量を増減させるアイド
ル・スピード・コントロール・バルブ(ISCV)30
が設けられている。
Further, a bypass passage 29 is provided that bypasses the throttle valve 25 and communicates the downstream side of the air flow meter 24 with the upstream side of the surge tank 26, and furthermore, the bypass passage 29 is provided with a bypass passage 29 that increases or decreases the amount of air flowing through the bypass passage 29. Idle speed control valve (ISCV) 30
is provided.

サージタンク26は吸気通路(インテークマニホルド)
17及び吸気ボート31を介してエンジンの燃焼室32
に連通されている。また、燃焼室32には吸気弁33.
排気弁34が設けられ、また燃焼室32は排気ポート3
5を介して排気通路(1キシ−ストマニホルド)36に
連通している。
The surge tank 26 is an intake passage (intake manifold)
17 and the combustion chamber 32 of the engine via the intake boat 31
is communicated with. Further, the combustion chamber 32 has an intake valve 33.
An exhaust valve 34 is provided, and the combustion chamber 32 is connected to the exhaust port 3.
It communicates with an exhaust passage (xist manifold) 36 via 5.

燃料タンク37内の燃料は燃料ポンプ38により汲み上
げられ、燃料パイプ39を介して燃料噴射弁16へ圧送
され、マイクロコンピュータ21の指示に従い所定噴射
時間、燃料噴射弁16により吸気通路17を通る空気流
中に噴射される。
The fuel in the fuel tank 37 is pumped up by the fuel pump 38 and sent under pressure to the fuel injection valve 16 via the fuel pipe 39, and the fuel injection valve 16 controls the air flow through the intake passage 17 for a predetermined injection time according to instructions from the microcomputer 21. sprayed inside.

40は点火プラグで、一部が燃焼室32内へ突出するよ
うに設けられており、マイクロコンピュータ21からの
点火信号により遮断される一次電流によって発生した高
電圧がイグナイタ(図示せず)からディストリビュータ
41を介して分配供給され、燃焼室32内に放電による
火花を発生させる。42はピストンで、シリンダブロッ
ク43内に設けられ、図中、上下方向に拝復運動する。
Reference numeral 40 denotes an ignition plug, which is provided so that a part thereof protrudes into the combustion chamber 32.The high voltage generated by the primary current that is interrupted by the ignition signal from the microcomputer 21 is transferred from the igniter (not shown) to the distributor. 41 and generates a spark in the combustion chamber 32 by electric discharge. A piston 42 is provided in the cylinder block 43 and moves back and forth in the vertical direction in the figure.

吸気ボート31.排気ボート35.これらと燃焼室32
との間を開閉する吸気弁33及び排気弁34、点火プラ
グ40及びピストン42はエンジン44を構成している
Intake boat 31. Exhaust boat 35. These and the combustion chamber 32
The intake valve 33 and exhaust valve 34 that open and close between the engine 44, the spark plug 40, and the piston 42 constitute an engine 44.

かかる概略構成のエンジンには、各種センサが設けられ
、それらの検出信号はマイクロコンピュータ21に供給
される。45は回転角センサで、ディストリビュータ4
1のタイミングロータ46の回転を検出することにより
、エンジン回転信号(Ne信号)を発生してマイクロコ
ンピュータ21に供給する。47は水温センづで、エン
ジンブロック43を貫通して一部がウォータジャケット
内に突出するように設けられており、エンジン冷却水の
水温を検出する。
The engine having such a schematic configuration is provided with various sensors, and their detection signals are supplied to the microcomputer 21. 45 is a rotation angle sensor, and the distributor 4
By detecting the rotation of the No. 1 timing rotor 46, an engine rotation signal (Ne signal) is generated and supplied to the microcomputer 21. A water temperature sensor 47 is provided so as to penetrate through the engine block 43 and partially protrude into the water jacket, and detects the temperature of the engine cooling water.

48は酸素濃度検出センサ(02センサ)で、その一部
が排気通路36を貫通突出するように配置され、三元触
媒に入る前の排気ガス中の酸素濃度を検出する。大気圧
センサ22は車両の周囲(エンジン44の周囲)の大気
圧を検出し、その検出大気圧をマイクロコンビl−夕2
1に供給する。更に吸気温センサ49は吸入空気温度を
検出する。
Reference numeral 48 denotes an oxygen concentration detection sensor (02 sensor), which is disposed so that a portion thereof protrudes through the exhaust passage 36, and detects the oxygen concentration in the exhaust gas before entering the three-way catalyst. The atmospheric pressure sensor 22 detects the atmospheric pressure around the vehicle (around the engine 44), and converts the detected atmospheric pressure into a microcombination sensor 2.
Supply to 1. Further, an intake air temperature sensor 49 detects the intake air temperature.

第2図に示す如き概略構成のエンジンの動作を制御する
マイクロコンピュータ21のハードウェア構成の概略は
第3図に示される。同図中、第2図と同一構成部分には
同一符号を付し、その説明を省略する。第3図において
、マイクロコンビ1−夕21は中央処即装置(CPU)
51.処理プログラムを格納したリード・オンリ・メモ
リ(ROM)52.作業領域として使用されるランダム
・アクセス・メモリ(RAM)52.通電停止後もデー
タを保持するバックアップRAM53などと、A/D変
換器55及びI10インタフェース回路56とが双方向
のパスライン57で接続された構成とされている。A/
D変換器55にはエアフローメータ24からの吸入空気
量検出信号、水温セン4j47からの水温検出信号、吸
気温センサ49からの検出信号などが入力され、A/D
変換器55からそれらの検出信号のディジタル値がパス
ライン57へ時分割出力される。
A schematic hardware configuration of the microcomputer 21 that controls the operation of the engine having the schematic configuration shown in FIG. 2 is shown in FIG. In the figure, the same components as those in FIG. 2 are denoted by the same reference numerals, and the explanation thereof will be omitted. In Figure 3, microcombi 1-21 is a central processing unit (CPU).
51. Read-only memory (ROM) 52 that stores processing programs. Random access memory (RAM) 52 used as a work area. The configuration is such that a backup RAM 53 that retains data even after power is turned off, and an A/D converter 55 and an I10 interface circuit 56 are connected by a bidirectional path line 57. A/
The intake air amount detection signal from the air flow meter 24, the water temperature detection signal from the water temperature sensor 4j47, the detection signal from the intake air temperature sensor 49, etc. are input to the D converter 55, and the A/D
The digital values of these detection signals are output from the converter 55 to the pass line 57 in a time-division manner.

I10インタフェース回路56は、回転角センサ45.
スロットルポジションセンサ27.ILf%濃度検出セ
ンサ48.大気圧センサ22などからの検出信号が入力
され、これらをパスライン57へ供給する一方、CPt
J51からパスライン57を介して入力された制御信号
を、l5CV30及び燃料噴射弁16へ夫々出力し、l
5CV30の開度をl1ltltしたり、燃料噴射弁1
6による燃料噴射時間(燃料噴射量)を制御する。
I10 interface circuit 56 connects rotation angle sensor 45.
Throttle position sensor 27. ILf% concentration detection sensor 48. Detection signals from the atmospheric pressure sensor 22 etc. are input and are supplied to the pass line 57, while CPt
The control signal input from J51 via the pass line 57 is output to l5CV30 and fuel injection valve 16, respectively, and
5CV30 opening degree l1ltlt, fuel injection valve 1
6 to control the fuel injection time (fuel injection amount).

次にマイクロコンビコータ21による燃料噴射!111
11の各実施例について説明する。第4図は本発明の要
部の第1実施例の泪算ルーチンを示す。マイクロコンピ
ュータ21はまずステップ61において、1アフロ−メ
ータ24及び回転角センサ45からの検出信号に基づく
エンジン回転数当りの吸入空気ff1Q/N Eと、水
温センサ47からの水温検出信号THW、吸気温センザ
センがらの吸入空気温検出信号THAその他から基本燃
料噴射時間TAUiを算出する。
Next, fuel injection by micro combi coater 21! 111
Each of the eleven embodiments will be explained. FIG. 4 shows the calculation routine of the first embodiment of the main part of the present invention. First, in step 61, the microcomputer 21 calculates the intake air ff1Q/NE per engine rotational speed based on the detection signals from the 1 aflow meter 24 and the rotation angle sensor 45, the water temperature detection signal THW from the water temperature sensor 47, and the intake air temperature. The basic fuel injection time TAUi is calculated from the intake air temperature detection signal THA from the sensor and others.

続いて、ステップ62において、第5図に丞す如くエン
ジン回転数NEに対応して下限ガード値丁A (J l
inが予め設定されたマツプをROM52から読み出し
て、回転角センサ45がらのエンジン回転数NEに応じ
た下限ガード値T A Uminを算出する。この第5
図に示すNE−TAUminガートマツプは、平地にお
いて、前記アイドル時や減速走行時などでの燃料噴射時
間の変動を抑えるために使用され、エンジン回転数NE
が高くなるほど下限カード値rALJminの値は小に
設定される。
Subsequently, in step 62, the lower limit guard value A (J l
A map in which in is preset is read out from the ROM 52, and a lower limit guard value T A Umin corresponding to the engine rotation speed NE from the rotation angle sensor 45 is calculated. This fifth
The NE-TAUmin guard map shown in the figure is used to suppress fluctuations in fuel injection time during idling and deceleration driving on flat ground.
The higher the value of the lower limit card value rALJmin is, the smaller the value of the lower limit card value rALJmin is set.

次にステップ63で大気圧センサ22がらの大気圧検出
信号HACと予め設定した値aとを大小比較することに
より、平地か高地かを判定する。
Next, in step 63, by comparing the atmospheric pressure detection signal HAC from the atmospheric pressure sensor 22 with a preset value a, it is determined whether the terrain is flat or high.

大気圧検出信号HACが設定値8以上のとぎは平地と判
定して後述するステップ66へ進み、他方、HACが設
定値a未満のときは高地と判定して次のステップ64へ
進んで第6図に示す如きHAC−KHAC?ツブより補
正係数KHACを算出する。HAC−KHACマツプは
第6図に示すように、上記設定値aから設定値すまで、
大気圧が低くなるにつれて(より高地になるにつれて)
、補正係数K HA Cが小なる値になるように設定さ
れたマツプで、ROM52に格納されている。
If the atmospheric pressure detection signal HAC is equal to or higher than the set value 8, it is determined that the land is flat and the process proceeds to step 66, which will be described later.On the other hand, when the HAC is less than the set value a, it is determined that the land is high and the process proceeds to the next step 64. HAC-KHAC as shown in the figure? Calculate the correction coefficient KHAC from the knob. As shown in Figure 6, the HAC-KHAC map is from the above setting value a to the setting value,
As atmospheric pressure decreases (at higher altitudes)
This map is stored in the ROM 52 and is set so that the correction coefficient K HAC becomes a small value.

次にステップ65において、前記ステップ62で算出し
た下限ガード値rAUminに、上記ステップ64で算
出した補正係数K HA Cを乗じて退路的な下限ガー
ド値TAUIIlinを算出した後ステップ66へ進む
。従って、高地走行時には下限ガード値T A U w
inが検出大気圧が低くなるほど小に可変されることに
なる。
Next, in step 65, the lower limit guard value rAUmin calculated in step 62 is multiplied by the correction coefficient K HAC calculated in step 64 to calculate a backward lower limit guard value TAUIIlin, and then the process proceeds to step 66. Therefore, when driving at high altitudes, the lower limit guard value T A U w
The lower the detected atmospheric pressure, the smaller in can be varied.

しかる後に、ステップ66では下限ガード値T7!i、
jJminと萌記基本噴射時間丁AUiとを大小比較し
、rAUi >TAUllinのときはステップ67へ
進んで丁AUiを有効噴射時間TAUEとし、他方、T
ALJi≦T A U minのときはステップ68へ
進んで基本噴射時間TAUiが下限ガード値丁A LJ
 mtnに制限された後、ステップ67で下限ガード値
rAUmin  (=’rAUi )を有効噴射時間r
AtJEとする。
After that, in step 66, the lower limit guard value T7! i,
jJmin and Moeki basic injection time AUi are compared in size, and when rAUi > TAUllin, the process proceeds to step 67 where AUi is set as the effective injection time TAUE, and on the other hand, T
When ALJi≦T A U min, proceed to step 68 and set the basic injection time TAUi to the lower limit guard value D
mtn, the lower limit guard value rAUmin (='rAUi) is set as the effective injection time r in step 67.
AtJE.

そして、ステップ67の処理が終ると、最後に電圧補正
のための無効噴射時間Tvを上記有効噴射時間TAUE
に加算してエンジン−行程当りの最終燃料噴射時間TA
Uを算出する。
When the process of step 67 is completed, the invalid injection time Tv for voltage correction is finally set to the effective injection time TAUE.
plus engine-final fuel injection time per stroke TA
Calculate U.

このように、本実施例によれば、ステップ61及び62
により前記した燃料噴射時間算出1段14を構成し、ス
テップ63・−65により前記した下限ガード値可変f
段13を構成し、ステップ66〜69により前記した燃
料噴射制御手段15を構成することにより、高地走行時
と平地走行時とで異なる燃料噴射量の補正制御ができ、
高地走行時では下限ガード値’FA(Jminが小なる
値に変更されるため、アイドル時や減速走行時にもオー
バリッチとなることを防止でき、アイドル回転数の不安
定さや機関ストールの発生を防止することができる。
Thus, according to this embodiment, steps 61 and 62
The above-mentioned first stage 14 of fuel injection time calculation is configured, and the above-described lower limit guard value variable f is formed in steps 63 and -65.
By configuring the stage 13 and configuring the above-described fuel injection control means 15 by steps 66 to 69, it is possible to perform correction control of the fuel injection amount that is different between when traveling on high ground and when traveling on flat land.
When driving at high altitudes, the lower limit guard value 'FA (Jmin) is changed to a smaller value, which prevents overriching even when idling or decelerating, and prevents instability of idle speed and engine stall. can do.

次に、マイクロコンビl−夕21による燃料噴射制御の
第2実施例について第7図と共に説明する。第7図は本
発明の要部の第2実施例の計算ルーチンを示し、第4図
と同一の処理ステップには同一符号を付し、その説明を
省略する。第7図において、マイクロコンビ1−夕21
はステップ62での下限ガード値rAUmin篩出後に
ステップ71へ進み、酸素濃度検出センサ48の出力検
出信号に基づいて算出した空燃比の目標空燃比に対する
ずれ補正値FGHACと設定値Aとを大小比較する。
Next, a second embodiment of fuel injection control by the microcombiner 21 will be described with reference to FIG. 7. FIG. 7 shows a calculation routine of a second embodiment of the main part of the present invention, and the same processing steps as in FIG. 4 are denoted by the same reference numerals, and the explanation thereof will be omitted. In Figure 7, Microcombi 1-Y21
After determining the lower limit guard value rAUmin in step 62, the process proceeds to step 71, where the deviation correction value FGHAC of the air-fuel ratio calculated based on the output detection signal of the oxygen concentration detection sensor 48 with respect to the target air-fuel ratio is compared with the set value A. do.

マイクロコンピュータ21は酸素濃度検出センサ48か
らの酸素濃度検出信号により、そのときの空燃比を算出
し、その空燃比が目標空燃比となるように燃料噴射時間
をフィードバック制す「シているから、平地走行時には
空燃比が目標空燃比付近であり、このときの上記ずれ補
正値FGI−IAcは設定値ALX上であるのに対し、
高地走行時には大気圧低下による空気密度の低下により
、空燃比がリッチ側に大きくずれるため、そのずれ補正
値FGHACはより空燃比をリーン側に大きく補正する
ために、設定値A未満の小なる値となる。
The microcomputer 21 calculates the air-fuel ratio at that time based on the oxygen concentration detection signal from the oxygen concentration detection sensor 48, and controls the fuel injection time by feedback so that the air-fuel ratio becomes the target air-fuel ratio. When the vehicle is running, the air-fuel ratio is near the target air-fuel ratio, and the deviation correction value FGI-IAc at this time is above the set value ALX.
When driving at high altitudes, the air-fuel ratio deviates greatly toward the rich side due to a decrease in air density due to a decrease in atmospheric pressure. Therefore, the deviation correction value FGHAC is set to a small value less than the set value A in order to greatly correct the air-fuel ratio toward the lean side. becomes.

そこで、本実施例ではステップ71で、空燃比ずれ補正
値FGHACが設定値A未満であるとき高地走行と判定
し、次のステップ72で下限ガード値r A U mi
nに空燃比rt’を補正値FGHACを乗粋して最終的
な下限ガード値TAU1nを算出した後ステップ66へ
進み、以下、第1実施例と同様の処理が行なわれる。
Therefore, in this embodiment, in step 71, when the air-fuel ratio deviation correction value FGHAC is less than the set value A, high-altitude driving is determined, and in the next step 72, the lower limit guard value r A U mi
After calculating the final lower limit guard value TAU1n by multiplying the air-fuel ratio rt' by the correction value FGHAC by n, the process proceeds to step 66, and the same processing as in the first embodiment is performed.

このように、本実施例によれば、高地か否かの検出を大
気圧センサ22でなく、空燃比ずれ補正値FG)−IA
cにより行ない、下限ガード値可変手段13をステップ
71及び72により構成して、空燃比ずれ補正値FGH
ACに応じた上限ガード値下A Ll minの可変制
御を行なうものであり、これにより第1実施例と同様の
特長を有する。
In this way, according to this embodiment, the detection of whether or not it is at a high altitude is performed not by the atmospheric pressure sensor 22, but by using the air-fuel ratio deviation correction value FG)-IA
The lower limit guard value variable means 13 is configured by steps 71 and 72 to adjust the air-fuel ratio deviation correction value FGH.
This embodiment performs variable control of the lower upper limit guard value A Ll min according to AC, and thus has the same features as the first embodiment.

また、上記の第1及び第2の実施例のいずれも、下限ガ
ード値rAUminを高地補正によりドライバごリティ
や排気浄化対策上、最大値に設定できるため、平地走行
時においても従来に比べてドライバビリティ等が向上す
る。
In addition, in both the first and second embodiments, the lower limit guard value rAUmin can be set to the maximum value by high-altitude correction for driver comfort and exhaust purification measures. Improves performance, etc.

なお、本発明は上記の実施例に限定されるものではなく
、例えば吸入空気番の検出を、エア70−メータ24で
なく、サージタンク26の圧力をバキュームセンサで検
出するシステムにも適用することができることは勿論で
ある。
Note that the present invention is not limited to the above-described embodiments, and may also be applied to a system in which, for example, the intake air number is detected using a vacuum sensor instead of the air 70-meter 24 and the pressure of the surge tank 26. Of course, this can be done.

(発明の効果) 上述の如く、本発明によれば、高地におけるアイドル走
行時等でも、燃料噴射量の変動幅を]・限ガード値によ
って抑制できると共に、高地に応じた最適な下限ガード
値により、オーバリッヂによるラフアイドルや機関スト
ールを防止することができる。また、高地補正により下
限ガード値をドライバビリティ及び排気浄化対策上最大
値に設定できるため、従来に比べて高地、平地の各々で
ドライバビリティ等を向上することができる等の特長を
有するものである。
(Effects of the Invention) As described above, according to the present invention, even during idling at high altitudes, the fluctuation range of the fuel injection amount can be suppressed by using the upper limit guard value, and can also be suppressed by using the optimum lower limit guard value depending on the high altitude. , it is possible to prevent rough idling and engine stall due to overridge. In addition, the lower limit guard value can be set to the maximum value in terms of drivability and exhaust purification through high-altitude correction, so it has the advantage of improving drivability on both high-altitude and flat land compared to conventional systems. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の原理ブロック図、第2図は本発明の一
実施例の構成図、第3図は第2図中のマイクロコンピュ
ータのハードウェアの概略構成図、第4図は本発明の要
部の第1実施例の計算ルーチンを示す図、第5図及び第
6図は夫々第4図に示すルーチンで用いられるマツプの
各個を示す図、第7図は本発明の要部の第2実施例の計
算ルーチンを示す図である。 11・・・内燃機関、12・・・大気圧検出手段、13
・・・)限ガード値可変手段、14・・・燃料噴射時間
算出手段、15・・・燃料噴射制陣手段、16・・・燃
料噴射弁、17・・・吸気通路、21・・・マイクロコ
ンピュータ、22・・・大気圧センサ、48・・・酸素
濃度検出センサ。 1 第1 口 第3図 第4図 [ 第5図 第6図 一小(大気圧) 第7医
Fig. 1 is a block diagram of the principle of the present invention, Fig. 2 is a block diagram of an embodiment of the present invention, Fig. 3 is a schematic block diagram of the hardware of the microcomputer in Fig. 2, and Fig. 4 is a block diagram of the present invention. FIG. 5 and FIG. 6 are diagrams showing each map used in the routine shown in FIG. 4, and FIG. 7 is a diagram showing the calculation routine of the first embodiment of the main part of the present invention. It is a figure which shows the calculation routine of 2nd Example. 11... Internal combustion engine, 12... Atmospheric pressure detection means, 13
...) Limit guard value variable means, 14... Fuel injection time calculation means, 15... Fuel injection control means, 16... Fuel injection valve, 17... Intake passage, 21... Micro Computer, 22... Atmospheric pressure sensor, 48... Oxygen concentration detection sensor. 1 1st mouth 3rd figure 4th figure 5th figure 6th figure (atmospheric pressure) 7th doctor

Claims (1)

【特許請求の範囲】 内燃機関の吸入空気量又は吸気管圧力と機関回転数とに
より基本噴射時間を算出すると共に、該内燃機関の特定
の運転状態のときに燃料噴射時間の下限ガード値を算出
する燃料噴射時間算出手段と、 該内燃機関周囲の大気圧を直接又は間接に検出する大気
圧検出手段と、 該大気圧検出手段により検出された大気圧に応じて該燃
料噴射時間算出手段における該下限ガード値を可変制御
する下限ガード値可変手段と、該燃料噴射時間算出手段
からの該下限ガード値と前記基本噴射時間とに基づいて
算出した最終燃料噴射時間、前記内燃機関の吸気通路へ
の燃料噴射弁による燃料噴射を制御する燃料噴射制御手
段と、 よりなることを特徴とする内燃機関の燃料噴射制御装置
[Scope of Claims] The basic injection time is calculated based on the intake air amount or intake pipe pressure of the internal combustion engine and the engine speed, and the lower limit guard value of the fuel injection time is calculated when the internal combustion engine is in a specific operating state. an atmospheric pressure detecting means that directly or indirectly detects the atmospheric pressure around the internal combustion engine; and an atmospheric pressure detecting means that directly or indirectly detects the atmospheric pressure around the internal combustion engine; a lower limit guard value variable means for variably controlling a lower limit guard value; a final fuel injection time calculated based on the lower limit guard value from the fuel injection time calculation means and the basic injection time; A fuel injection control device for an internal combustion engine, comprising: a fuel injection control means for controlling fuel injection by a fuel injection valve; and a fuel injection control device for an internal combustion engine.
JP1258717A 1989-10-05 1989-10-05 Fuel injection controller of internal combustion engine Pending JPH03121223A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1258717A JPH03121223A (en) 1989-10-05 1989-10-05 Fuel injection controller of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1258717A JPH03121223A (en) 1989-10-05 1989-10-05 Fuel injection controller of internal combustion engine

Publications (1)

Publication Number Publication Date
JPH03121223A true JPH03121223A (en) 1991-05-23

Family

ID=17324114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1258717A Pending JPH03121223A (en) 1989-10-05 1989-10-05 Fuel injection controller of internal combustion engine

Country Status (1)

Country Link
JP (1) JPH03121223A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8920035B2 (en) 2010-07-05 2014-12-30 Eagle Industry Co., Ltd. Rolling bearing
US9022660B2 (en) 2010-07-05 2015-05-05 Eagle Industry Co., Ltd. Rolling bearing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8920035B2 (en) 2010-07-05 2014-12-30 Eagle Industry Co., Ltd. Rolling bearing
US9022660B2 (en) 2010-07-05 2015-05-05 Eagle Industry Co., Ltd. Rolling bearing

Similar Documents

Publication Publication Date Title
JPS6165038A (en) Air-fuel ratio control system
JPH0251056B2 (en)
JPH0251052B2 (en)
JP3237553B2 (en) Combustion control device for internal combustion engine
JPS58101244A (en) Abnormality detecting method and treating method of suction tube pressure signal
JPH0329976B2 (en)
JPH03121223A (en) Fuel injection controller of internal combustion engine
JPH0512538B2 (en)
JPH09209798A (en) Exhaust gas recirculating device for engine and its method
JP3307306B2 (en) Combustion system control device for internal combustion engine
JPH057546B2 (en)
JP2870201B2 (en) EGR device
JPH03222836A (en) Fuel controller for engine
JP3194156B2 (en) Air-fuel ratio control device for internal combustion engine
JPS59190431A (en) Fuel injection quantity control method of internal- combustion engine
JPH0245636A (en) Air-fuel ratio controller
JP3089094B2 (en) Control device for internal combustion engine
JPH0627813Y2 (en) Engine fuel controller
JPH07180596A (en) Atmospheric pressure detector for engine control
JPH05542B2 (en)
JPH1130132A (en) Multi-cylinder engine
JPH0214983B2 (en)
JPH04191442A (en) Idle rotating speed control device for internal combustion engine
JPS63113132A (en) Fuel control device of electronic fuel injection
JPH0533707A (en) Air-fuel ratio control device for internal combustion engine